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Supplementary Note 
Model definition 
For a pair of reciprocally caused phenotypes (!! and !"), SNPs are classified into four 
mutually exclusive components:  

• !!-specific component ("!): SNPs that contribute directly to !! only;  
• !"-specific component (""): SNPs that contribute directly to !" only;  
• pleiotropic component ("#): SNPs that contribute directly to both phenotypes; 
• null component ("$): SNPs with no direct effects on either phenotype.  

The proportions of all SNPs in the four components are #!, #", #%  and #$. 
 
The two phenotypes can be written in the form: 

!! = #!"!" +∑ &!#'##∈%! +	∑ &&!''''∈%" + )!     

!" = #"!!! +∑ &"('((∈%# +∑ &&"''''∈%" + )"   

where  %& , %'  and	%(  represent standardized !!-specific, !"-specific and pleiotropic SNP 
genotypes, respectively; '!& , '"' , '#!( , '#"(  denote the direct effect sizes of phenotype-
specific and pleiotropic SNPs for !! and !" with ( ∈ "!, * ∈ "", + ∈ "#; ,!" is the casual effect 
of !" → !! and ,"! is the causal effect of !! → !"; .! and ." are the residual effects. We 
could convert the above formula into the following matrix form: 

* = [, − .])!01(%!)2(%!) + 1(%#)2(%#) + 1(%")2(%") + 34  

where, [, − .])! = !
!),!#,#!
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(-) and 1(-) represent the standardized genotype and 
the direct effect of SNPs in component ℎ with ℎ ∈ ("$, "!, "", "#). The null SNP component 
is not included in the formula.  
 
In our model, we assume the direct causal effects follow the distribution: 
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Here, 2!" and 2"" denote the per-SNP variance of "! and "", and 2#!"  and 2#""  are the per-SNP 
variance of "#  for !! and !", respectively with a covariance of 3#!,#". 
 
Thus, under the reciprocal joint model, a pair of phenotypes (as a sum of individual 
contributions from genetic variants) can be described as a joint linear model:  4 =
[7 − 9]*+∑ 1,

(.)%, + =
0
,1! , where 1,

(.) is the direct effect of the >-th SNP on the 
phenotypes depending on its component membership ℎ, and %, is the standardized 
genotype for the >-th SNP, = is the residual effect. 
 
Mixture form of the marginal estimate 

 

 



For univariate phenotype, according to linear relationship between the marginal and joint 
regression coefficients 1,2, ?, = ∑ @&3,&

2/
∗

&1! , where ?, denotes the marginal effect size for 
the >-th SNP, A,∗ is the total number of SNPs tagged by the >-th SNP, 3,&  is the LD 
correlation between >-th and (-th SNP, @&  is the joint effect size of the (-th SNP tagged by 
the >-th SNP. Thus, the summary-level estimation ?̂, can be divided into a mixture form: 
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where @&
(.) is the joint effect size for the (-th SNP belonging to component ℎ; A,

(.) is a latent 
variable denoting the number of ℎ-component SNPs tagged by the >-th SNP, and A,∗ =
A,
(44) + A,

(45) + A,
(46) + A,

(47).  
 
Composite likelihood in the mixture form 
Under our reciprocal joint model for two phenotypes, we assumed a bivariate normal 
distribution of the marginal estimate for the >-th SNP from the GWAS summary statistics: 
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Here,	?̂!, and ?̂", represent the marginal estimates of the >-th SNP from GWAS summary 
statistics of phenotype !! and !" respectively. ℕ, is a random vector of 
DA,

(44), A,
(45), A,

(46), A,
(47)E. According to the multinomial distribution with total counts 

A,
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(44) + A,
(45) + A,

(46) + A,
(47) and cell probabilities (#!, #", ## , #$), we can calculate 

the probability distribution of ℕ,: Pr(ℕ,) =
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covariance matrix for (?̂!, , ?̂",).  
 

We define J,
(.) = K

@!,
(.)

@",
(.)L = [7 − 9]*+1,

(.)as the joint effect size depending on the 

component condition ℎ of the >-th SNP, where @!,
(.), @",

(.) are the joint effect sizes of the >-
th SNP on phenotype !!, !" respectively. According to the direct effect size distribution (1), 
(2) and (3), we can derive the component-dependent variance-covariance matrix of 
(@!,

(.), @",
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Based on the definition of LD-score, we could obtain the component-dependent LD-score 

for the	>-th SNP in equation (4) in the form: ℓ,
(.) = ∑ 3,&

"2/
(<)

&1! . In practice it is not feasible to 
consider all possible combinations of components of tagged SNPs to calculate this ℓ,

(.). 
However, under the assumption that LD patterns are independent of the probability of SNP-
effects belonging to different mixture components, we could follow the approximation from 
Zhang et al2 as: 
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where ℓ, is the LD-score for the >-th SNP and can be substituted with LD-score data from a 
reference genome (e.g. 1000 Genomes Project). 
 
Thus, from equations (4), (6), (7), (8) and (9), we can derive the variance-covariance matrix 
for (?̂!, , ?̂",): 
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where  N! and N" are the sample size for the two GWAS; O! and O" are additional inflation 
factors accounting for systematic bias in variance estimates for phenotype !! and !" 
respectively; 3$ is a factor accounting for bias in the covariance estimates due to effects 
such as sample overlapping. 
 
