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Abstract: Tracking the target that maneuvers at a variable turn rate is a challenging problem.
The traditional solution for this problem is the use of the switching multiple models technique,
which includes several dynamic models with different turn rates for matching the motion mode of
the target at each point in time. However, the actual motion mode of a target at any time may be
different from all of the dynamic models, because these models are usually limited. To address this
problem, we establish a formula for estimating the turn rate of a maneuvering target. By applying the
estimation method of the turn rate to the multi-target Bayes (MB) filter, we develop a MB filter with
an adaptive estimation of the turn rate, in order to track multiple maneuvering targets. Simulation
results indicate that the MB filter with an adaptive estimation of the turn rate, is better than the
existing filter at tracking the target that maneuvers at a variable turn rate.

Keywords: target tracking; Bayes filter; maneuvering target; estimation of turn rate; multiple models

1. Introduction

Target tracking has been discussed in many articles due to its military and civil applications, which
range from threat warnings, to intelligent surveillance and situational awareness [1–9]. Maneuvering
target tracking is the most essential ingredient of target tracking and has attracted the attention of many
researchers. A number of efficient tracking algorithms for maneuvering targets have been developed
and designed in the past few decades [10–18]. The interacting multiple model (IMM) algorithms
were independently developed in [10,11], in order to track the maneuvering target in systems with
Markov-switching coefficients, and in air traffic control, respectively. The mode-set adaptive IMM
algorithm and multiple model method with variable structure were designed in [12,13], to improve
the performance of IMM algorithms when tracking a maneuvering target. By combining the IMM
method with the joint probabilistic data association (JPDA) and multiple hypothesis tracking (MHT)
techniques, respectively, the IMM-JPDA filter and the IMM-MHT filter were developed in [14,15],
in order to track multiple maneuvering targets. By applying the switching multiple models technique
to the probability hypothesis density (PHD) filter and multi-target Bayes (MB) filter, respectively,
Pasha developed a PHD filter to track maneuvering targets in the presence of clutter and noise [16],
and Liu designed a MB filter for multiple maneuvering target tracking, in the case of low detection
probability [17].

As mentioned above, the existing methods for maneuvering target tracking apply the IMM
approach, or the switching multiple models technique, to the tracking filter. In these methods, a finite
set of dynamic models are used each time. Because the motion mode space of a target is continuous,
a sufficiently large set of dynamic models is usually required to cover the range of possible motion
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modes of the target. Such a large set is impractical because an increase in the number of dynamic
models, also leads to an increase in the computational load. Additionally, it is worth noting that the
actual motion mode of a target at any given time, may be different from all of the dynamic models,
even if a sufficiently large set of dynamic models are used by the filter.

When tracking the target that maneuvers at a variable turn rate, a limited set of dynamic models
with different turn rates are usually used by the filter [12,16]. Since the turn rate of a target at any
given time is unknown and random, its actual turn rate at any given time may be different from the
turn rates in dynamic models. This difference causes the filter to provide an inaccurate state estimation
of the target at this time.

To track the target that maneuvers at a random turn rate, we establish a formula for computing
the turn rate of the target. This formula solves the estimation issue of the turn rate by using the state
vector of a target at a previous time, and its measurement at the current time. Applying the estimation
method of the turn rate to the MB filter, we present the MB filter with an adaptive estimation of the
turn rate. Its performance is demonstrated by the simulation results.

2. A Brief Description of Pasha’s PHD Filter

Pasha’s Gaussian mixture PHD filter is applied to the tracking of multiple maneuvering targets in
systems with linear Gaussian jump Markov system models, and is used as the comparison object in
this paper. We will first give a brief description of this filter. A simplified version of Pasha’s Gaussian
mixture PHD filter is composed of the following four steps:

