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Abstract

Motivation: Astrocytes, the most abundant glial cells in the mammalian brain, have an instrumental role in develop-
ing neuronal circuits. They contribute to the physical structuring of the brain, modulating synaptic activity and main-
taining the blood–brain barrier in addition to other significant aspects that impact brain function. Biophysically,
detailed astrocytic models are key to unraveling their functional mechanisms via molecular simulations at micro-
scopic scales. Detailed, and complete, biological reconstructions of astrocytic cells are sparse. Nonetheless, data-
driven digital reconstruction of astroglial morphologies that are statistically identical to biological counterparts are
becoming available. We use those synthetic morphologies to generate astrocytic meshes with realistic geometries,
making it possible to perform these simulations.

Results: We present an unconditionally robust method capable of reconstructing high fidelity polygonal meshes of
astroglial cells from algorithmically-synthesized morphologies. Our method uses implicit surfaces, or metaballs, to
skin the different structural components of astrocytes and then blend them in a seamless fashion. We also provide
an end-to-end pipeline to produce optimized two- and three-dimensional meshes for visual analytics and simula-
tions, respectively. The performance of our pipeline has been assessed with a group of 5000 astroglial morphologies
and the geometric metrics of the resulting meshes are evaluated. The usability of the meshes is then demonstrated
with different use cases.

Availability and implementation: Our metaball skinning algorithm is implemented in Blender 2.82 relying on its
Python API (Application Programming Interface). To make it accessible to computational biologists and neuroscient-
ists, the implementation has been integrated into NeuroMorphoVis, an open source and domain specific package
that is primarily designed for neuronal morphology visualization and meshing.

Contact: marwan.abdellah@epfl.ch or felix.schuermann@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most mammalian brains are comprised of two broad categories of
cell types, neurons and glia, each of which contains a variety of con-
stituent subtypes. Although neurons are by far the most widely
studied and considered the primary substrates of behavior, glia are
often just as numerous (Jäkel and Dimou, 2017; Sherwood et al.,
2006). Mammalian glia subtypes include astrocytes, oligodendro-
cytes and microglia (Bullock, 2004), with astrocytes being the most
abundant of the three. A higher glia-to-neuron ratio in humans is
thought to reflect higher energy needs, since astrocytes form an en-
ergy processing unit with neurons and local capillaries (Bélanger
et al., 2011; Herculano-Houzel, 2014). Much evidence points to a
critical role for astrocytes in the normal formation of developing
neuronal circuits as well as their function in maturity (Khakh and
Sofroniew, 2015). Brain astrocytes are involved in modulating syn-
aptic activity, integrating intracellular and extracellular signals and
responding to or mediating pathological states, including numerous

neurodegenerative disorders such as Parkinson’s and Alzheimer’s
diseases (Rossi and Volterra, 2009). The dysfunction of astrocytes is
also implicated in the pathogenic neuronal activity seen in ischemic
stroke and epilepsy in the prefrontal cortex (Siracusa et al., 2019).
In short, there is clear evidence for glial contributions to almost
every conceivable brain function or disorder. Almost none of the
multiple aspects of neuro-glia signaling briefly described here, as
well as many others not mentioned, can be understood at a macro-
scopic or whole-cell scale. On the contrary, almost all of the func-
tions carried out by astrocytes depend on finer scale ultrastructural
domains. For example, it is the endfeet of astrocytes that interface
with the vasculature, forming part of the blood–brain barrier
(Cabezas et al., 2014; Mathiisen et al., 2010) and specialized, thin,
processes envelop synapses, forming the canonical tripartite synapse
structure. Furthermore, local intracellular components must con-
form to corresponding spatial constraints, such as the locating of
mitochondria or glycogen to support energy demands (Calı̀ et al.,
2019) or calcium signaling components (Bazargani and Attwell,
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2016). Moreover, molecular and morphological differences among
astrocytes can be region specific (Lanjakornsiripan et al., 2018).
Given their elaborate anatomical features and extensive domains, it
is difficult to imagine how one can proceed to unravel the mecha-
nisms of astrocytic functions without detailed, ultrastructurally ac-
curate models that are essential to complement our understanding of
the various roles and functional aspects of astrocytes in our brains
(Bushong et al., 2002).

