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Methods and Developments in Graphical 
Pangenomics

Joseph Outten and Andrew Warren* 

Abstract | Pangenomes are organized collections of the genomic infor-
mation from related individuals or groups. Graphical pangenomics is the 
study of these pangenomes using graphical methods to identify and ana-
lyze genes, regions, and mutations of interest to an array of biological 
questions. This field has seen significant progress in recent years includ-
ing the development of graph based models that better resolve biological 
phenomena, and an explosion of new tools for mapping reads, creating 
graphical genomes, and performing pangenome analysis. In this review, 
we discuss recent developments in models, algorithms associated with 
graphical genomes, and comparisons between similar tools. In addition 
we briefly discuss what these developments may mean for the future of 
genomics.
Keywords: Multiple sequence alignment, Genome assembly, Graph genomes, Pangenomics, Graphical 
pangenomics

1 Introduction
Pangenomes were first introduced in 2005 by 
Tettelin et al.69 in the context of microbial pop-
ulations. This early conception of pangenomes 
consists of a core genome and a dispensable 
genome. The core genome includes the sequence 
features, usually genes, which are shared by all 
individuals in the analyzed group (such as a 
species or genus), while the accessory genome 
includes all other genes which are only partially 
shared among the group. Canonical representa-
tions of the conservation and diversity present in 
a group of genomes can be given through clus-
tering, single nucleotide polymorphisms (SNP), 
phylogenetic trees, and multiple sequence align-
ments71. The analysis of these similarities and dif-
ferences between related genomes is the subject of 
many studies investigating whole genes, or spe-
cific mutations, that may have some significance, 
clinical, biological, or otherwise.

Since the initial formulation of pangenomes 
as a collection of sequences, much work has 
been done to define relevant data structures, 
algorithms, and applications. This work has 
included different tools to represent and oper-
ate over genome sets, with applications to repeti-
tive regions, cancer genomes, variant calling, 

SNP: Differences between sets 
of DNA sequences occurring 
at a singl position.

Conserved sequences: 
Sequences of DNA or proteins 
that are maintained across 
species or individuals through 
evolutionary processes.

Genotyping:: The process 
of determining the specific 
genetic sequence of an indi-
vidual at any or all locations 
in their genome.

Variant calling: The process 
of determining differences, 
called variants, between a 
query genome and some 
reference genome(s).

J. Indian Inst. Sci.

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

R
EV

IE
W

 
A

R
T

IC
LE

genotyping, evolutionary analysis, and other top-
ics10,38,72. In recent years, graphical models have 
come to the forefront of pangenomic analysis, 
especially for human genomes60. While the spe-
cific instantiation of these graphical models can 
vary considerably, many modern formulations 
use a sequence graph, where nodes correspond to 
segments of the genome (sequence strings) and 
edges connect adjacent segments in a directed or 
bidirected manner.

Graph theorists may be familiar with the 
concept of a de Bruijn graph, which represents 
similarities in sequences of symbols accord-
ing to a parameter k such that nodes represent a 
region of length k matching symbols from two 
or more strings. Edges represent a k − 1 overlap 
of matching symbols between a pair of nodes. 
Similarly sequence graphs represent matched 
sequence segments from multiple strings as 
nodes. The sequence graph takes on the double 
stranded nature of DNA by labelling nodes with 
both the forward and reverse complement of the 
DNA string. This accommodation results in the 
sequence graph model being necessarily bidi-
rected. Modern algorithms that build pangenome 
graph models make use of sequence graphs to 
represent the relationships among different sets 
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of strings, i.e. genomes, and apply different map-
ping criteria to establish a frame of reference for a 
matched sequence or subsequence.

Graphical genomes seek to reduce reference 
bias for population level analysis. Reference bias 
occurs when a single reference sequence (or a 
limited set of reference sequences) is used as a 
common guide to interpret many other similar 
genomes, leading to biased perspectives or anal-
ysis. This can be seen in the identification and 
analysis of SNPs for the human genome. When 
a new genome is sequenced, it is usually done in 
short strings that are stitched together through 
the creation and transformation of a de Bruijn 
graph, a process known as assembly. The de novo 
assembly process commonly involves mapping 
the short strings, reads, to one another but if a 
genome is re-sequenced for comparative pur-
poses, as is commonly the case for SARS-CoV-2, 
the reads are aligned to a reference. If the new 
genome has some region that diverges signifi-
cantly from the reference, it is frequently ignored 
in downstream analysis. Graphical genomes 
allow the explicit and compact representation 
of the diversity in sequence found in many sam-
ples, helping to reduce this bias. The shift away 
from linear reference analysis has blurred the 
lines between what constitutes genomic and 
pangenomic analysis.