Step 1: Prediction

Let vk−1(xk−1, rk−1) =
Nk−1

∑
i=1

wi,k−1(ri,k−1)N(xi,k−1; mi,k−1(ri,k−1), Pi,k−1(ri,k−1)) denote the

posterior intensity at time k − 1, where Nk−1 is the number of Gaussian terms at time k − 1 and
N(·; m, P) is a Gaussian distribution with mean vector m, and covariance matrix P; ri,k−1, xi,k−1,
wi,k−1(ri,k−1), mi,k−1(ri,k−1), and Pi,k−1(ri,k−1) are the model label, state vector, weight, mean vector,
and covariance matrix of Gaussian term i, respectively. The predicted posterior intensity is given by:

vk|k−1(xk, rk) =
Nk−1

∑
i=1

Mr

∑
ri,k=1

wi,k|k−1(ri,k)N(xi,k; mi,k|k−1(ri,k), Pi,k|k−1(ri,k)) (1)

where Mr is the number of models used, and wi,k|k−1(ri,k), mi,k|k−1(ri,k), and Pi,k|k−1(ri,k) are given by:

wi,k|k−1(ri,k) = pS,ktk|k−1(ri,k|ri,k−1)wi,k−1(ri,k−1) (2)

mi,k|k−1(ri,k) = Fk−1(ri,k)mi,k−1(ri,k−1) (3)

Pi,k|k−1(ri,k) = Qk−1(ri,k) + Fk−1(ri,k)Pi,k−1(ri,k−1)F
T
k−1(ri,k) (4)

where pS,k is the survival probability; Fk−1(ri,k) and Qk−1(ri,k) are the state transition and process
noise covariance matrices, respectively, of model ri,k; and tk|k−1(ri,k|ri,k−1) is the Markov transition
probability from model ri,k−1 to model ri,k.
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Step 2: Update

If the predicted posterior intensity is given by Equation (1), then the updated posterior intensity
is given by:

vk|k(xk, rk) =
Nk−1

∑
i=1

Mr
∑

ri,k=1
wi,k|k(ri,k)N(xi,k; mi,k|k−1(ri,k), Pi,k|k−1(ri,k))

+
Mk
∑

j=1

Nk−1

∑
i=1

Mr
∑
ri,k

wj
i,k|k(ri,k)N(xi,k; mj

i,k|k(ri,k), Pj
i,k|k(ri,k))

(5)

where:
wi,k|k(ri,k) = (1− pD,k)wi,k|k−1(ri,k) (6)

mj
i,k|k(ri,k) = mi,k|k−1(ri,k) + Ai,k(ri,k) · (yj,k −H(ri,k)mi,k|k−1(ri,k)) (7)

Pj
i,k|k(ri,k) = (I−Ai,k(ri,k) ·H(ri,k))Pi,k|k−1(ri,k) (8)

Ai,k(ri,k) = Pi,k|k−1(ri,k)H
T(ri,k)[H(ri,k)Pi,k|k−1(ri,k)H

T(ri,k) + R(ri,k)]
−1

(9)

wj
i,k|k(ri,k) =

pD,kwi,k|k−1(ri,k)N(yj,k ;H(ri,k)mi,k|k−1(ri,k),H(ri,k)Pi,k|k−1(ri,k)HT(ri,k)+R(ri,k))

λc,k+pD,k

Nk−1
∑

e=1

Mr
∑

re,k=1
we,k|k−1(re,k)N(yj,k ;H(re,k)me,k|k−1(re,k),H(re,k)Pe,k|k−1(ri,k)HT(re,k)+R(re,k))

(10)

where Mr is the number of measurements at time k, yj,k denotes a measurement at time k; H(ri,k) and
R(ri,k) are the observation matrix and covariance matrix of observation noise, respectively; and I, λc,k,
and pD,k denote the identity matrix, clutter rate, and detection probability, respectively.

Step 3: Generation of the Birth Intensity

The birth intensity is generated from the measurements at time k and is given by:

γ(xk, rk) =
Mk

∑
j=1

wj
γ,k N(xj,k; mj

γ,k(rj,k), Pj
γ,k(rj,k)) (11)

where mj
γ,k is taken from measurement yj,k =

[
rj

x,k rj
y,k

]T
; and mj

γ,k =
[

rj
x,k 0 rj

y,k 0
]T

,

rj,k = 1, wj
γ,k = ρr, and Pj

γ,k = Pγ where ρr and Pγ are the known parameter and covariance matrix,
respectively.