Then, the likelihood for the summary-statistic of the >-th SNP is:  P(Q; ST8) = U(ST8|Q) =
∑ Pr(ℕ,)W(?̂!, , ?̂!,)ℕ/ , where W(?̂!, , ?̂",) is the density function of bivariate normal 
distribution with Q = (#!, #", #% , 2!

", 2"
", 2#!

" , 2#"
" , 3#!,#", ,!", ,"!, O!, O", 3$).  

 
Thus, the composite log-likelihood function is in the form: 
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So, the maximum composite likelihood estimator can be given by  
QX = OYZ[O\

:
]P(Q; ST8)  

 
 
Implementation 
We estimate the parameters from equation (10) using an Expectation-Maximization 
algorithm. In E-step, under the current parameter estimate Q(;): 
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where, W(?̂!, , ?̂",) is the density function of bivariate normal distribution and 
Pr(>)]ℕ1^KL8, T

(>)_ =
BC(K)(ℕ$)D(9:!$,9:#$)

∑ BC(K)(ℕ$)D(9:!$,9:#$)ℕ$
 . In M-step, parameters for mixing proportions (#!, #" and 

#%) have a closed form: 
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It is difficult to derive the close form for parameters of effect size variances (2!", 2"", 2#!" , 2#""  
and 3#!,#") and the reciprocal causation (,!" and ,"!), thus they were estimated by Nelder-
Mead optimization. 
 
To improve the efficiency of our algorithm, we made several further adaptions. The details 
are as follows: 

i. It is reasonable to assume a small number of true causal SNPs tagged by the >-th 
SNP. Thus, in practice, we set a constraint A,

(.) ≤ 3 with ℎ ∈ ("!, "", "#). We have 
tested this setting in both simulation and real data and found it could substantially 
decrease the computation burden while keeping reasonable genetic effect 
estimates. 

ii. The variance-covariance matrix B =&!
" C&!,&"

C&!,&" =&"
" D should always be positive-definite;  

iii. To ensure the convergence of reciprocal causation between the two phenotypes, 
|,!"| and |,"!|	should each be less than 1.0. 

iv. For variance calculation, it is arduous to obtain the derivatives for parameters 
directly from the composite likelihood function. Thus, we took symmetric derivatives 
to efficiently calculate derivatives required. The first-order partial derivative with 
respect to \ is <=
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. Here, W is the objective function 
and \, d denote the corresponding parameters. 

 
Calculation of initial weight for each model 
We optimized the weights of each model under the full-model likelihood function. The 
initial weight for each model was calculated based on a modified Akaike information 
criterion (AIC) for composite likelihood3. AIC of the e-th model (fg]F) can be written as: 

fg]F = −2]PiQXF; KTj + 2kF 
QXF are parameter estimates in the e-th model and kF = lY(g(QF)*!m(QF)). Here, g(QF) and 
m(QF) can be estimated by plugging in the estimated parameter values QXF as previously 
described.  Then, the weight for the e-th model is defined4 5 as 

efG =
exp	(0.5∆mnRG)
∑ exp	(0.5∆mnRG)H
G

 

 



where ∆fg]F is the normalized AIC for the e-th model by fg]F −[O\F∈Hfg]F. In this way, 
the weights could sum up to one by definition.  
 
 
Effect size transformation for binary phenotypes 
When the phenotype is binary, the estimates of the reciprocal causal path are on the 
liability scale, thus for binary phenotypes we have to convert the summary-level odds ratio 
(OR) to the equivalent effect size estimation on the liability scale. To this aim, we first used 
minor allele frequency (W) to adjust the reported +Nopq  to the standardized form 
i+Nopq j

F;I
= r2W(1 − W) × +Nopq , and uOY vi+Nopq j

F;I
w = 2W(1 − W)xe.i+Nopq jy

"
, where 

e.i+Nopq j is the reported standard error for +Nopq , and W can be obtained from 1000 
Genome data. The liability level effect size6 can be approximated as @z(&JK&(&;A ≈
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w, where | and Ä are the cumulative distribution 

function (c.d.f) and probability density function (p.d.f) of the standard normal distribution 
respectively, Å is the disease prevalence, } is the logistic function and l = |*!(1 − Å).  
 
 
Total heritability and genetic correlation  
In our reciprocal joint model, 4 = ∑ J,

(.)0
,1! %, + =, where %, is the standardized genotype 

for the >-th SNP and J,
(.) is a 2 × 1 vector of the component-dependent joint effect sizes of 

the >-th SNP contributing to phenotypes !! and !". Accordingly, the total heritability for 
phenotype !! is calculated as follows: 
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where Ç(.) denotes the number of SNPs in component ℎ, %'
(.) represents the standardized 

genotype of the *-th SNP in component ℎ, @!'
(.) is the joint effect size of this	*-th SNP 

contributing to phenotype !!, É is the total number of available SNPs, and ℎ ∈
("$, "!, "", "#).   
 