As sequencing efforts and variant catalogues 
advance to categorize the variation present in 
human and non-human populations, significant 
differences between populations and established 
reference sequences have become better resolved. 
Graphical representations of pangenomes are 
powerful due to an explicit capturing of simi-
larities and differences in the node-edge modal-
ity and an ability to define nested variation which 
can lead to advantages in topological analysis and 
reduced bias compared to a reference-centric 
model. Several recent reviews have covered these 
topics well10,19,52. In this paper, we summarize 
new tools and developments for modeling pange-
nomes as graphs, and discuss proposed formats 
as standards for graphical pangenome analysis as 
well as remaining challenges and limitations in 
this growing field. A list of terms relevant to this 
discussion is given in Table 1.

2 �Model�Fundamentals
2.1  Similarity Context
Comparing multiple, usually divergent, string 
sequences of DNA in a pangenome requires the 
determination of comparative coordinate groups, 

Contig: A stretch of sequence 
(usually DNA) which is con-
tinuous in the genome. Usu-
ally resolved from overlapping 
short reads produced from 
DNA sequencing.

using a frame of reference to establish the simi-
larities and differences between each string. Many 
graphical pangenome methods create a graph 
model of a global, multiple sequence alignment, 
with potentially varying objective functions and 
alphabets. As of this writing, many recent meth-
ods for graphical pangenome analysis instanti-
ate a genome graph. There are some variations 
to this concept in the literature. Here we adhere 
to the hierarchy of graph types defined by Paten 
et al. 52. A genome graph uses the DNA alphabet 
to express similarity among contigs given as con-
stituent strings of the input genomes. All genome 
graph creation algorithms, establish multiple sets 
of string coordinates as either explicit or implicit 
labels on the resulting nodes, we call an instance 
of this set a similarity group.

In order to determine which intervals on 
which strings to compare, most algorithms that 
create a pangenome graph use a mapping crite-
ria to establish a frame of reference, which can 
be thought of as a set of intervals on the input 
strings bounded and grouped by a fulfillment 
of the mapping criteria. The resulting frame of 
reference is then evaluated, and potentially dis-
carded or deconvoluted into one or more similar-
ity groups. Here similarity groups can be thought 
of as a set function that glues coordinates on 
different strings together according to the frame 
of reference established by the mapping crite-
ria. Current methods typically express the labels, 
derived from the frame of reference, relative 
to a curated input genome designated a “refer-
ence genome”35 or relative to the graph output51. 
For the majority of new methods the criteria by 
which the frame of reference is evaluated is not 
explicitly related to a global optimum15,26,47. 
Instead the similarity groupings, and by implica-
tion the mapping criteria, are determined by the 
type of similarities the graph model is intended 
to embody and the manifest differences it is able 
to detect49.

In graphical pangenomics, the individual 
input sequences can be represented as a walk 
through the graph structure. What properties 
of the similarities and differences among the 
input strings are defined depend on the detail 
of the graph used. When those sequences are 
matched, according to the mapping criteria 
and deconvolution logic, they are represented 
as coincident labels on nodes and edges. Noting 
that both nodes and edges are capable of being 
labelled with sequences, for this review we sub-
scribe to the convention that nodes are labelled 
with sequence intervals and edges represent a 
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Table 1: Terminology, informed in part by19,52.

*Where applicable, parent types lists those other terms for which the term in question is a specific type

Term Description Parent types*

de Bruijn graph Nodes are sequence k–mers, and directed edges connect k–
mers whose k-1 suffix overlaps with other k–mers k-1 prefix

NA

Sequence graph Edges or nodes are labelled with sequences. Used to compress 
sequence representation and express contiguity between seg-
ments with directed or bidirected edges

NA

Genome graph Relates a genome’s sequence information to itself or other 
genomes

Sequence graph

Pangenome A representation of the genetic information across a population NA

Pangenome graph Genome graphs explicitly involving more than one genome Genome graph, sequence 
graph

Synteny graph Relates blocks of conserved sequence Sequence graph

Reference genome Used as the standard for comparison in a species, e.g. GRCh38 NA

Reference bias The use of a linear-reference causing incomplete analysis or a 
lack of sensitivity

NA

Variation graph Bidirected graphs which embed linear sequences as paths Pangenome graph, bidirected 
graph

Bidirected graph Each edge has a discrete endpoint on either the left or right of 
a node

Sequence graph

contiguity relationship for those intervals whose 
sequences span them.