Not surprisingly, the literature is comparatively sparse; few bio-
logically detailed reconstructions of astrocytic cells exist. Therefore,
it was essential to algorithmically synthesize digital reconstructions
of the neuro-glia-vascular (NGV) ensemble including astroglial mor-
phologies that are validated later against realistic biological counter-
parts to ensure their fidelity (Zisis et al., 2021). Starting from this
point, we can synthesize astrocytic models that can be used to study
their functional aspects, which will help us to advance our limited
understanding. This step is subject to the presence of a convenient
method for building detailed and realistic geometric models from
those synthetic morphologies, making it possible to perform accur-
ate stochastic reaction–diffusion simulations. We address this con-
cern and present a robust method to reconstruct high fidelity and
adaptively-tessellated mesh models of astroglial cells from their mor-
phological descriptions.

1.1 Relevant work
Accurate meshing of astroglial morphologies is relatively challeng-
ing compared to the other constituents of the NGV ensemble
(Coggan et al., 2018). Although their processes have branching top-
ologies and hierarchical representations similar to neurons and vas-
cular networks, astrocytes have complex sponge-like spatial
appearance with extremely fine and convoluted fibers that interface
with neurons and synapses, in addition to their perivascular endfeet
that are wrapped around cerebrovasculature (blood vessels that feed
the diverse structures of the brain). Unlike neuronal and vascular
morphologies that are represented by acyclic and cyclic graphs re-
spectively, astrocytic endfeet cannot be logically represented by
graphs. Therefore, endfeet data of astroglial morphologies are ordin-
arily missing. In fact, there is no standard file format that would
make it easy to have complete astroglial reconstructions available
online. This is contrary to neurons which have a plethora of open-
access SWC morphologies from the NeuroMorpho.Org database
(Ascoli et al., 2007) and even vasculature, where neurobiologists
can find multiple arterial arborizations from the BraVa database
(Wright et al., 2013). NeuroMorpho.Org has, to date, �2500 mor-
phological reconstructions of astrocytes including hippocampal and
neocortical astroglial cells of various species—exemplar cells and
their morphometric analysis are available in Supplementary Figures
S1 and S2. Nevertheless, those astrocytes are structurally incom-
plete; they merely have arborizations and somatic samples with no
endfeet data provided. We believe that these reasons are sufficient to
rationalize the absence of domain-specific packages dedicated to
astroglial morphometric analysis, visualization and, most import-
antly, meshing.

A large variety of meshing techniques have been developed to re-
construct polygonal mesh models of neurons and vasculature from
their morphological representations. These techniques can be classi-
fied into three principal categories. The first is concerned with creat-
ing mesh models that are convenient for visual analytics. Depending
on the objective, these meshes could be highly tessellated if being
used for single cell visualization and analysis, or low tessellated
when a visualization of full-compartmental simulation of large scale
circuit is essential (Eilemann et al., 2012, 2017; Markram et al.,
2015). Although they might have various tessellation levels, these
meshes are accurate enough to capture all the details of a given
morphology, however, they are not required to be watertight (Brito
et al., 2013; Garcia-Cantero et al., 2017; Lasserre et al., 2012). The
second category creates visually-appealing, or artistic, mesh models
that are primarily used for neuroscientific multimedia generation
and content creation. These meshes are neither necessarily accurate,
even if they are highly tessellated for UV mapping, nor watertight;
they just need to be visually realistic with smooth branching to

create photorealistic scientific content. These meshes can be created
for instance with skin modifiers (Abdellah et al., 2018). The last cat-
egory is focused on creating high fidelity and optimized watertight
mesh models that can be used to establish tetrahedral volumetric
meshes for computationally-intensive reaction–diffusion modeling
experiments such as Caþ2 signaling and cerebral blood flow simula-
tions (Hepburn et al., 2016). The performance of this category is
typically non-interactive, where a single mesh could be generated in
several seconds, minutes or even a few hours depending on the com-
plexity of the morphology graph (Abdellah et al., 2020; McDougal
et al., 2013; Mörschel et al., 2017).

To the best of our knowledge, we found no existing methods or
software packages that could be used to build realistic astrocytic
mesh models from their morphological descriptions, including end-
feet data. We, therefore, build upon the recent work on synthesizing
astroglial morphologies (Zisis et al., 2021) and present a robust
method capable of reconstructing those missing astrocytic meshes.

1.2 Contribution
Our contributions are summarized in the following points:

i. A robust and systematic algorithm for reconstructing polygonal

mesh models of astroglial cells from their morphological struc-

tures, using metaball skinning.

ii. The algorithm incorporates a hybrid approach to integrate som-

atic surfaces that are reconstructed on a physically-plausible

basis (Abdellah et al., 2017).

iii. Our implementation is integrated in NeuroMorphoVis, an open

source and domain specific package for neuronal analysis, visu-

alization and meshing, to make it accessible to the neuroscien-

tific community.

iv. We adapted open source mesh optimization (Yu et al., 2008)

and mesh repair (Attene, 2010) libraries to be able to recon-

struct adaptively tessellated, optimized and watertight mesh

models with clean topology.

v. An efficient pipeline for creating polygonal astrocytic meshes

for visualization and simulation purposes.