Similarly, the total heritability for phenotype !" is: 
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We derived the genetic covariance as follows: 
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Genetic correlation (YN) is defined as genetic covariance normalized by SNP heritabilities. 
Thus, the genetic correlation is written as: 

68 = E(F) =
<)+&)')& + <&+)&'&& + <..+&)'.)& + +)&'.&& + (1 + +)&+&))$.),.&0
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Here, Ñ is the vector of random variables in function "(Ñ). The variance of YN could be 
approximated by the Delta method as uOYiYNj ≈ ∇"(Ñ)OÜáu(Ñ)∇"(Ñ), where ∇"(Ñ) is 
the gradient of "(Ñ) at the estimated values and Üáu(Ñ) is the variance-covariance matrix 
of Ñ. 
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Supplementary Figure 1. Illustration of simulation scenarios. x- and y-axis are the standardized effect size estimates 
for GWAS !! and !" , respectively. Green, red, orange and grey points represent pleiotropic, !!-specific, !"-specific and 
null SNPs in the simulation. The reciprocal causal effects ("!" and ""!) are shown in each plot. a, The mixing proportion 
for each component is set as: #! = #" = ## = 1×10$%.  For independent pleiotropy, (&!,&" = 0.0; for correlated 
pleiotropy, (&!,&" = 0.1. b, Scatterplots of representative simulated high polygenicity scenarios (#! = #" = ## =
1×10$(). c, Scatterplots of representative simulated high polygenicity sub-model scenarios (#! = #" = ## =
1×10$(). *!,",& is the full model scenario where all three non-null components are present; *",& is the sub-model 
scenario where !!-specific component is absent; *!," is the sub-model scenario where pleiotropic component is absent; 
*& is the sub-model scenario where both !!- and !"-specific components are absent. For null causation, "!" = ""! =
0.0; for uni-directional causation, "!" = 0.1 and ""! = 0.0; for bi-directional causation, "!" = 0.1 and ""! = 0.05. d, 
Scatterplots of representative unbalanced pleiotropy scenarios under different levels of sample overlapping (from 0% 
to 100%). In these simulations, "!" = 0.1 and ""! = 0.0; the effects of genetic components are unbalanced. e, 
Scatterplots of representative unbalanced pleiotropy sub-model scenarios (*",& and *&). In sub-model simulations, 
"!" = 0.1 and ""! = 0.0; the effects of genetic components are unbalanced. Simulation settings for each scenario are 
shown in Supplementary Table S1.
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Supplementary Figure 2. Comparison of the reciprocal causal estimates by our method and instrumental variables 
(IV)-based MR methods. a, estimates under independent pleiotropy simulations ((&!,&" = 0.0); b estimates under 
correlated pleiotropy simulations ((&!,&" = 0.1). Our method takes whole-genome scale SNPs for estimation. For MR 
methods, IVs are selected in three ways: (1) use the exposure-specific true causal SNPs as IVs; (2) use exposure-
associated SNPs (p-value < 5×10$)) after clumping but exclude potential outcome-associated SNPs (p-value < 5×10$*
with outcome); (3) use significant exposure-associated SNPs after clumping regardless of their association with 
outcome. The true values of "!"/""! are indicated by up-/down-pointing triangles, respectively. Simulations were 
performed under low polygenicity settings (#! = #" = ## = 1×10$%).
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Supplementary Figure 3. Estimation comparison using different methods under various sample overlapping 
conditions. Data were from simulations with 0%, 50% and 100% sample overlapping, respectively. The causal effects 
were set as: "!" = 0.1 and ""! = 0.0. a, shows causal estimates from MRCI and selected standard MR methods. MRCI 
shows nearly unbiased estimates regardless of sample overlapping. b, type I error rate (""!) and power ("!") of 
estimation between MRCI and selected existing MR methods. MRCI shows adequate power and controlled type I error 
rate under different sample overlapping scenarios. c, nuisance parameter (+ in our model could reflect the degree of 
sample  overlapping, i.e., estimate of (+ increases as the degree of sample overlapping increase. In the simulation, the 
mixing  proportions of #!, #" and #& were set as 5×10$%, 2×10$( and 5×10$( respectively; the heritabilities of ℎ!", 
ℎ"" , ℎ&!" , and ℎ&"" were set as 0.2, 0.3, 0.1 and 0.2, respectively; (&!,&" was set as 0.1.



Supplementary Figure 4. Estimation using model averaging in four simulated scenarios (!!,#,$, !#,$, !!,# and !$). In each scenario, we considered 
null (#!# = ##! = 0.0), uni-directional (#!# = 0.1 and #!# = 0.0) and bi-directional (#!# = 0.1 and #!# = 0.05) causations. a, estimate comparison 
between the full model and the true model. The full model could not always give accurate estimates in sub-model scenarios (e.g., !#,$ and !$). The 
estimates in the plots are shown as )*+, ± 2/0. The black diamonds show the true values of #!# and ##!. b, weight for each model during model 
averaging. This averaging strategy largely gives higher weights to the true-model. c, frequency of full- or averaged-model being selected as the final 
estimates. Results suggest that averaged model is more favorable when the exposure-specific component is absent (e.g., !#,$ and !$). In the 
simulations, the mixing  proportions of  the present component were set as 1×10%&; the heritabilities contributed by 2!-specific, 2#-specific and 
pleiotropic SNPs (if present in the sub-model scenario) were set as 0.3, 0.3 and 0.1, respectively; 3$!,$# was set as 0.1.
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Supplementary Figure 5. Estimation of unbalanced pleiotropy simulation under three sub-model scenarios
(*!,",& , *",& and *&). The final estimates of MRCI under /!,",& , /",& and  /& scenarios were still around the true values 
and the type I error rate was well-controlled. When one or two components were missing (/",& and  /&), CAUSE and 
MRMix generated biased estimates. In each scenario, the true values of "!" and ""! were set as 0.1 and 0.0 
(represented by triangles), respectively; the mixing proportions of #!, #" and #& were set as 5×10$%, 2×10$( and 
5×10$( respectively; the heritabilities of ℎ!", ℎ"" , ℎ&!" , and ℎ&"" were set as 0.2, 0.3, 0.1 and 0.2, respectively; (&!,&"
was set as 0.1. The corresponding parameters of a component were set as 0 if the component was absent in the sub-
model scenario.
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Supplementary Figure 6. Simulations under stratified population.  The “European ancestry” simulations only included 
European ancestry individuals while the ‘mixture’ simulations included 1% and 5% non-European ancestry individuals 
for !! and !", respectively. a, Representative scatterplots of the European ancestry and the mixture simulations. For 
the mixture simulations, we compared the summary statistics with or without adjusting for the top 10 principal 
components (PCs). b, estimates of LDSC intercept, genomic control (0,&) and estimates of stratification factors in our 
model were shown in the plots. The stratification factor parameters in our model reflected the increased level of 
population stratification and behaved similarly to the other two indices. c, Causal estimates of our method in stratified 
simulations were still near the true values. d, Type I error rate (for ""!) was still well-controlled if the stratification 
effects could be adjusted. In the simulations, "!" = 0.1 and ""! = 0.0;  #! = #" = #& = 1×10$(; ℎ!" = ℎ"" = 0.3 , 
ℎ&!" = ℎ&"" = 0.1 and (&!,&" = 0.1.