Step 4: Combination of the Updated Posterior Intensity and Birth Intensity

The posterior intensity at time k is obtained by the combination of the updated posterior intensity
in Equation (5), and the birth intensity in Equation (11), which is given by:

vk(xk, rk) = vk|k(xk, rk) + γ(xk, rk)

=
Nk−1

∑
i=1

Mr
∑

ri,k=1
wi,k|k(ri,k)N(xi,k; mi,k|k−1(ri,k), Pi,k|k−1(ri,k))

+
Mk
∑

j=1

Nk−1

∑
i=1

Mr
∑
ri,k

wj
i,k|k(ri,k)N(xi,k; mj

i,k|k(ri,k), Pj
i,k|k(ri,k)) +

Mk
∑

j=1
wj

γ,k N(xj,k; mj
γ,k, Pj

γ,k)

(12)

After this combination, the Gaussian terms whose weight is less than threshold τ are pruned, and
the posterior intensity, which is composed of the remaining Gaussian terms, is propagated to the next
time step. Those Gaussian terms whose weight is greater than 0.5 are picked as the output of the filter
at time k.



Sensors 2017, 17, 373 4 of 14

3. Estimation of Turn Rate

In this Section, we will estimate the turn rate of a maneuvering target by using its state
vector at time k − 1 and its position measurement at time k. Figure 1 shows a maneuvering
target with turn rate ωk which moves from point Oe at time k − 1, to point E at time k. Let

Xk−1 =
[

xk−1
.
xk−1 yk−1

.
yk−1

]T
and Xk =

[
xk

.
xk yk

.
yk

]T
denote the state vectors of the

target at times k− 1 and k, respectively, where (xk−1, yk−1) and (xk, yk) denote the position coordinates
of the target at times k− 1 and k, respectively, and (

.
xk−1,

.
yk−1) and (

.
xk,

.
yk) denote its velocities at times

k− 1 and k, respectively. Obviously, in the x-y Cartesian coordinate system, the Cartesian coordinates
of points Oe and E are (xk−1, yk−1) and (xk, yk), respectively.
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Figure 1. Moving trajectory for a target with turn rate ωk.

We introduce an xe − ye Cartesian coordinate system, whose origin is located at point
Oe. The introduced xe − ye Cartesian coordinate system is shown in Figure 2. The coordinate
transformation from position coordinates X in the x-y coordinate system, to position coordinates Xc in
the xe − ye coordinate system, is given by:

Xc =

[
cos αk−1 sin αk−1
− sin αk−1 cos αk−1

]
×
(

X−
[

xk−1
yk−1

])
(13)

where αk−1 is given by:

αk−1 = arc cos
.
xk−1√

.
x2

k−1 +
.
y2

k−1

(14)

Similarly, the vector transformation from velocity vector V in the x − y coordinate system, to velocity
vector Vc in the xe − ye coordinate system, is given by:

Vc =

[
cos αk−1 sin αk−1
− sin αk−1 cos αk−1

]
× V (15)
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Using Equations (13) and (15) to address position coordinates X =
[

xk−1 yk−1

]T
and velocity vector

V =
[ .

xk−1
.
yk−1

]T
in state vector Xk−1 =

[
xk−1

.
xk−1 yk−1

.
yk−1

]T
, respectively, we obtain

the state vector of the target in the xe − ye Cartesian coordinate system, as:

Xe
k−1 =


xe

k−1.
xe

k−1
ye

k−1.
ye

k−1

 =


0√

.
x2

k−1 +
.
y2

k−1
0
0

 (16)

Since the target moves at turn rate ωk, from time k− 1 to time k, the state transition matrix of the target
motion is given by:

F(ωk) =


1 sin ωk∆tk

ωk
0 cos ωk∆tk−1

ωk

0 cos ωk∆tk 0 − sin ωk∆tk

0 1−cos ωk∆tk
ωk

1 sin ωk∆tk
ωk

0 sin ωk∆tk 0 cos ωk∆tk

 (17)

where ∆tk = tk − tk−1 is the interval between times k and k− 1. Using the state transition matrix in
Equation (17), we obtain the state vector of the target in the xe − ye Cartesian coordinate system at
time k, as:

Xe
k =


xe

k.
xe

k
ye

k.
ye

k

 = F(ωk)X
e
k−1 =



√
.
x2

k−1+
.
y2

k−1 sin ωk∆tk
ωk√

.
x2

k−1 +
.
y2

k−1 cos ωk∆tk√
.
x2

k−1+
.
y2

k−1(1−cos ωk∆tk)

ωk√
.
x2

k−1 +
.
y2

k−1 sin ωk∆tk


(18)
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Based on Equation (18), the position coordinates of point E in the xe − ye Cartesian coordinate
system are given by: [

xe
k

ye
k

]
=


√

.
x2

k−1+
.
y2

k−1 sin ωk∆tk
ωk√

.
x2

k−1+
.
y2

k−1(1−cos ωk∆tk)

ωk

 (19)

and the angle βk in Figure 2 is given by:

βk = arc tan
ye

k
xe

k
= arc tan

1− cos ωk∆tk
sin ωk∆tk

(20)

We assume that a sensor observes the position of the target and we use (rx, ry) to denote the
position measurement of the target in the x − y Cartesian coordinate system at time k. Obviously,
the position measurement of the target at time k is its position coordinates at this time, if no
measurement error appears in the measurement of the sensor. Therefore, we have:[

rx

ry

]
=

[
xk
yk

]
or

[
re

x
re

x

]
=

[
xe

k
ye

k

]
(21)

where (re
x,re

y) is given by:[
re

x
re

y

]
=

[
cos αk−1 sin αk−1
− sin αk−1 cos αk−1

]
×
([

rx

ry

]
−
[

xk−1
yk−1

])
(22)

Replacing (xe
k, ye

k) in Equation (20) with (re
x, re

y) in Equation (22), we obtain:

arc tan
re

y

re
x
= arc tan

1− cos ωk∆tk
sin ωk∆tk

(23)

Let c =
re

y
re

x
and φ = ωk∆tk, we have:

(c2 + 1) cos2 φ− 2 cos φ− c2 + 1 = 0 (24)

Solving Equation (24), we obtain:

ωk =


1

∆tk
arc cos

(re
x)

2−(re
y)

2

(re
x)

2+(re
y)

2 , i f re
y ≥ 0

− 1
∆tk

arc cos
(re

x)
2−(re

y)
2

(re
x)

2+(re
y)

2 , i f re
y < 0

(25)

where: {
re

x = (rx − xk−1) cos αk−1 + (ry − yk−1) sin αk−1
re

y = −(rx − xk−1) sin αk−1 + (ry − yk−1) cos αk−1
(26)

Obviously, if no measurement error appears in the position measurement of the target, ωk in
Equation (25) is its turn rate from time k− 1 to time k. Otherwise, we use ωk in Equation (25) as the
estimation of its turn rate from time k− 1 to time k. Thus, by using the state vector of a target at a
previous time, and its position measurement at the current time, we may estimate its turn rate at the
current time.

4. MB Filter with an Adaptive Estimation of Turn Rate

In [19,20], Liu presented the MB filter to track multiple targets in the presence of clutter and noise.
In this section, we apply the estimation method of the turn rate to the MB filter in [20], in order to
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develop the MB filter with an adaptive estimation of the turn rate. This filter consists of the following
four steps:

Step 1: Prediction

In this step, we predict the marginal distribution and existence probability of each target at the
current time, according to its marginal distribution, existence probability, and the estimation of the
turn rate at a previous time.