2 Materials and methods

Our core pipeline, illustrated in Figure 1, is composed of three prin-
cipal stages: (i) astrocyte morphology skinning, which produces a
surface mesh representing the astrocytic cell membrane, (ii) astro-
cyte mesh optimization, which creates adaptively tessellated models
for either large scale visual analytics or simulation and (iii) astrocyte
tetrahedralization, which creates a corresponding volumetric mesh
for reaction–diffusion simulations. The astrocytic morphologies are
digitally reconstructed with a different pipeline (Zisis et al., 2021) in
an earlier stage of our ecosystem.

2.1 Astrocyte composition and its morphological

structure
Cortical astroglial cells are similar to neurons; they can be dissected
into somata and arborizations with additional endfeet which allow
them to interface with the perimeters of cerebrovasculature vessels.
Our astrocytic morphologies, refer to (Zisis et al., 2021), are struc-
tured into two principal components: (i) a list of connected samples
that represent their somata and arborizations and (ii) a list of mani-
fold surfaces that represent the spatial extent of the endfeet. Each
sample defines a point in the Cartesian space with a specific diam-
eter and process type. The connectivity information of the sample is
obtained with a reference to a parent node and a child one, where a
sample with no parent indicates the soma and samples with no chil-
dren are considered terminals. Excluding the soma sample, each seg-
ment in the morphology is composed of two consecutive samples, in
which a list of connected segments between two bifurcation points
defines a section. An arbor emanating from the soma is represented

Metaball skinning of synthetic astroglial morphologies i427

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab280#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab280#supplementary-data


by a group of sections in an acyclic graph. The endfeet are defined
by explicit manifold surfaces whose data are stored as a list of verti-
ces and triangles, where every vertex has a corresponding thickness.
The astrocytic morphology structure is illustrated in Figure 2.

2.2 Astrocyte skeleton generation
To generate astrocytic morphologies at micrometer resolution, an
NGV network model comprised of neurons (Markram et al., 2015;
Ramaswamy et al., 2015), astrocytes and vasculature, is digitally
reconstructed. Initially, astrocytic somata are placed in the circuit
based on experimental cortical density profiles and nearest neighbor
distributions. Tiling micro-domains (or bounding polygons) are then
generated to determine the accessible region for each astrocyte to
grow. From these regions, the synapses and vascular sites are deter-
mined. Using neuronal synapses as attraction seeds, astrocytic skele-
tons are then synthesized based on a hybrid method that combines
space colonization and topological branching (Zisis et al., 2021).
Constrained by their microdomain region, each astrocyte explores
the permissible space to grow toward synaptic points, generating
branching patterns according to branching topologies that were
extracted from biological experimental reconstructions. The astro-
cytes project branches to their adjacent vessels to establish the com-
munication pathways between neuronal synapses and the vascular
geometry. From the vessel connections, endfeet manifolds are iso-
tropically generated along the vascular surface, simulating the geom-
etry of the perivascular endfeet, which wrap around and tile the
vascular walls. Each perivascular branch in the astrocytic skeletons
is coupled with an endfoot mesh geometry that apposes the facing
vascular surface. A rendering of the vasculature dataset used to syn-
thesize astrocytic skeletons is shown in the Supplementary Figure
S4.

2.3 Metaball skinning of astrocytic morphologies
Contrary to polygonal meshes represented by vertices and triangular
patches, metaballs are implicit surfaces defined procedurally using
simple mathematical kernels that can be computed on-the-fly
(Karlsson et al., 2019; Oeltze and Preim, 2004; Zoppè et al., 2008).
The fundamental advantage of using metaballs in modeling is the
ability of multiple complex meta-objects to blend into a single object
that is eventually polyganized into a mesh model and cannot be
modeled otherwise (Pan et al., 2018). Metaballs are extremely ef-
fective, however relatively slow, to reconstruct mesh models of
branching structures that are represented either by cyclic graphs,
such as vascular networks (Abdellah et al., 2020) or by acyclic
graphs, such as neurons (Abdellah et al., 2018). Metaballs are also
powerful to handle intricate branching patterns, for example:
branches with acute angles, without creating self-intersecting geo-
metries. This problem can be easily noticed for neurons created with
Skin modifiers .