d

European ancestry simulation Mixture simulation 
(without PC adjustment)

Mixture simulation 
(with PC adjustment)



group causation simID !! !" !# "!" "$" "#!" "#"" ##!,#" $!" $"! sample size 
(%!/ %")

sample 
overlapping

Low Polygenicity
(&&,$,' model)

null LoS1 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.0 0.0 0.0 50K / 50K 100%
LoS2 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.1 0.0 0.0 50K / 50K 100%

uni-directional LoS3 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.0 0.1 0.0 50K / 50K 100%
LoS4 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.1 0.1 0.0 50K / 50K 100%
LoS5 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.0 -0.1 0.0 50K / 50K 100%
LoS6 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.1 -0.1 0.0 50K / 50K 100%

bi-directional LoS7 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.0 0.1 0.05 50K / 50K 100%
LoS8 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.1 0.1 0.05 50K / 50K 100%
LoS9 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.0 -0.1 -0.05 50K / 50K 100%

LoS10 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.1 -0.1 -0.05 50K / 50K 100%
LoS11 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.0 0.1 -0.1 50K / 50K 100%
LoS12 1e-4 1e-4 1e-4 0.3 0.3 0.1 0.1 0.1 0.1 -0.1 50K / 50K 100%

High Polygenicity
(&&,$,' model)

null HiS1 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.0 0.0 50K / 50K 100%
uni-directional HiS2 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 0.0 50K / 50K 100%

HiS3 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 -0.1 0.0 50K / 50K 100%
bi-directional HiS4 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 0.05 50K / 50K 100%

HiS5 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 -0.1 -0.05 50K / 50K 100%
HiS6 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 -0.1 50K / 50K 100%
HiS7 5e-4 2e-3 5e-3 0.2 0.3 0.1 0.2 0.1 0.1 0.05 50K / 50K 100%

uni-directional HiS8* 5e-4 2e-3 5e-3 0.2 0.3 0.1 0.2 0.1 0.1 0.0 50K / 45K 0%

High Polygenicity
(sub-models)

null &$,( 0.0 1e-3 1e-3 0.0 0.3 0.1 0.1 0.1 0.0 0.0 50K / 50K 100%
&&,$ 1e-3 1e-3 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 50K / 50K 100%
&( 0.0 0.0 1e-3 0.0 0.0 0.3 0.4 0.1 0.0 0.0 50K / 50K 100%

uni-directional &$,( 0.0 1e-3 1e-3 0.0 0.3 0.1 0.1 0.1 0.1 0.0 50K / 50K 100%
&&,$ 1e-3 1e-3 0.0 0.3 0.3 0.0 0.0 0.0 0.1 0.0 50K / 50K 100%
&( 0.0 0.0 1e-3 0.0 0.0 0.3 0.4 0.1 0.1 0.0 50K / 50K 100%

bi-directional &$,( 0.0 1e-3 1e-3 0.0 0.3 0.1 0.1 0.1 0.1 0.05 50K / 50K 100%
&&,$ 1e-3 1e-3 0.0 0.3 0.3 0.0 0.0 0.0 0.1 0.05 50K / 50K 100%
&( 0.0 0.0 1e-3 0.0 0.0 0.3 0.4 0.1 0.1 0.05 50K / 50K 100%

High Polygenicity
(small sample sizes)

bi-directional SS1 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 0.05 20K / 20K 100%
SS2# 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 0.05 50K / 20K 100%

uni-directional SS3 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 0.0 20K / 20K 100%
null SS4 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.0 0.0 20K / 20K 100%

Unbalanced uni-directional Unbalance1 5e-4 2e-3 5e-3 0.2 0.3 0.1 0.2 0.1 0.1 0.0 50K / 50K 0%
Genetic Components Unbalance2 5e-4 2e-3 5e-3 0.2 0.3 0.1 0.2 0.1 0.1 0.0 50K / 50K 50%