Pangenome graph creation often employs 
hashing to form the basis of the mapping criteria 
wherein the exact match in question is required 
to be of at least a defined length k as seen in 
Minkin et al.46. These methods usually create a 
de Bruijn graph (see Fig. 1), either explicitly or 
implicitly42, which are then used to resolve the 
desired relationships in the model depending on 
the application. Though de Bruijn graph based 
methods typically apply a k–mer exact match cri-
teria ubiquitously, in principle there is no reason 
the frame of reference cannot be generated by a 
range of mapping criteria such as regular expres-
sions, spectral clustering, and other more vari-
ant tolerant approaches, e.g. Dilthey et al.12 uses 
Hidden Markov Models (HMM’s) to establish the 
mapping criteria. Depending on the application, 
graph creation may apply different requirements 
on the mapping criteria and frame of reference. 
There is a need in this area to formalize the guar-
antees and implications associated with different 
mapping criteria and the model resolution and 
subsequent interpretation. Currently such impli-
cations are usually given as constraints on the 
type of output or model generated, e.g. discover-
ing structural variants (SVs) larger than 100 base 
pair in Heng Li’s minigraph34. This variation in 
output model, forms the basis of our resolution 
discussion below.

Genome graphs and their intermediates are 
used in various contexts including assembly, 
metage- nome assembly, and SNP calling66,73. In 
these contexts what varies are the labels applied 
to the graph and the constraints applied to 
deconvoluting intermediate forms to arrive at a 
final result. Labels applied to the graph for these 
transformations typically stem from, potentially 
putative, sample, organism, contig, or replicon 
information. The grouping of sequence intervals 
on the basis of mapping criteria is sometimes 
referred to as “glue”, and is often used to decon-
volute the pangenomic model based on the labels 
involved. Iqbal et al.27 conceptualize labels for 
samples as a colored de Bruijn graph for deter-
mining SNPs. Separating these labels based on 
the desired outcome is often the basis of creating 
similarity groups. Taking the example from Fig. 1 
panel i, if SNP calling is the objective among the 
three sequences then the mapping criteria either 
accommodates gaps or the frame of reference is 
established such that similarity groups are created 
at single character resolution with a guarantee 
that the mapped sequences minimize ambigu-
ity according to other putative homologous rela-
tionships. Larger variants, Fig. 1 panel ii, can 
be difficult to detect in a traditional mapping 
based workflows depending on the length of the 
sequencing read. In both cases reference bias can 
confound the detection of variation, especially in 
regions of high diversity.

Structural Variant: A DNA 
variant usually longer than 
50 letters. Can be inversions, 
deletions, duplications, etc.
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Genome graph disambiguation is subject to 
provenance information concerning contigs and 
their origin. Figure 2 gives a contrived example 
to demonstrate the limit of disambiguation for 
metagenomic and pangenomic graph construc-
tion. Applying the label disambiguation concept 
to pangenome graph creation in a metagenome 
context, where the intermediate of a genome 
graph is often represented as a de Bruijn graph 
(Fig. 2, panel ii), has the limitation that the source 
genome for a given contig is unknown. In Fig. 2 
panel iii we see that the best resolution for a 
genome graph in this context. Though two pairs 
of contigs come from the same source genome, 
without reference information or sample prov-
enance given from a clonal sampling, the limit 
of disambiguation is to form similarity groups 
which include multiple intervals from the same 
genome. When genome graph creation is given 
assembled genomes, the source of all contigs are 
known and can employ additional disambigua-
tion to ensure that duplicated segments both 
within the same contig and within the same 
genome are not resolved to the same similarity 
group, Fig. 2 panel iv. The consequences of repeat 
regions and methods that address this topic are 
highlighted below.

2.2  Regularized Differences
Within a given frame of reference there may be 
sub-intervals in sequences that are divergent from 
one another. In graph genome models, assembly, 
SNP calling, and metagenome assembly these 
subintervals are represented by bubbles75. Bub-
bles represent two paths that are disjoint outside a 
defined sink and source point representing where 

the divergence begins and ends. Bubbles can be 
created by single nucleotide polymorphisms, and 
other larger SVs. Paten et al.51 defines a hierar-
chy of applicable bubble types in their discus-
sion of superbubbles and ultrabubbles as they 
apply to bidirected graphs. In short, superbubbles 
expand on the notion of a bubble by removing 
the condition that the paths be disjoint but still 
result in a subgraph of a bidirected graph with 
an existing sink and source node. Inversions and 
translocations at the genome scale often produce 
superbubbles. Most recent graphical pangenome 
tools17,23,35,58 represent sequence graphs using 
bidirected graphs or their equivalent. This is due 
to the bidirected graph being able to better cap-
ture inversions, duplications, and other complex 
rearrangements52.