Let N(xi,k−1; mi,k−1, Pi,k−1), ρi,k−1, and ωi,k−1 denote the marginal distribution of target i,
its existence probability, and the estimation of the turn rate at time k − 1, respectively, where
i = 1, 2, · · · , Nk−1 Nk−1 is the target number and N(·; m, P) is a Gaussian distribution with mean vector
m and covariance matrix P. The predicted marginal distribution, existence probability, and turn rate of
each target at time k are given by:

N(xi,k; mi,k|k−1, Pi,k|k−1),i = 1, 2, · · · , Nk−1 (27)

ρi,k|k−1 = pS,kρi,k−1,i = 1, 2, · · · , Nk−1 (28)

ωi,k|k−1 = ωi,k−1,i = 1, 2, · · · , Nk−1 (29)

where pS,k is the survival probability, and mi,k|k−1 and Pi,k|k−1 are given by:

mi,k|k−1 = F(ωi,k−1)mi,k−1 (30)

Pi,k|k−1 = Qi,k−1 + F(ωi,k−1)Pi,k−1FT(ωi,k−1) (31)

where T denotes the transpose, Qi,k−1 is the covariance of process noise, and F(ωi,k−1) is given by:

F(ωi,k−1) =


1 sin(ωi,k−1∆tk)

ωi,k−1
0 − 1−cos(ωi,k−1∆tk)

ωi,k−1

0 cos(ωi,k−1∆tk) 0 − sin(ωi,k−1∆tk)

0 1−cos(ωi,k−1∆tk)
ωi,k−1

1 sin(ωi,k−1∆tk)
ωi,k−1

0 sin(ωi,k−1∆tk) 0 cos(ωi,k−1∆tk)

 (32)

Step 2: Estimation of Turn Rate

In this step, we use the measurements at time k, and marginal distribution of target i at time k− 1,
to estimate its turn rate from time k− 1 to time k.

Let yj,k =
[

rj
x,k rj

y,k

]T
denote the measurement at time k, where j = 1, 2, · · · , Mk, Mk is the

number of measurements, and rj
x,k and rj

y,k denote the x and y components of measurement yj,k; and

let mi,k−1 =
[

ηi
x,k−1

.
η

i
x,k−1 ηi

y,k−1
.
η

i
y,k−1

]T
denote the state vector of target i at time k− 1, where

(ηi
x,k−1, ηi

y,k−1) denotes the position coordinates of target i and (
.
η

i
x,k−1,

.
η

i
y,k−1) denotes its velocities.

According to Equation (25), the turn rate of target i that corresponds with measurement yj,k, is given by:

ω
i,j
k,e =

sgn(ye
i,j)

tk − tk−1
arccos

(xe
i,j)

2 − (ye
i,j)

2

(xe
i,j)

2 + (ye
i,j)

2 ,i = 1, 2, · · · , Nk−1,j = 1, 2, · · · , Mk (33)

where [
xe

i,j
ye

i,j

]
=

[
cos αi,k−1 sin αi,k−1
− sin αi,k−1 cos αi,k−1

]
×
([

rj
x,k

rj
y,k

]
−
[

ηi
x,k−1

ηi
y,k−1

])
(34)
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αi,k−1 = arc cos
.
η

i
x,k−1√

(
.
η

i
x,k−1)

2
+ (

.
η

i
y,k−1)

2
(35)

sgn(ye
i,j) =

{
1, i f ye

i,j ≥ 0
−1, i f ye

i,j < 0
(36)

Considering that the turn rate of a target is generally within a known range, the turn rate of target i
that corresponds with measurement yj,k, may be given by:

ω
i,j
k =


ωmax i f ω

i,j
k,e ≥ ωmax

ω
i,j
k,e i f −ωmax < ω

i,j
k,e < ωmax

−ωmax i f ω
i,j
k,e ≤ −ωmax

(37)

where ωmax is the maximal turn rate.