We present a robust algorithm for skinning astrocytic morpholo-
gies into high fidelity polygonal mesh models based on metaballs in

Blender. Our approach includes a hybrid method capable of inte-
grating highly realistic somata profiles that are generated on a phys-
ically plausible basis. Each individual component in the astrocyte
morphology, including the soma, arbors and endfeet, is skinned into
an independent meta-object. These objects are then blended to-

gether, neatly, in a single meta-object that is ultimately polyganized
into a smooth polygonal mesh that captures all the details of the
given astrocytic morphology.

2.3.1 Meta-object initialization

During the initialization stage, an empty meta-object is created. This
object is a base, with which all the meta-objects corresponding to
each component in the morphology will be blended. The initial poly-

gonization resolution of this meta-object is set to 1.0. Nevertheless,
and to capture all the geometric details of the morphology, the reso-
lution must be set to the radius of the smallest sphere along the
astrocytic skeleton, which will be known after processing all the
components.

2.3.2 Arbors reconstruction

Skinning astrocytic arbors is performed on a per-segment basis; each
arbor is skinned into a separate meta-object (or a meta-arbor), each

Fig. 1. Our pipeline takes synthetic astroglial morphologies (A) and create highly tessellated polygonal surface meshes using metaball skinning (B), which are adaptively opti-

mized and repaired to produce watertight models (C) that can be then used to create volumetric or tetrahedral meshes (D) for reaction–diffusion simulations. A detailed struc-

ture of the pipeline is illustrated in Supplementary Figure S3

Fig. 2. A schematic view of a synthetic cortical astroglial morphology. The skeleton

is structured into three principal components: (i) the cell body or soma—in yellow,

(ii) the astrocytic neurites and (iii) the endfeet—in green. The neurites—in red—are

classified into dendrites (or perivascular processes) and axons (or perisynaptic proc-

esses)––in light green. The neurites are composed of morphological samples that are

digitally-reconstructed at specific Cartesian locations. Each connected pair of sam-

ples defines a segment. A list of connected segments between two branching points

defines a section. The sections are arranged in acyclic graphs, where each of them

represents an astrocytic neurite. Note that only one dendrite and one axon are

shown to avoid clutter, but the full sponge-like structure of the morphology is illus-

trated in Supplementary Figures S5, S6 and S7
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of which is skinned by traversing the hierarchical structure of the
arbor—in a depth-first fashion—and operating on each of its seg-
ments one-at-a-time. The meta-segments could be, in theory, con-
structed with the same algorithm for skinning vascular graphs
(Abdellah et al., 2020) based on sphere-marching (or metaball
marching), where a series of metaballs is generated along the seg-
ment axis to interpolate and fill the linear distance between its two
samples. However, and due to their synthesis algorithm, astrocytic
processes are excessively oversampled. Accessing and processing this
large number of samples using the metaball marching kernel is
accompanied with a significant performance fall-off. Therefore, it is
crucial to adaptively resample each section in the morphology—in a
pre-processing step—to preserve its spatial structure while minimiz-
ing its number of samples to a convenient extent. Figure 3 highlights
the effectiveness of the resampling step on a single astrocytic arbor.
Supplementary Figures S9 and S10 show the minimal impact of the
resampling process on the structure of the astrocyte morphology
using a comparative morphometric analysis before and after
resampling.

2.3.3 Somata reconstruction

Typically, and similar to neurons, astrocytic somata are merely
described with a single morphological sample that accounts for their
origins and mean radii (Brito et al., 2013), see NeuroMorpho.Org.
However, superior reconstructions have more samples that project
the somatic volume along the optical axis to a two-dimensional pro-
file (Halavi et al., 2008). Likewise, the somata of our synthetic
astrocytes are also encoded with the origin-and-radius definition.
Accordingly, reconstructing an exact three-dimensional somatic pro-
file is impracticable.

Our implementation provides two different approaches to recon-
struct approximate somata profiles. We refer to the first approach
as the origin-to-arbor metaball marching, which is logically similar
to skinning segments. This relatively fast approach is intended to
create simplified somatic profiles. Initially, a single metaball (meta-
soma), whose center and radius match the somatic sample, is cre-
ated. The connectivity between the soma and the arbor is considered
as a segment (somatic segment), whose terminal samples are the ori-
gin of the soma and the initial sample of the corresponding arbor.
For each arbor, the respective somatic segment is interpolated and
filled with a series of metaballs. The meta-soma and meta-segments
are then all blended to form the final soma profile as illustrated in
Figure 4.