(&&,$,' model) Unbalance3 5e-4 2e-3 5e-3 0.2 0.3 0.1 0.2 0.1 0.1 0.0 50K / 50K 100%
Unbalanced uni-directional &&,$,( 5e-4 2e-3 5e-3 0.2 0.3 0.1 0.2 0.1 0.1 0.0 50K / 50K 0%

Genetic Components &$,( 0.0 2e-3 5e-3 0.0 0.3 0.1 0.2 0.1 0.1 0.0 50K / 50K 0%
(sub-model) &( 0.0 0 5e-3 0.0 0.3 0.1 0.2 0.1 0.1 0.0 50K / 50K 0%

Stratified population uni-directional Strat$ 1e-3 1e-3 1e-3 0.3 0.3 0.1 0.1 0.1 0.1 0.0 50K / 50K 95%

* In this scenario, '& is a continuous trait and '$ is a binary trait. The prevalence and case:control ratio for '$ were set as 5% and 1:2, respectively. ℎ$ values for '$ were defined on a liability scale.
# The 20K individuals were completely included in the 50K individuals
$ The proportions of non-European ancestry individuals in simulation were 1% and 5% for '& and '$ respectively.

Supplementary Table 1. Parameter settings for various simulation scenarios. In the table, the column ‘simID’ shows the names of the corresponding 
simulated scenarios. !!,#,$ is the full model scenario where all three non-null components (i.e. "!-specific, "#-specific and pleiotropic components) are 
present, !#,$ is the sub-model scenario where "!-specific component is absent, !!,# is the sub-model scenario where pleiotropic component is absent 
and !$ is the sub-model scenario where both "!- and "#-specific components are absent. #!, ## and #$ denote the mixing proportions of "!-specific, 
"#-specific and pleiotropic component, respectively. ℎ!#, ℎ##, ℎ$!# , ℎ$## denote the direct heritabilities contributed by "!-specific, "#-specific and 
pleiotropic components to the "!, "# phenotypes. %$!,$# denotes the covariance between pleiotropic effects. &!# and &#! denote the causal effects of 
"#->"! and "!->"#. For null causation, &!# = &#! = 0.0; for uni-directional causation, one of the causal effects is zero and the other one is non-zero; for 
bi-directional causation, both &!# and &#! are non-zero. The sample size and percentage of sample overlapping in simulation are also listed.



IVs selection Method

LoS1 (independent pleiotropy) LoS2 (correlated pleiotropy)

!!" = #. # !"! = #. # !!" = #. # !"! = #. #

Mean %# (SD)
Type I error 

rate Mean %# (SD)
Type I error 

rate Mean %# (SD)
Type I error 

rate Mean %# (SD)
Type I error 

rate

N/A (Genome-scale SNPs) MRCI 0.93 (1.36) 0.05 0.95 (1.31) 0.05 1.24 (1.85) 0.08 0.93 (1.45) 0.04

exposure-specific true causal SNPs MR-Egger 0.57 (0.80) 0.00 0.61 (0.81) 0.01 0.53 (0.85) 0.01 0.55 (0.72) 0.00

Weighted 
Median 0.35 (0.53) 0.00 0.41 (0.60) 0.01 0.45 (0.61) 0.00 0.48 (0.74) 0.01

IVW 0.10 (0.09) 0.00 0.10 (0.10) 0.00 0.13 (0.11) 0.00 0.11 (0.10) 0.00

Weighted Mode 0.19 (0.31) 0.00 0.15 (0.26) 0.00 0.24 (0.43) 0.00 0.24 (0.50) 0.00

MRMix∗ N/A N/A N/A N/A N/A N/A N/A N/A

MR-PRESSO 0.10 (0.10) 0.00 0.11 (0.11) 0.00 0.14 (0.13) 0.00 0.11 (0.11) 0.00

significant exposure-associated 
SNPs excluding potential outcome-
associated SNPs

MR-Egger 0.91 (1.18) 0.02 1.27 (1.49) 0.07 1.25 (1.94) 0.07 1.43 (2.20) 0.09

Weighted 
Median 0.76 (1.03) 0.02 1.04 (1.55) 0.06 0.90 (1.25) 0.04 0.81 (1.13) 0.03

IVW 1.15 (2.14) 0.05 1.33 (1.98) 0.09 1.98 (2.40) 0.15 2.06 (2.47) 0.20

Weighted Mode 0.40 (0.43) 0.00 0.51 (0.66) 0.01 0.54 (0.79) 0.01 0.46 (0.61) 0.00

MRMix 0.57 (0.88) 0.01 0.72 (1.14) 0.04 0.63 (1.74) 0.01 0.48 (0.92) 0.02

MR-PRESSO 1.37 (2.31) 0.09 1.91 (2.39) 0.15 1.70 (2.22) 0.12 1.71 (2.27) 0.14

significant exposure-associated 
SNPs with no exclusion in outcome

MR-Egger 1.30 (1.66) 0.07 0.95 (1.34) 0.03 0.88 (1.31) 0.03 1.19 (1.30) 0.07

Weighted 
Median 0.75 (1.04) 0.02 1.10 (1.57) 0.05 5.36 (3.79) 0.57 4.82 (4.18) 0.50

IVW 0.82 (1.31) 0.03 1.14 (1.56) 0.09 55.06 (10.38) 1.00 56.49 (11.87) 1.00

Weighted Mode 0.40 (0.45) 0.00 0.51 (0.59) 0.00 0.56 (0.78) 0.02 0.62 (0.78) 0.01