2.3  Repeat Regions
Repeats are segments of DNA found multiple 
times throughout a genome. These regions pose 
significant problems for assembly, mapping, 
alignment, and genotyping algorithms since there 
is often ambiguity in where each repeat belongs 
in the linearized genome and where reads con-
taining these repeats should map to, especially 
short reads which can be shorter than the repeat 
sequence. Since they are hypervariable in num-
ber and location, any given assembly (such as 
the current human linear reference) is a poor 
representation of repeats in the population38. It 
is common to mask away these repeat regions 
before analysis of whole genome sequencing data, 
but several studies have shown their biological 
importance4,44. As such, Slotkin et al.67 argued 
against this masking step and noted that 25 times 

Figure 1: (i) An example of a genome graph at the resolution of single nucleotide polymorphisms. The 
mapping criteria of exact match k = 3 , is used to define a frame of reference and the resulting nodes 
(similarity groups). (ii) An example of a larger structural variant. The colored bars represent larger graph 
structures which themselves represent divergent sequences that do not meet the mapping criteria relative 
to one another.

Metagenome: The complete 
genomic content contained 
in an environ-mental sample, 
potentiallyfrom mny different 
organisms
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as much sequence is discovered in studies which 
consider repeats than those which ignored them. 
Repeats pose a challenge to traditional methods, 
but must be included in analyses to get a com-
plete picture of the relationship between geno-
type and phenotype.

While they do not solve all the issues asso-
ciated with repeats, methods using graphical 
pangenomes have shown the potential to effec-
tively handle these and other complex variants. 
Some approaches have seen a decrease in mem-
ory needed to represent pangenomes by collaps-
ing repeats into a single node. This is done as 
part of de Bruijn graph construction and can be 
incorporated into sequence and variation graphs 
by allowing cycles21,29. Other tools for genotyp-
ing SVs based on graphical genomes have shown 
improvements over traditional methods, but gen-
otyping using SVs composed of repeats remains a 
challenging disambiguation task 7,23.

A handful of approaches have been designed 
explicitly to handle repeats using a graph based 
approach, including ExpansionHunter13 for short 
tandem repeats (STRs) and the danbing-tk 
toolkit38 for variable number tandem repeats 
(VNTRs). Both tools use locus specific models 
built on known variation for genotyping; Expan-
sionHunter uses a sequence graph implementa-
tion while the danbing-tk toolkit uses de Bruijn 

Locus: The specific region of 
a genome containing a gene 
or sequence of interest.

graphs. These examples show that graphical, 
pangenomic methods, may allow more accurate 
analyses and complete representation of the 
“repeatome” as discussed in52. A potential limita-
tion is that these methods are based known 
sources of variation and thus may suffer from 
their own reference bias inherent to those sources. 
Advances in long read sequencing technologies, 
in tandem with graphical pangenomic methods, 
are poised to provide significant improvements in 
the study of repeats.

2.4  Haplotypes
Haplotypes, in the context of graphical pange-
nomes, are paths. Each path through a de Bruijn, 
sequence, overlap, variation, or other graph, is a 
potential haplotype. However, linkage disequi-
librium, in its most basic form, causes loci which 
are closer together to be inherited together at 
a higher rate. In this way, some haplotypes, or 
paths through the graph, are more likely to exist 
than others. This means that known haplotypes 
are valuable in both their content and order of 
composition.

Several implementations of pangenome 
graphs implicitly take advantage of known hap-
lotypes, including colored de Bruijn graphs36 and 
methods which build sample, or dataset, specific 

Figure 2: Examples of deconvolution. Regions of similarity have matching symbols and connecting 
edges, and by logical extension diverging paths represent regions of divergence. Boxes represent a simi-
larity group, which forms the basis of including a region in a node for the multi-genome model. The extent 
of deconvolution is dictated by the incoming labels, the mapping criteria, and the frame of reference 
given by the algorithm. (i) Two input genomes A and B each with two replicons. (ii) A de Bruijn graph 
model of similarity is dictated by k-mer parameter size and the amount of repeat similarity. (iii) An example 
of a metagenomic level of resolution capable in a genome graph given unknown provenance of contigs. 
(iv) Fully disambiguated groupings for assembled genomes given as input.
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references9,40,70. Compacted colored de Bruijn 
graphs (ccDBGs) are de Bruijn graphs which have 
had non-branching edges collapsed (compacted) 
and have each node (or sequence segment) 
colored by which genomes or samples it appears 
in. Several methods have recently been developed 
to efficiently build, store, and query these gra
phs3,24,28,42,46 and even use them for read align-
ment27,31,36. However concerns have been raised 
over the ability of de Bruijn graph based tools 
for representing large repetitive elements and for 
scaling to high cardinality sets of large mamma-
lian genomes19,34.

Unlike the previous examples, pangenomes 
encoded in variation graphs do not natively 
encode or take advantage of haplotype informa-
tion. Several tools for compressing haplotype 
path indexes through variation graphs exist, 
including gPBWT48, the graph extension of the 
positional Borrows-Wheeler transform (PBWT)14 
and GBWT65, the graph extension of the Bur-
rows-Wheeler transform5, provided by the vg 
toolkit66. These methods support efficient search-
ing and matching queries.