The second approach hybridizes our metaball skinning technique
with previous methods for building physically plausible profiles
(Abdellah et al., 2017; Brito et al., 2013) with Hooke’s law and
mass-spring models. This hybridization assumes that a uniformly
sampled point cloud of the somatic surface with sufficient sampling
exists, with which we can create meta-patches covering the entire
surface. Those patches can be generated by creating a metaball for
each individual point across the surface. If the maximum distance
between one point and the surrounding points in this cloud is
smaller than the polygonization resolution of the base meta-object,
those patches are then guaranteed to blend smoothly with the meta-
arbors in order to yield continuous and flat connections between the
soma and the respective arbors. Since we implement our algorithm
in NeuroMorphoVis (Abdellah et al., 2018), we create an initial

surface manifold that represents a realistic approximation of the
somatic profile using the soma reconstruction toolbox.
Unfortunately, due to the pulling forces that are applied on the soft
body model to create this surface, its vertices are not uniformly dis-
tributed across its surface, see Supplementary Figure S12. To resolve
this constraint, we remesh this surface with a particle-based meshing
algorithm that guarantees the creation of polygonal meshes with
uniformly distributed vertices as shown in Figure 5 and
Supplementary Figure S13. The vertices of this remeshed surface are
then used to create the meta-patches necessary to define the final
shape of the meta-soma, which is ultimately used to blend with the
rest of the meta-components. For each vertex in this surface, a meta-
ball will be created until the entire mesh is covered, see
Supplementary Figure S14.

If the meta-patches are blended and polygonized, two mesh sur-
faces (or partitions) will be created. These partitions are surrounding
the input manifold surface that is used to create the meta-patch as
shown in Figure 6. Obviously, these partitions have different vol-
umes and surface areas in comparison with the original mesh that
was generated in Figure 5A. Therefore, we tweak our algorithm to
displace the vertices of the original mesh with a step that is com-
puted based on the radius used to build the metaball and the normal
of the vertex. Doing so, we can use only the external partition and
remove the other one from the mesh. This minor adjustment was
sufficient to create somatic profiles with approximate volume and
surface areas as shown in Figure 6E. The somatic surfaces generated
with the two approaches are comparatively shown in Figure 7.

2.3.4 Endfeet reconstruction

Endfeet data are not given as part of the morphology hierarchy per
se, but rather it is retrieved indirectly from the NGV circuit that
defines the connectivity between astroglia, neurons and vasculature
based on their astrocyte identifier in the circuit. Each astrocyte has

Fig. 3. A visual comparison showing a single process of the same astrocytic morph-

ology skeleton before (A) and after (B) adaptive resampling. Note the amount of un-

necessary samples removed. Supplementary Figure S8 provides the same

comparison for the entire morphology skeleton

Fig. 4. Soma reconstruction with origin-to-arbor metaball marching. The meta-

soma is created initially (A) and extended toward the different arbors in the morph-

ology (in transparent red and blue) till the somatic profile is completely recon-

structed in (B). This meta-object is then blended with the counterparts of the arbors

(C) and (D). The reconstructed somatic surface can be slightly altered with different

polygonization resolution, see Supplementary Figure S11

Fig. 5. The point cloud (or vertices) of the initial surface mesh obtained from ordin-

ary soft body simulation in NeuroMorphoVis is not uniformly distributed (A). We,

therefore, use a particle system remesher to create uniformly tessellated surface

mesh to be used for skinning the somatic surface with metaballs. The resulting mesh

is subdivided with one (B), two (C) and three (D) subdivision levels
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one endfoot or more, where each is represented by an open surface
that is a two-dimensional manifold. This surface is defined by a con-
nected patch of triangles and vertices, where each vertex defines a
three-dimensional Cartesian coordinate and a diameter that reflects
the thickness of the endfoot at this point in space. Although surface
normals are not given across the patch, they are not needed to skin
the endfeet as opposed to somata.

Starting from those triangular patches, we present a simple, yet
efficient, approach to skin endfeet manifolds into multiple meta-
objects. A given endfoot patch cannot be processed directly to build
a corresponding meta-object due to the limited tessellation of the
patch with respect to the endfoot thickness, which means that the
average distance between the vertices of each triangle across the end-
foot surface is greater than the thickness per vertex. Therefore, if
those vertices are used to reconstruct the meta-object, it will merely
create a group of fragmented mesh partitions, as shown in
Supplementary Figure S15. This issue is resolved by increasing the
tessellation of the patch using the surface subdivision operator, as
shown in Figure 8. The tessellation factor is set based on the smallest
thickness across the endfoot surface. We added the capability to se-
lect between two subdivision types: (i) simple subdivision, which
increases the patch density without any surface smoothing, or (ii)
Catmull–Clark subdivision, which subdivides and smooths the sur-
face to focus on the esthetic appearance of the endfoot as indicated
in Supplementary Figure S16. After applying the subdivision oper-
ator, the resulting patch is conveniently processed and converted
into a meta-object that when polygonized, will create a smooth sur-
face with no holes or open patches.