Step 3: Update

In this step, we use the marginal distribution N(xi,k−1; mi,k−1, Pi,k−1), predicted existence
probability ρi,k|k−1, turn rate estimation ω

i,j
k , and measurement yj,k, to obtain the updated marginal

distribution, existence probability, and turn rate. The updated distribution and existence probability of
target i that corresponds with measurement yj,k, are as follows:

N(xi,k; mi,j
k , Pi,j

k ),i = 1, 2, · · · , Nk−1,j = 1, 2, · · · , Mk (38)

ρ
i,j
k =

pD,kρi,k|k−1 N(yj,k ;Hkmi,j
k|k−1,HkPi,j

k|k−1HT
k +Rk)

λc,k+pD,k

Nk−1
∑

e=1
ρe,k|k−1 N(yj,k ;Hkme,j

k|k−1,HkPe,j
k|k−1HT

k +Rk)

,i = 1, 2, · · · , Nk−1,j = 1, 2, · · · , Mk (39)

where:
mi,j

k|k−1 = F(ωi,j
k )mi,k−1 (40)

Pi,j
k|k−1 = Qi,k−1 + F(ωi,j

k )Pi,k−1FT(ω
i,j
k ) (41)

mi,j
k = mi,j

k|k−1 + Ai,j · (yj,k −Hkmi,j
k|k−1) (42)

Pi,j
k = (I−Ai,j ·Hk)P

i,j
k|k−1 (43)

Ai,j = Pi,j
k|k−1HT

k [HkPi,j
k|k−1HT

k + Rk]
−1

(44)

where Hk and Rk are the observation matrix and covariance matrix of the observation noise, respectively,
I denotes the identity matrix, λc,k denotes the clutter rate, and pD,k denotes the detection probability.

Equations (27) and (38) indicate that a marginal distribution N(xi,k−1; mi,k−1, Pi,k−1) at time
k − 1 generates a prediction distribution N(xi,k; mi,k|k−1, Pi,k|k−1) and Mk update distributions

N(xi,k; mi,j
k , Pi,j

k ), j = 1, 2, · · · , Mk at time k. To decrease the computational load, we merge these
Mk + 1 distributions to a singular distribution. The merging procedures are as follows:

Let N(xi,k; mi,j
k , Pi,j

k ), j = 1, 2, · · · , Mk + 1 denote the Mk + 1 distributions where

N(xi,k; mi,Mk+1
k , Pi,Mk+1

k ) = N(xi,k; mi,k|k−1, Pi,k|k−1). Similarly, let ρ
i,j
k , j = 1, 2, · · · , Mk + 1 and ω

i,j
k ,

j = 1, 2, · · · , Mk + 1 denote the corresponding existence probabilities and turn rates, respectively,
where ρ

i,Mk+1
k = ρi,k|k−1 and ω

i,Mk+1
k = ωi,k|k−1. We first find the index of the maximal existence

probability from ρ
i,j
k , j = 1, 2, · · · , Mk + 1, namely:

q = arg max
j∈{1,··· ,Mk+1}

{ρi,j
k } (45)
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We then use the distribution, existence probability, and turn rate with index q, as the marginal
distribution of target i, its existence probability, and the turn rate at time k, respectively, namely:

N(xi,k; mi,k, Pi,k) = N(xi,k; mi,q
k , Pi,q

k ),i = 1, 2, · · · , Nk−1 (46)

ρi,k = ρ
i,q
k ,i = 1, 2, · · · , Nk−1 (47)

ωi,k = ω
i,q
k ,i = 1, 2, · · · , Nk−1 (48)

Step 4: Generation of New Target Distribution and the Output of the Filter

In this step, we use the measurement at time k to generate the marginal distribution of the new
target as:

N(xj,k; mj
γ,k, Pj

γ,k),j = 1, 2, · · · , Mk (49)

where mj
γ,k is from measurement yj,k =

[
rj

x,k rj
y,k

]T
, and mj

γ,k =
[

rj
x,k 0 rj

y,k 0
]T

and

Pj
γ,k = Pγ where Pγ is a known covariance matrix. Meanwhile, we designate parameter ργ as the

existence probability of the new target and assign 0 as its turn rate, namely:

ρ
j
γ,k = ργ,j = 1, 2, · · · , Mk (50)

ω
j
γ,k = 0,j = 1, 2, · · · , Mk (51)

We then combine the marginal distributions of the existing targets in Equation (46), with those of
new targets in Equation (49), to form the marginal distributions of individual targets at time k, as:

{
N(xi,k; mi,k, Pi,k)

}Nk
i=1 =

{
N(xi,k; mi,k, Pi,k)

}Nk−1
i=1 ∪

{
N(xj,k; mj

γ,k, Pj
γ,k)
}Mk

j=1
(52)

where Nk = Nk−1 + Mk. The corresponding existence probabilities and turn rates of individual targets
at time k, are as follows: {

ρi,k
}Nk

i=1 =
{

ρi,k
}Nk−1

i=1 ∪
{

ρ
j
γ,k

}Mk

j=1
(53)

{
ωi,k

}Nk
i=1 =

{
ωi,k

}Nk−1
i=1 ∪

{
ω

j
γ,k

}Mk

j=1
(54)

After this combination, we prune the targets whose existence probability ρi,k is less than threshold
τ, and propagate the marginal distributions, existence probabilities, and turn rates of the remaining
targets to the next time step. Those targets whose existence probability ρi,k is greater than 0.5 are
picked as the output of the filter at time k.
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5. Simulation Results

In this section, we use an example to reveal the tracking performance of the MB filter with an
adaptive estimation of the turn rate for multiple maneuvering targets. In this example, Pasha’s PHD
filter [16] is used as the comparison object, and the OSPA distance [21], with parameters c = 50 m and
p = 2, is used as the measure. The covariance matrix Qi,k−1, observation matrix Hk, and covariance
matrices Rk and Pγ used in the experiment, are as follows:

Qi,k−1 = Q(σv) =


∆t4

k
4

∆t3
k

2 0 0
∆t3

k
2 ∆t2

k 0 0

0 0 ∆t4
k

4
∆t3

k
2

0 0k
∆t3

k
2 ∆t2

k

σ2
v (55)

Hk =

[
1 0 0 0
0 0 1 0

]
(56)

Rk =

[
σ2

w 0
0 σ2

w

]
(57)

Pγ =


2500 0 0 0

0 625 0 0
0 0 2500 0
0 0 0 625

 (58)

where σv and σw denote the standard deviations of noises.
Three coordinated turn models with different turn rates are used in Pasha’s PHD filter. The state

transition and covariance matrices for models ri,k = 1, ri,k = 2, and ri,k = 3 are given by
Fk−1(ri,k = 1) = F(ωk = 0◦s−1), Qk−1(ri,k = 1) = Q(σv = 1 ms−2), Fk−1(ri,k = 2) = F(ωk = 5◦s−1),
Qk−1(ri,k = 2) = Q(σv = 3 ms−2), Fk−1(ri,k = 3) = F(ωk = −5◦s−1) and Qk−1(ri,k = 3) =

Q(σv = 3 ms−2), respectively. The Markov transition probabilities among different motion models
are given by:

[tk|k−1(ri,k|ri,k−1)] =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 (59)

H(ri,k) and R(ri,k) of Pasha’s PHD filter are given by H(ri,k) = Hk and R(ri,k) = Rk.

Example 1. Five targets are considered in this example. Targets 1, 2, 3, and 4 appear at t = 1 s, t = 1 s, t = 3 s,
and t = 3 s, respectively, and disappear at t = 70 s. Target 5 appears at t = 5 s and disappears at t = 60 s. Each
target changes its turn rate at t = 15 s, t = 30 s, t = 40 s, and t = 55 s, respectively. The initial positions and
moving trajectories of these five targets are shown in Figure 3.
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Figure 3. Moving trajectories of five targets.