There is some variation in how the powerful 
prior of haplotypes are employed across tools for 
graphical pangenomics. Since the number of pos-
sible paths is exponential in the amount of varia-
tion (both locally and globally), many 
implementations of graphical genomes “prune” 
the graph to allow indexing in reasonable 
resource constraints (although alignment may be 
done to the full graph)19. Therefore, one use of 
known haplotypes is to help identify which paths 
should be indexed and which can be thrown out, 
leading to a haplotype-aware indexing strategy65, 
as used in the vg toolkit. Other tools use haplo-
types to build probabilistic models for genotyp-
ing SVs, indels, and SNPs7,66, or simply do not 
incorporate them into their indexes or 
analyses17,34,56.

While observed haplotypes are powerful 
resources for building effective and efficient tools 
for graphical pangenomes, their complement also 
carries potentially valuable information. Given 
a graphical pangenome and some reasonable 
assumptions about linkage, paths through the 
graph which represent potential, real haplotypes 
that have not been observed can easily be imag-
ined. Depending on the combination of features 
(such as single nucleotides, protein domains, 
genes, etc.) and the organism in question, poten-
tial haplotypes (especially using annotations and 
phenotypes associated with each region) could 
be a rich space to search for optimizations in 

Indel: Insertions and dele-
tions of sequence segments in 
a genome.

engineered species, potential virulence in patho-
gens, or even to study trends in linkage.

2.5  Resolution
The fundamental unit of genomics is the base 
pair. While many other types of variation exist, 
including those described below, they can all be 
seen as an abstracted annotation of some 
sequence, or set of sequences which are com-
prised of bases. SVs are stretches of, usually 50 or 
more, bases that are the result of some mutation 
event and thus can be viewed as single units of 
variation, just as syntenic regions can be seen as 
individual units that comprise a pangenome. 
Even though they are all different resolutions of 
the same underlying information, they require 
different implementations and each defines a sep-
arate context with which to view the biological 
implications of the graphs and methods used.

2.5.1  Base Pair
Many studies comparing multiple genomes 
focus on single nucleotide variants (SNVs) or 
small indels, rather than larger variants like SVs 
or repeats. Subsequently, many approaches to 
graphical pangenomics focus on analyses at indi-
vidual base pair resolution1,21,24,28,29,36,45,56. Some 
of these tools build a de Bruijn based pange-
nome graph out of k-mers while others build a 
variation graph out of a reference and VCF file 
of known variants, or an alignment of multiple 
genomes. Especially using bidirected variation 
graphs, operating at base pair resolution allows 
for any type of variant to be represented in the 
graph structure, including nested variation and 
SVs. For the most detailed alignment and variant 
calling, this resolution is required.

In addition to being the most detailed, graphi-
cal SNV analysis also has the highest computa-
tional costs, both in memory and in runtime. As 
mentioned above, the number of potential paths 
through a pangenome graph, each of which rep-
resents a possible haplotype, increases expo-
nentially with the number of variants included. 
The ability to cover more known variants, and 
include those which are newly discovered, has 
been shown to boost performance when process-
ing reads which contain variants21,29,56. Despite 
methods being able to prune graphs for index-
ing based on biologically relevant paths54,65, 
there is currently a trade-off between resource 
requirements29,56 and generality21. Performance 
also varies widely based on the mapping crite-
ria which itself is potentially influenced by the 
read length19. Several studies have shown that an 

Syntenic Region: Regions of 
co-localized loci or genes in a 
genome or pangenome.
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increase in the variants included in pangenome 
graphs can lead to a decrease in the performance 
of alignment, potentially due to the aforemen-
tioned complexity, particularly for reads which 
do not contain variants22,54.

2.5.2  Structural Variants
While reads with SNPs can often be mapped and 
aligned to the reference genome, reads overlap-
ping SVs, typically defined as>50 base pairs, can 
be difficult to map to a linear reference since by 
definition they contain significant differences in 
a concentrated interval17,23. This reference bias is 
exacerbated by the fact that some SVs are often 
longer than short reads. These limitations have 
caused SVs to be more difficult to study and cata-
logue than SNPs. However, recent efforts have 
sought remedy this issue by discovering SVs using 
long read data in assemblies21 and categorizing 
and storing known SVs in sequence repositories30.

Short reads that overlap SVs can rarely be 
mapped to the linear reference genome with 
standard tools, SVs represent an area in which 
graphical pangenomes can help eliminate refer-
ence bias and improve detection19. Several tools 
have been built for genotyping SVs by incorpo-
rating known variation into pangenome graphs 
and have been shown to outperform traditional, 
reference-based methods7,17,23,34,66. The main 
drawback in SV level analysis is that base pair 
resolution is often missed, however, two of these 
tools17,23 can be used to analyze both small vari-
ants and SVs. At the moment, graphical pange-
nome based methods and the composite models 
are limited by which SVs have been character-
ized and catalogued57. Further developments in 
the analysis of graphical pangenomes, including 
taking advantage or paired end reads, may allow 
discovery of SVs as readily as small variants are 
discovered in current pipelines.