2.3.5 Meta-objects polygonization, or meshing

After the skinning of each component in the astrocytic morphology
into a separate meta-object, all the meta-objects are seamlessly
blended together into a single meta-object for polygonization or
meshing. This process is implemented under the hood in Blender
based on one of the variants of the marching cubes algorithm. The
final resolution of the meta-object is therefore set to the radius of

the minutest sample in the entire morphology prior to polygoniza-
tion to avoid creating a fragmented mesh.

As discussed earlier, and depending on the approach used to cre-
ate the somatic meta-object, the resulting mesh will have at least one
or at most two partitions. If the origin-to-arbor metaball marching
method is used, it is guaranteed that the mesh will only have a single
partition. If the hybrid approach is used, the astrocytic mesh will
have two partitions. In the latter case, the mesh is further post-proc-
essed to eliminate the unwanted partition, which has less polygons
and or vertices. The resulting mesh might be highly tessellated, de-
pending on the minimum radius in the morphology skeleton, but it
is guaranteed to have zero non-manifold edges and vertices.

2.4 Astrocytic mesh tessellation and optimization
The astrocytic meshes created with our metaball skinning algorithm
are ordinarily highly tessellated, which could potentially limit their
usability—for instance, to load thousands of them at once to visual-
ize the connectivity of a multi-populated NGV circuit for verifica-
tion. In case of being used for reaction–diffusion simulation, these
meshes might not be convenient for tetrahedralization due to their
immoderate size. Consequently, it is necessary to optimize and re-
tessellate these meshes in an adaptive fashion.

The meshes can be selectively decimated using the default sub-
division library that is integrated in Blender into lightweight meshes
that are almost a tenth of the size or even less—with no significant
loss in their spatial extents. This subdivision approach is convenient
for obtaining meshes that can be used for large scale rendering,
where we need to visualize a large number of astrocytes all at once
to verify their locations with respect to the vascular network.
Nevertheless, these decimated meshes do not have clean topologies
and might have self-intersections, and therefore, they cannot be used
for performing reaction–diffusion simulations. For this purpose, we
have adapted a couple of open source frameworks for mesh opti-
mization (Yu et al., 2008) and repair (Attene, 2010) to ensure that
our pipeline is capable of creating optimized watertight mesh models
that can be tetrahedralized with existing tetrahedralization
solutions.

2.5 Tetrahedralization
Tetrahedralization converts a two-dimensional closed manifold rep-
resented by a polygonal surface mesh into a three-dimensional volu-
metric mesh containing multiple tetrahedra. This process is essential
to build a geometric astrocytic model that can be used to perform re-
action–diffusion simulations (Hepburn et al., 2016). Nevertheless,
tetrahedralization cannot be accomplished in a reasonable time
without the existence of a watertight mesh that is by definition two-
manifold and has no self-intersections. Implementing a tetrahedral
mesh generator is beyond the scope of this work, and therefore we
have relied on a convenient solution to synthesize tetrahedral astro-
cytic models to complement our pipeline. Various open source
implementations and Application Programming Interfaces (APIs)
are already available, for example TETGEN (Si and TetGen, 2006),
CGAL (Boissonnat et al., 2000) and QUARTET (Labelle and
Shewchuk, 2007). For convenience, we have extended the QUARTET

implementation and integrated it into our pipeline to create tetrahe-
dral meshes that are stored in the GMESH file format (Geuzaine and

Fig. 6. Due to the nature of the metaball algorithm, the resulting somatic surface is

composed of two mesh partitions having different volumes and surface areas. If we

build a somatic surface using the input mesh shown in (A), we will get a resulting

mesh with two partitions (B), that cover the input mesh as shown in (C). The dis-

placement step is used to ensure that the exterior partition has an approximate vol-

ume to that of the input mesh (D), where we can eliminate the interior partition to

end up with a somatic surface with a single partition matching the input one (E)

Fig. 7. Three-dimensional somatic profiles for the same astrocyte reconstructed with

the origin-to-arbor metaball marching method (A) and the hybrid method (B)

Fig. 8. The endfeet are subdivided to avoid creating fragmented partitions around

their extent. The input endfoot patch in (A) is subdivided with one (B), two (C),

three (D) and four subdivision levels. By trial-and-error, subdivision level of three

was found to be reasonable
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Remacle, 2009). It has to be noted that a recent tetrahedral meshing
technique called TETWILD is capable of creating tetrahedral models
from non-watertight meshes that might have self-intersections and a
few small holes (Hu et al., 2018). Nevertheless, the implementation
of the technique is relatively slow and has high memory footprint; it
cannot be used to tetrahedralize an astroglial cell with complex
arborizations at convenient spatial resolution sufficient to perform
reaction–diffusion simulations.