We use parameters ∆tk = 1 s, σv = 0 m/s2, σw = 1 m, pS,k = 1.0, λc,k = 1.25 × 10−5 m−2,
and pD,k = 0.95 to generate the simulation measurement. Figure 4 shows the simulation measurement
for a trial. Setting the parameters of the proposed filter to ∆tk = 1 s, σv = 1 m/s, pS,k = 0.6,
λc,k = 1.25× 10−5 m−2, pD,k = 0.95, τ = 0.001, σw = 2 m, ργ = 0.1, and ωmax = 6 o/s, and the
parameters of Pasha’s filter to ∆tk = 1 s, σv = 1 m/s, pS,k = 1.0, λc,k = 1.25× 10−5 m−2, pD,k = 0.95,
τ = 0.001, σw = 2 m, and ργ = 0.1, respectively, we use the proposed filter and Pasha’s filter to address
the simulation measurements for 150 trials. The experimental results are shown in Figure 5. Based
on these experimental results, the proposed filter performs better than Pasha’s filter, most of the time.
Two factors are responsible for this result. The first factor is the difference between the actual motion
mode of a target, and the dynamic model used by the filter. This difference causes Pasha’s filter to
provide an inaccurate state estimation of the target. The proposed filter reduces this difference by
estimating the turn rate of the target at each given time. The second factor is the filter’s memory.
Due to the poor memory of Pasha’s filter, it is prone to discarding the information of a target from the
posterior intensity, and cannot provide its state estimation if the target is not detected by a sensor at
each point in time. In contrast to Pasha’s filter, the proposed filter provides the state estimation of a
missed target, due to its sufficient memory of the target. The effect of the filter’s memory on the OSPA
distance has been discussed in detail in [20]. As shown in Figure 5, a peak appears at t = 60 s, because
the proposed filter furnishes the state estimation of target 5 at its disappearing time. According to
the definition of OSPA distance in [21], the OSPA distance is used to measure the similarity between
two different sets. The excessive or deficient state estimation of the target will be punished with the
cutoff distance.
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Figure 5. The experimental results for 150 trials.

To reveal the effect of the clutter rate and detection probability on the tracking performance of
the proposed filter, we use different clutter rates and detection probabilities to generate simulation
measurements, and use the proposed filter and Pasha’s filter to address the simulation measurements,
respectively, for 150 trials. Tables 1 and 2 show the results obtained from different clutter rates and
detection probabilities. Table 1 suggests that an increase in the clutter rate leads to a larger OSPA
distance for both the proposed filter and Pasha’s filter, but the proposed filter performs better at each
clutter rate than Pasha’s filter. A similar conclusion is also reached from the result in Table 2. A decrease
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in the detection probability enlarges the OSPA distance of the proposed filter and Pasha’s filter, but the
proposed filter obtains a smaller OSPA distance than Pasha’s filter at each detection probability.

Table 1. OSPA distance (m) at five clutter rates.

λc,k (×10−6 m−2) 3.125 6.25 9.375 12.5 15.63

Proposed filter 5.18 5.61 6.05 6.32 6.48
Pasha’s filter 13.03 14.37 15.22 15.97 16.61

Table 2. OSPA distance (m) at five detection probabilities.

pD,k 1.0 0.95 0.9 0.85 0.8

Proposed filter 5.04 6.32 7.79 11.67 12.95
Pasha’s filter 8.78 15.97 21.65 26.14 30.40

The performance time is also an important measure for the performance of a filter. Table 3 displays
the required time of a trial for the proposed filter and Pasha’s filter, at different clutter rates. Based on
Table 3, the proposed filter requires more time than Pasha’s filter for each trial, because the proposed
filter is used to estimate the turn rate of the target at each time step, and this estimation requires a
number of calculations.

Table 3. Performance time (s) at five clutter rates.

λc,k (×10−6 m−2) 3.125 6.25 9.375 12.5 15.63

Proposed filter 3.14 4.96 7.70 10.70 14.37
Pasha’s filter 1.08 1.98 3.67 6.33 10.49

6. Conclusions

In this study, the formula for calculating the turn rate of a maneuvering target is derived. Based on
this formula, we may estimate the turn rate of a target by using its state vector at a previous time,
and its measurement at the current time. Applying the estimation method of the turn rate to the MB
filter, we present a MB filter with an adaptive estimation of the turn rate, to track multiple targets
maneuvering at a random turn rate. Based on simulation experimental data, we test the performance
of the proposed filter, by comparing it with Pasha’s filter. The experimental results suggest that the
proposed filter is better than Pasha’s filter at tracking the targets that maneuver at a variable turn rate.
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