2.5.3  Synteny
Synteny level analysis involves the compari-
son of conserved order of annotated intervals 
between two or more genomes. The unit of syn-
teny can be genes, protein domains, locally col-
linear blocks, or any type of sequence segment 
which can be consistently annotated. At the SV 
level of resolution we discussed several methods 
leveraging strict mapping criteria to improve 
performance35,58. Synteny based methods may 
offer a vehicle to push this paradigm even fur-
ther. Tools like Panaconda74 and Ptolemy59 apply 
similar logic and algorithms found in genome 
graph creation to output synteny graphs. Though 

less common, these methods replace the DNA 
alphabet with one based on consistent annota-
tions which also refines the mapping criteria and 
speeds up calculation. This also raises the floor 
of the lowest modeled divergence from an SV 
of a given size to that of one or more annotated 
genome features. Due to their reliance on anno-
tation, without further adaption these methods 
would not be suited to precisely the same iterative 
discovery and model refinement from sequencing 
runs. That does not mean, however, they cannot 
offer insightful analysis, e.g. Panaconda finds and 
labels inversions and translocations in bacteria 
that manifest at the annotation level and Kolmog-
orov et al.53 recently applied a similar approach to 
the analysis of assembly graphs.

3 �Algorithms�and Software
In any modeling framework it is important to 
consider what the relevant assumptions are. Rela-
tive to a linear reference, genome graph mod-
els and graphical pangenomics take a broader, 
more general view. For human analysis, this 
allows us to step away from the surprising lack 
of diversity captured by the current human ref-
erence18. A broader and more flexible compara-
tive framework may benefit many research fields 
where comparative genomics is currently applied 
including but not limited to, cancer and disease 
biology, synthetic biology, forensic biology, and 
the benefits from which new insights in those 
fields may derive. Because these pangenomic and 
graphical genome models are being created for 
the first time, comparative genomics is now meet-
ing network science in a meaningful way. This 
means the potential for cross application is quite 
high but the number of discoveries enabled by 
this modeling change is still low. Questions have 
been raised many times concerning the benefits 
and applications of bioinformatics and computa-
tional biology. While the change those disciplines 
may precipitate may have been uncertain at times, 
they quickly became the field of modern biology 
itself. The authors feel this is likely to be the case 
for genomics and graphical pangenomes.

3.1  Mapping, Genotyping, Sequence 
Annotation, and Variant Calling

Four of the most common tasks in genomic 
and pangenomic analysis are mapping reads to 
a linear or graphical reference, determining the 
genotype of a sequenced sample, annotating 
sequences with relevant features, and identifying 
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what variants are present in a sample, whether 
they be SNVs, short indels, SVs, or some other 
type. These processes represent some of the most 
significant applications for graphical pangenom-
ics, since, as described above, the bias introduced 
with a linear reference affects the traditional 
approach to all of them. Graphical pangenom-
ics can help reduce this bias by allowing a more 
comprehensive and compact representation of 
the diversity in a population. In addition, the 
network inherent in these graphical models can 
provide a scaffold at the sequence or synteny level 
to help investigate and extend existing functional 
and process oriented annotations.

3.1.1  Small Variant Tools
Traditional, linear-reference-based aligners like 
BWA-MEM32 are able to effectively map and 
align most reads containing SNVs, since even 
short read sequencing covers the relevant region. 
For these types of variation, pangenome graph 
based analysis does not offer much benefit, and 
may actually hurt performance due to the typi-
cal increase in time and memory needed for 
these methods, and the likelihood for reads to 
have alternative mapping positions22,54. However, 
as their size increases, small insertions and dele-
tions (indels) are more challenging for traditional 
tools. Since there are many cataloged indels, for 
example those in dbSNP61 for human sequences, 
graphical pangenomes can be constructed to rep-
resent these small variants and help reduce ref-
erence bias in mapping and alignment for reads 
which contain them.

Several methods for using graphical pange-
nomes to analyze small variants have been pro-
posed. Some methods use colored de Bruijn 
graphs, which encode the origin(s) of each k–mer 
with color labels to preserve haplotype informa-
tion. The tool Cortex uses these graphs to assem-
ble and call variants based on coverage in regions 
containing bubbles27, and is improved upon by 
Bubbleparse31. Another such tool is the de Bruijn 
Graph-based Aligner (deBGA), which has been 
shown to be faster and more accurate than linear 
reference based methods36.