3 Results and discussion

3.1 Implementation
Our skinning algorithm is implemented as an add-on based on
NeuroMorphoVis and the Python API of Blender. The mesh opti-
mization and tetrahedralization parts are implemented in Cþþ, but
their executables are invoked within the Python code. The add-on
can be executed either from a CLI or using a configurable shell
script, refer to Section II in the Supplementary Material. To increase
its throughput, the pipeline is parallelized relying on the JOBLIB

package to allow running multiple instances on a single compute
node. However, and for convenience, users can manually set a spe-
cific number of cores for batch processing in case of memory
limitations.

3.2 Running the pipeline
The pipeline was tested with 5000 astrocytic morphologies that
were synthesized with a recent NGV multi-populated circuit. It was
configured to generate two sets of polygonal surface meshes: (i)
those produced directly from the skinning implementation at full
tessellation and (ii) a set of optimized and adaptively tessellated
ones. The qualitative geometric metrics of both meshes are evaluated
to validate their accuracy (Knupp et al., 2006). Figure 9 shows a
side-by-side comparison between the non-decimated mesh and its
optimized counterpart for an exemplar astrocytic morphology. This
comparative analysis is reported for nine more pairs in
Supplementary Figures S17–S25 in addition to their corresponding
qualitative metrics in Supplementary Figures S26–S34. The pipeline
was executed in parallel on a compute node having 72 cores, but
only 15 of them are used. The 5000 meshes were created in nearly 4
h and stored in. OBJ file format.

3.3 Meshes for visual analytics
We further created from the first set of meshes a group of low-tessel-
lated ones decimated at 10%. We then used Brayns, a neuroscience
specific large scale and interactive visualization system, to visualize
the structural composition of the NGV circuit and the spatial rela-
tionships between the astrocytes, in addition to their connectivity to
the vascular graph as shown in Figure 10. We also used the non-
decimated meshes to visualize how the perivascular endfeet are con-
nected and wrapped around the blood vessels to verify if they inter-
sect with the vascular wiring or not, as illustrated in Figure 11.

3.4 Visualizing reaction–diffusion simulations
In fact, performing stochastic reaction–diffusion simulations are be-
yond the scope of this work. However, it was important to verify
the usability of the optimized meshes created with our pipeline. We,

Fig. 9. Wireframe models of the resulting meshes from our pipeline. (A) The mesh is

generated with the skinning implementation without any decimation. (B) The mesh

in (A) is optimized and adaptively tessellated to have clean topology

Fig. 10. A high-quality rendering of the vasculature mesh shown in Supplementary

Figure S4 combined with the 5000 decimated astrocytic meshes generated with our

pipeline. The total size of astrocytic meshes is �20 GB. The image is rendered with

the OSPRay rendering engine that is integrated in Brayns. This rendering is used to

verify the correct placement of the astrocytes in the NGV circuit. The rendering is

available in higher resolution in Supplementary Figure S35

Fig. 11. The non-decimated meshes are used to verify astrocytes placement and their

connectivity to vasculature, where endfeet wrap around blood vessels. The image is

rendered in Blender using Cycles, and is available in higher resolution in

Supplementary Figure S34
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therefore, developed a visualization prototype capable of reading
simulation reports, such as Caþ2 concentrations, generated with
STEPs—a scientific package for simulating reaction–diffusion sys-
tems in realistic tetrahedral mesh models of biological structures
(Hepburn et al., 2012). In our context, such simulations permit
investigations of the time course and temporal mixing of signals at
multiple sites within the astrocyte geometry, where Caþ2 ions are
released. Accurate realizations, however, require incorporating
detailed models of other intracellular organelles such as the endo-
plasmic reticulum (ER), which has yet to be modeled in our NGV
circuit. Consequently, we had to generate a time series of random
concentration data to visualize their variations within the entire cell
extent over time. Figure 12 shows a tetrahedral mesh model of an
exemplar astrocyte synthesized from an optimized astrocytic polyg-
onal surface mesh at a single time step. Supplementary Figure S38
shows multiple snapshots of the simulation at different time steps.