MRMix 0.68 (0.78) 0.00 1.06 (1.25) 0.06 0.69 (0.99) 0.01 0.70 (1.16) 0.02

MR-PRESSO 1.35 (2.55) 0.08 1.76 (2.26) 0.14 11.95 (7.33) 0.90 13.50 (8.84) 0.92

Supplementary Table 2. Comparison of Type I error rate from different methods under the null hypothesis (*%& = *&% = +.0) from 100 simulations. When 
using exposure-specific true causal SNPs as instrumental variables (IVs), both our method and other MR methods show well-controlled Type I error rate. 
When using significant IVs from GWAS summary data, for simulations with independent pleiotropy, our method and most MR methods could produce a 
reasonable Type I error rate at the nominal level of , = 0.05. However, for simulations with correlated pleiotropy, many of the selected MR methods show 
an inflated Type I error rate especially when exclusion restriction in outcome data is not properly performed, while our method can maintain good control of 
Type I error rate. In the table, the .# is calculated as ( '()*+,)'

(),-.,/. '//0/)
#. For independent pleiotropy %$!,$# = 0.0; for correlated pleiotropy %$!,$# = 0.1. See 

Supplementary Table S1 for detailed settings of each simulated scenario.

(Note: *Not applied to MRMix due to its mixture-model assumption.)



Supplementary Table 3. Results of hypothesis testing under uni-directional causations (*%& = +. 2, *&% = +. +) from 100 simulations. In the table, the 
.# is calculated as ( '()*+,)'

(),-.,/. '//0/)
#. For independent pleiotropy %$!,$# = 0.0; for correlated pleiotropy %$!,$# = 0.1. See Supplementary Table S1 for 

detailed settings of each simulated scenario.

IVs selection Method

LoS3  (independent pleiotropy) LoS4  (correlated pleiotropy)

!!" = #. & !"! = #. # !!" = #.1 !"! = #. #

Mean %# (SD) Power Mean %# (SD)
Type I error 

rate Mean %# (SD) Power Mean %# (SD)
Type I error 

rate

N/A MRCI 47.08 (50.11) 0.97 1.01 (1.39) 0.03 68.27 (55.30) 0.93 0.92 (1.07) 0.02

exposure-specific true causal SNPs MR-Egger 55.84 (16.35) 1.00 0.60 (0.77) 0.01 51.47 (16.65) 1.00 0.53 (0.64) 0.00

Weighted Mode 27.45 (25.05) 0.67 0.22 (0.43) 0.00 24.53 (24.35) 0.66 0.20 (0.35) 0.00

MRMix∗ N/A N/A N/A N/A N/A N/A N/A N/A

significant exposure-associated 
SNPs excluding potential outcome-
associated SNPs

MR-Egger 4.05 (3.93) 0.39 0.84 (1.10) 0.04 2.90 (2.89) 0.24 1.14 (1.37) 0.08

Weighted Mode 4.82 (2.86) 0.58 0.53 (0.72) 0.00 4.43 (2.94) 0.48 0.40 (0.55) 0.00

MRMix 25.85 (19.26) 0.89 0.83 (1.25) 0.05 12.49 (33.18) 0.49 0.64 (1.00) 0.01

significant exposure-associated 
SNPs with no exclusion in outcome

MR-Egger 1.97 (2.13) 0.20 1.02 (1.30) 0.05 0.99 (1.27) 0.04 1.90 (2.12) 0.15

Weighted Mode 5.92 (3.39) 0.66 0.58 (0.81) 0.01 10.57 (5.53) 0.88 0.53 (0.72) 0.00

MRMix 25.39 (12.25) 0.95 0.87 (1.10) 0.02 23.06 (18.32) 0.71 0.95 (1.38) 0.06

(Note: *Not applied to MRMix due to its mixture-model assumption.)



Supplementary Table 4. Results of hypothesis testing under uni-directional causations (*%& = −+. 2, *&% = +. +) from 100 simulations. In the 
table, the .# is calculated as ( '()*+,)'

(),-.,/. '//0/)
#. For independent pleiotropy %$!,$# = 0.0; for correlated pleiotropy %$!,$# = 0.1. See 

Supplementary Table S1 for detailed settings of each simulated scenario.

IVs selection Method

LoS5  (independent pleiotropy) LoS6  (correlated pleiotropy)

!!" = −#. & !"! = #. # !!" = −#.1 !"! = #. #

Mean %# (SD) Power Mean %# (SD)
Type I error 

rate Mean %# (SD) Power Mean %# (SD)
Type I error 

rate

N/A MRCI 42.88 (43.48) 0.92 1.00 (1.19) 0.02 60.47 (38.86) 0.97 1.18 (1.29) 0.06

exposure-specific true causal SNPs MR-Egger 51.19 (15.55) 1.00 0.65 (0.88) 0.01 56.23 (18.47) 1.00 0.61 (0.76) 0.01

Weighted Mode 24.93 (24.18) 0.69 0.22 (0.42) 0.00 30.21 (29.25) 0.71 0.27 (0.49) 0.00

MRMix∗ N/A N/A N/A N/A N/A N/A N/A N/A

significant exposure-associated 
SNPs excluding potential outcome-
associated SNPs