More recent studies have proposed variation 
graph based approaches for tackling this problem, 
including GraphTyper16, vg21, the Seven Bridges 
Graph Genome Pipeline (GGP)56, HISAT229, and 
GraphAligner58. GraphTyper first maps reads 
to a linear reference to make an initial guess at 
which variation subgraphs are relevant, and then 
maps and aligns to those subgraphs. In this way, 

GraphTyper still suffers from some reference bias. 
All of the other tools build a pangenome graph, 
usually from a reference genome and VCF of 
known variants (vg and GraphAligner can also 
use arbitrary graphs, such as cactus graphs50). 
HISAT2 uses a highly efficient FM-index20 exten-
sion to graphs (GFM)29 which allows very effi-
cient queries and storage compared to other 
tools, like vg29. GGP also saves time and space22,56 
in indexing by using a simpler indexing strategy 
than the GCSA264 index used by vg.

Few studies have compared these tools 
directly. One study reported that HISAT2 and 
vg had about equal sensitivity29, while another 
reported that vg was superior to HISAT2 and 
GGP for short read mapping, and that both tools 
were only better than BWA-MEM on reads which 
contained variants22. While it uses the most ver-
satile index, vg has been shown to be slower and 
consume more memory than other tools, espe-
cially for long reads29,58. GraphAligner finds its 
niche in being able to handle these long reads, 
using a simpler minimizer based seeding strategy, 
which limits its versatility but makes it more time 
and memory efficient than vg for long read analy-
sis, with about the same performance given the 
constrained input58.

3.1.2  Structural Variant Tools
The limits of variant detection due to reference 
bias has inspired many tools to take advantage of 
the inherent variation captured in graphical 
pangenomic references for genotyping SVs. 
BayesTyper63 uses a probabilistic model to com-
pare k–mer distributions between reads and 
paths in the graph19. Other methods include Par-
agraph7, GraphTyper217, and vg21,23. Graph-
Typer2 and Paragraph both first align to a linear 
reference to determine which reads are relevant to 
SV containing subgraphs, and thus both suffer 
slightly from some reference bias. However, all 
have been shown to outperform traditional linear 
reference based methods, with vg and Paragraph 
seeming to perform best7,23. In addition, vg was 
shown to have higher performance when built on 
multiple diverse, aligned yeast genomes rather 
than a linear reference and VCF containing the 
SVs23. Another recent tool which can genotype 
SVs, Giraffe66 (part of the vg toolkit), uses haplo-
type information to map and phase SVs faster 
than previous versions of vg, and with about the 
same accuracy.

For tools like vg and GraphAligner, new 
advancements in multiple whole genome 

Phasing: The resolution of 
an individuals paternal and 
maternal chromosomes.
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alignment may allow for more diverse and 
complete representations and analyses of 
structural variation. Progressive Cactus1 is a pro-
gressive extension of the original Cactus algo-
rithm50 which takes as input approximate guide 
tree and input genomes, and was able to align 
over 600 mammalian genomes over two months1. 
SibeliaZ45 builds on TwoPaCo’s46 efficient con-
struction of compacted de Bruijn graphs to 
construct local collinear blocks between input 
genomes and then multiple sequence alignment 
between these blocks. SibeliaZ was shown to be 
faster and more memory efficient than Progres-
sive Cactus, but has lower performance for diver-
gent genomes45.

3.2  Building de Bruijn Graphs
Compacted de Bruijn graphs, which merge all 
non-branching nodes, are a very common data 
structure in genomic applications for the effi-
cient storage of contiguous segments across 
one or many genomes, including assembly and 
representing pangenomes. Colored compacted 
de Bruijn graphs (ccDBGs) extend the origi-
nal by adding in color labels which define the 
sample(s) from which each k–mer originated. 
The efficient construction of these graphs has 
been a source of development over the past dec-
ade, in part to allow the analysis of many large 
genomes. Several tools have been developed for 
this purpose, many of which are able to directly 
build the compacted graph without needing 
to first build the uncompacted version. These 
tools include SplitMEM42 and TwoPaCo46. Split-
MEM uses suffix trees and suffix skips, and their 
topological relationship to the compacted de 
Bruijn graph, and was improved upon by Baier 
et al.3, using the Burrows-Wheeler transform5. 
TwoPaCo uses probabilistic (Bloom filter based) 
and highly parallelizable methods to provide 
further improvements building on these previ-
ous achievements.

Bifrost24 and Cuttlefish28 are two, more recent, 
methods which provide efficient methods for 
building ccDBGs. Bifrost also uses a Bloom filter 
based approach, and was shown to be faster and 
use less memory than BCALM28, and allow faster 
(but more memory intensive) querying of the 
graph compared to Blight41. Bifrost is able to pro-
cess whole genomes and short reads. Cuttlefish 
models vertices as finite-state automata and has 
been shown to be more time and memory effi-
cient than Bifrost and TwoPaCo28, but is currently 
only able to process whole genomes.