3.5 General remarks
Users can selectively build somatic surfaces with either of the
approaches illustrated in Figure 7. Obviously, the hybrid approach
creates highly realistic somata compared to the naı̈ve one. Moreover,
the soft body parameters, including stiffness and simulation steps, can
be tuned to improve the realism of the reconstructed profiles, see
Supplementary Figure S39. Nevertheless, this approach is relatively
slow; for example, it takes with this approach �28 s to reconstruct a
full astrocyte mesh, compared to 1.8 s for the naı̈ve method. This con-
cern is partially resolved by parallelizing the pipeline. Users can also
select whether to produce meshes for visualization, simulation or for
both aspects. The decimation does not impact the simulation mesh; it
is merely used to create low-tessellated visualization-specific meshes
where we can load thousands of them in a single scene to visualize a
full circuit. This does not mean that those meshes are inaccurate; even
with a decimation factor of 0.1, the RMS value of the Hausdorff dis-
tance (Ghaffari et al., 2018) is �0.03, which is within acceptable
range as shown in Supplementary Figure S40.

3.6 Validation and feedback
The output meshes were validated by biologists to ensure that no
artifacts were introduced during the reconstruction process. The
two parameters most key to biologists, surface area and volume,
were assessed in order to understand the tradeoff with resolution.
Furthermore, the final meshes were simulated in a reaction–diffu-
sion simulator, thereby validating the robustness of the reconstruc-
tion process. Full simulation of the entire system from a biological
perspective will be the addressed in our future work. Already

biologists in the broader simulation community have shown keen
interest in using the astrocyte meshes for their simulations, as no
other comparable meshes yet exist.

4 Conclusion

Astrocytes play an essential role in forming the physical structure of the
brain. They contribute to almost every conceivable brain function and
disorder. Unraveling their underlying functional aspects entails the ex-
istence of ultrastructurally accurate models that can be used to perform
chemical simulations at microscopic resolutions. In contrast to neurons,
the literature is lacking detailed biological reconstructions of astrocytic
cells. Recent efforts have started to resolve this issue and developed a
data-driven approach to algorithmically generate digital astrocytic
morphologies that are statistically indistinguishable from biological
ones. We developed an unconditionally robust method capable of skin-
ning those astrocytic morphologies to accurate and optimized astrocyt-
ic mesh models with realistic geometries. This method is based on
implicit surfaces, which makes it possible to skin complicated struc-
tures that are impossible to model accurately otherwise. We also pre-
sented a hybrid approach that incorporates physically plausible
somatic surfaces into our astrocytic models to improve the realism of
the reconstructed meshes. On top of that, we designed an end-to-end
pipeline, which optimizes these two-dimensional meshes and generates
three-dimensional tetrahedral meshes that can be supplied to reaction–
diffusion simulators for modeling astrocytic functions.

We used our pipeline to generate 5000 astrocytic meshes to visu-
ally analyse their placement and connectivity in the NGV circuit.
The pipeline is made available to the neuroscientific community by
integrating the implementation into an open source package dedi-
cated to neuronal visualization. Finally, our skinning algorithm is
generic and applicable to reconstruct mesh models of biological
astrocytic morphologies, not necessarily the synthetic ones, as long
as endfeet data are incorporated within the morphology files.

Software availability

The metaball skinning algorithm is implemented based on the
Python API of NeuroMorphoVis (Abdellah et al., 2018), which is
freely available under the GNU public license on Github. The imple-
mentation was tested with Blender 2.80 and 2.90. The pipeline is
executable via CLI and configuration files. The code is open sourced
under the regulations of the Blue Brain Project, École Polytechnique
Fédérale de Lausanne (EPFL).

Data sources

The original vasculature skeleton (in.VTK format) that is used to
synthesize the astrocytic morphologies is provided by Bruno Weber,
University of Zürich (UZH), Switzerland. The astrocytic morpholo-
gies are provided by Eleftherios Zisis, Blue Brain Project, École
Polytechnique Fédéral de Lausanne (EPFL), Switzerland. The recon-
structed astrocytic meshes can be made available from the corre-
sponding authors on a reasonable request.
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Fig. 12. A tetrahedral mesh of an exemplar astrocyte showing a randomly generated

simulation report to mimic the variations of Caþ2 concentrations across the astro-

cytic surface. This tetrahedral mesh is created with QUARTET using an input surface

mesh reconstructed with our metaball skinning add-on. A higher resolution of this

image is available in Supplementary Figure S37
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