MR-Egger 2.85 (3.21) 0.25 1.13 (1.39) 0.07 6.74 (5.00) 0.68 0.81 (1.37) 0.06

Weighted Mode 4.08 (2.68) 0.49 0.42 (0.56) 0.00 3.95 (2.55) 0.39 0.41 (0.53) 0.00

MRMix 21.71 (16.67) 0.92 1.07 (1.53) 0.07 30.68 (16.39) 0.92 0.96 (3.38) 0.03

significant exposure-associated 
SNPs with no exclusion in outcome

MR-Egger 2.23 (2.58) 0.21 0.94 (1.40) 0.03 0.96 (1.74) 0.04 1.03 (1.42) 0.07

Weighted Mode 5.08 (3.23) 0.57 0.42 (0.52) 0.00 12.26 (5.83) 1.00 0.46 (0.73) 0.01

MRMix 22.44 (10.94) 0.99 0.88 (1.08) 0.03 34.04 (24.78) 0.72 0.51 (0.80) 0.00

(Note: *Not applied to MRMix due to its mixture-model assumption.)



Supplementary Table 5. Results of hypothesis testing under bi-directional causations (*%& = +. 2, *&% = +. +5) from 100 simulations. In the 
table, the .# is calculated as ( '()*+,)'

(),-.,/. '//0/)
#. For independent pleiotropy %$!,$# = 0.0; for correlated pleiotropy %$!,$# = 0.1. See 

Supplementary Table S1 for detailed settings of each simulated scenario.

IVs selection Method

LoS7  (independent pleiotropy) LoS8  (correlated pleiotropy)

!!" = #. & !"! = #. #( !!" = #.1 !"! = #. #(

Mean %# (SD) Power Mean %# (SD) Power Mean %# (SD) Power Mean %# (SD) Power

N/A MRCI 53.53 (57.73) 0.89 15.95 (13.38) 0.85 78.61 (65.79) 1.00 18.94 (18.93) 0.86

exposure-specific true causal SNPs MR-Egger 55.43 (18.26) 1.00 14.33 (7.30) 0.94 52.65 (14.71) 1.00 14.15 (7.90) 0.94

Weighted Mode 26.46 (24.41) 0.65 6.35 (7.67) 0.48 22.83 (25.18) 0.61 6.45 (7.19) 0.50

MRMix∗ N/A N/A N/A N/A N/A N/A N/A N/A

significant exposure-associated 
SNPs excluding potential outcome-
associated SNPs

MR-Egger 2.87 (2.89) 0.27 1.42 (1.88) 0.08 2.82 (2.87) 0.31 1.19 (1.55) 0.05

Weighted Mode 4.85 (2.71) 0.62 1.50 (1.63) 0.08 4.77 (3.00) 0.53 1.95 (1.70) 0.14

MRMix 26.54 (23.35) 0.89 6.50 (5.82) 0.62 9.23 (12.29) 0.59 3.58 (8.81) 0.23

significant exposure-associated 
SNPs with no exclusion in outcome

MR-Egger 1.82 (2.67) 0.13 1.45 (1.90) 0.12 1.45 (1.75) 0.08 2.13 (2.18) 0.19

Weighted Mode 6.12 (3.35) 0.74 1.86 (1.99) 0.16 12.89 (5.44) 0.97 4.91 (3.38) 0.60

MRMix 27.25 (13.61) 1.00 8.25 (6.50) 0.72 25.08 (18.02) 0.74 5.57 (5.82) 0.51

(Note: *Not applied to MRMix due to its mixture-model assumption.)



Supplementary Table 6. Results of hypothesis testing under bi-directional causations (*%& = −+. 2, *&% = −+. +5) from 100 simulations. In the 
table, the .# is calculated as ( '()*+,)'

(),-.,/. '//0/)
#. For independent pleiotropy %$!,$# = 0.0; for correlated pleiotropy %$!,$# = 0.1. See 

Supplementary Table S1 for detailed settings of each simulated scenario.

IVs selection Method

LoS9  (independent pleiotropy) LoS10  (correlated pleiotropy)

!!" = −#. & !"! = −#. #( !!" = −#.1 !"! = −#. #(

Mean %# (SD) Power Mean %# (SD) Power Mean %# (SD) Power Mean %# (SD) Power

N/A MRCI 56.37 (53.02) 0.95 13.83 (12.20) 0.76 72.76 (59.33) 0.92 17.39 (13.82) 0.83

exposure-specific true causal SNPs MR-Egger 53.13 (17.37) 1.00 14.79 (7.22) 0.96 54.78 (16.39) 1.00 13.84 (6.82) 0.95

Weighted Mode 28.03 (24.19) 0.76 7.44 (6.73) 0.59 25.40 (25.22) 0.65 6.96 (7.97) 0.48

MRMix∗ N/A N/A N/A N/A N/A N/A N/A N/A

significant exposure-associated 
SNPs excluding potential outcome-
associated SNPs

MR-Egger 3.29 (3.41) 0.33 1.64 (2.21) 0.14 5.92 (5.21) 0.57 2.35 (2.50) 0.19

Weighted Mode 4.57 (2.75) 0.54 1.59 (1.52) 0.09 4.02 (2.88) 0.46 1.43 (1.51) 0.07

MRMix 26.96 (19.29) 0.92 5.15 (6.08) 0.45 23.93 (16.06) 0.90 6.02 (8.09) 0.57

significant exposure-associated 
SNPs with no exclusion in outcome

MR-Egger 1.84 (2.37) 0.18 1.37 (1.95) 0.13 1.56 (2.00) 0.12 1.10 (1.39) 0.05

Weighted Mode 5.55 (3.08) 0.65 1.85 (1.60) 0.14 9.91 (4.94) 0.92 2.53 (2.52) 0.21

MRMix 26.37 (12.06) 0.99 7.32 (6.08) 0.66 31.00 (21.36) 0.74 7.38 (6.91) 0.60

(Note: *Not applied to MRMix due to its mixture-model assumption.)