These graphs are only as useful as the types of 
analyses they enable. Blastfrost39 is a tool built on 
top of Bifrost graphs for efficiently querying reads 
against 100,000s of bacterial genomes. It can 
build out subgraphs from the ccDBG based on 
similarity to the input sequences as an alternative 
to alignment based tools. This method has limita-
tions for smaller reads and reads with increasing 
diversity. Two other methods, PathRacer62 applies 
profile HMMs to assembly (de Bruijn graphs) 
to overcome the limitation of relevant segments 
separated over multiple contigs. BiosyntheticS-
PAdes43 uses the same approach to mine biosyn-
thetic gene clusters in bacterial assembly graphs.

4 �Ecosystem�of Development
As genome graphs become more accessible and 
well supported with respect to existing bioinfor-
matics pipelines it is an open question as to how 
these constructs will be integrated into everyday 
biological analysis. By maintaining a genomic 
model that is capable of being more readily 
updated, genome informatics will be open to new 
questions regarding common practice and stand-
ards associated with this information. It has long 
been understood that assembled genomes repre-
sent a predictive model relative to the true DNA 
molecule being sequenced. Genome graphs better 
provide the ability to document uncertainty, het-
erogeneity, both clonal and pangenomic. Particu-
larly now that long read sequencing is providing 
better prediction of SVs2,6,11,25,68, single species 
heterogeneity can be better represented. This in 
turn translates to increased heterogeneity at the 
pangenome level.

It is possible that large sequence reposito-
ries such as NCBI55 will adopt graphical genome 
structures as part of their infrastructure. This 
would open potential for dialogue between the 
evolution of graphical genome analysis and 
the existing reference genome ecosystem. One 
potential vehicle for that dialog is the recovery 
of reference strains from graphical genome con-
structs. This would simultaneously enable much 
more varied analysis, which could be viewed as a 
negative when doing literature review, while con-
trolling for its specification. For example a hash 
identifier, similar to that used in revision control, 
could be used to designate the set of paths to take 
through a graph genome to construct and recover 
a single linear reference. For this to be possible an 
address system that is invariant through graphi-
cal genome updates would be necessary. There 
is no question that removing reference bias and 
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enabling topological analysis of the genome land-
scape will open up new insight. Having a con-
trol system in place to enable the specification of 
combinations of variants will be essential. Meth-
ods for annotation and phenotype association 
with haplotypes in this context will be subject 
to developing formats and their ability to model 
such associations.

Sequence graphs generated from most tools, 
such as de Bruijn graphs and other assembly 
graphs, are often represented using the Graphi-
cal Fragment Assembly (GFA) format. A recent 
paper, which also presented minigraph, proposed 
a new method which extends GFA to reference 
pangenome graphs and includes tags to defining 
the origin of a segment from linear genomes in a 
pangenome graph33. This format aims to provide 
a stable coordinate system for pangenome graphs 
and is used by minigraph. The vg toolkit uses a dif-
ferent model for pangenome graphs (called xg)21 
which allows segments to appear on multiple paths 
or in cycles37, e.g. documenting identical segments 
being collapsed together, which is not true in the 
rGFA format where each segment can only be 
associated with one origin. A format which allows 
relativism’s to canonical reference genomes, invari-
ant recovery of updated reference versions, and 
expressivity to new structures seems desirable.

The Graphical mApping Format (GAF)34 is a 
newly proposed format which extends the Pair-
wise mApping Format (PAF) for sequence to 
graph alignment and is built on top of the rGFA 
format34. This format is used by minigraph and 
GraphAligner34,58. The paper presenting vg21 also 
proposed a protobuf alignment format Graph 
Alignment Map (GAM) which is analogous to 
BAM.

The GFF format is a common standard used 
to store annotations for genomic features and 
regions. A recent paper by some of the members 
of the vg team argued that defining annotations 
for sequence segments, as is done for current lin-
ear genome analysis, does not generalize well to 
graphs since common variants located in a given 
segment will not be captured by such an annota-
tion. Therefore, they proposed a new file format, 
gGFF, which extends the GFF format to pange-
nome graphs using the notion that connected 
subgraphs should be used as the annotated unit37.

5 �Conclusion
As the field of graphical pangenomes continues 
to mature, more tools and innovations will bring 
this class of genomic analysis closer to the com-
putational requirements of current linear tools 

like BWA-MEM32, while decreasing reference 
bias and allowing the efficient incorporation of 
a growing number of known variants. Though 
this field is rapidly evolving, several limitations 
still exist, such as incorporating haplotype infor-
mation to common analysis methods, defining 
a coordinate system which is amenable to arbi-
trary and nested variation types and incremental 
updates and revisions, shared and standard for-
mats, ease of use and accessibility. We hope that 
this review of current methods and updates will 
serve as a useful checkpoint and reference for 
those working in and interested in the field of 
graphical pangenomes.
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