Supplementary Table 7. Results of hypothesis testing under bi-directional causations (*%& = +. 2, *&% = −+. 2) from 100 simulations. In the 
table, the .# is calculated as ( '()*+,)'

(),-.,/. '//0/)
#. For independent pleiotropy %$!,$# = 0.0; for correlated pleiotropy %$!,$# = 0.1. See 

Supplementary Table S1 for detailed settings of each simulated scenario.

IVs selection Method

LoS11  (independent pleiotropy) LoS12  (correlated pleiotropy)

!!" = #. & !"! = −#. & !!" = #.1 !"! = −#. &

Mean %# (SD) Power Mean %# (SD) Power Mean %# (SD) Power Mean %# (SD) Power

N/A MRCI 54.00 (41.89) 0.98 35.18 (31.46) 0.92 70.72 (51.75) 0.95 63.86 (61.65) 0.88

exposure-specific true causal SNPs MR-Egger 54.50 (18.10) 1.00 49.82 (18.12) 1.00 49.41 (16.98) 1.00 55.72 (17.55) 1.00

Weighted Mode 25.70 (22.83) 0.71 28.18 (26.64) 0.74 23.55 (23.08) 0.69 23.08 (23.28) 0.64

MRMix∗ N/A N/A N/A N/A N/A N/A N/A N/A

significant exposure-associated 
SNPs excluding potential outcome-
associated SNPs

MR-Egger 3.50 (3.67) 0.33 2.21 (2.30) 0.19 3.34 (4.66) 0.30 5.53 (4.01) 0.56

Weighted Mode 4.78 (2.88) 0.56 3.78 (2.54) 0.40 3.98 (2.75) 0.47 4.75 (3.24) 0.55

MRMix 24.15 (16.41) 0.90 21.03 (16.77) 0.88 8.09 (20.19) 0.32 27.40 (17.76) 0.87

significant exposure-associated 
SNPs with no exclusion in outcome

MR-Egger 2.00 (2.90) 0.12 1.47 (2.21) 0.10 0.75 (1.05) 0.01 1.26 (1.67) 0.10

Weighted Mode 5.74 (3.34) 0.65 4.71 (3.09) 0.54 7.56 (4.21) 0.85 15.59 (7.40) 0.94

MRMix 22.86 (12.96) 0.97 21.20 (10.95) 0.98 18.57 (15.78) 0.67 35.21 (23.04) 0.78

(Note: *Not applied to MRMix due to its mixture-model assumption.)



Supplementary Table 8. Summary of the reciprocal causal estimates under high polygenicity scenarios. Our method shows nearly unbiased 
estimates, well-controlled Type I error rate, and adequate power. In the simulation, #! = ## = #1 = 1×1023 and %$!,$# = 0.1. “Empirical SD” is 
the standard deviation of causal estimates from 100 simulations; “Mean SandwichSE” is the mean value of the standard errors calculated by the 
Sandwich estimator from 100 simulations. The column ‘simID’ gives the ID of each simulated scenario, and the parameter settings for each 
scenario can be found in Supplementary Table S1. 

simID Parameter True
value

Mean
estimate

Empirical 
SD

Mean
SandwichSE Mean 4) (SD) Type I error rate Power

HiS1 5*+ 0.00E+00 -7.65E-03 1.91E-02 2.19E-02 1.09 (1.56) 0.09 N/A

5+* 0.00E+00 -4.76E-03 1.81E-02 2.18E-02 0.88 (1.27) 0.06 N/A

HiS2 5*+ 1.00E-01 8.78E-02 2.17E-02 2.17E-02 22.94 (15.34) N/A 0.95

5+* 0.00E+00 -1.19E-02 2.01E-02 2.33E-02 1.23 (1.53) 0.08 N/A

HiS3 5*+ -1.00E-01 -1.09E-01 2.08E-02 1.96E-02 39.49 (21.91) N/A 0.98

5+* 0.00E+00 8.92E-04 2.00E-02 1.78E-02 1.33 (1.69) 0.09 N/A

HiS4 5*+ 1.00E-01 9.26E-02 1.89E-02 2.09E-02 27.86 (16.59) N/A 0.96

5+* 5.00E-02 4.87E-02 1.69E-02 2.11E-02 8.14 (6.15) N/A 0.68

HiS5 5*+ -1.00E-01 -1.10E-01 2.10E-02 1.96E-02 41.44 (21.45) N/A 0.99

5+* -5.00E-02 -5.81E-02 1.75E-02 1.95E-02 12.66 (9.95) N/A 0.85

HiS6 5*+ 1.00E-01 8.29E-02 1.52E-02 1.94E-02 24.11 (13.38) N/A 0.97

5+* -1.00E-01 -1.14E-01 1.94E-02 2.09E-02 39.14 (20.07) N/A 0.97

HiS7 5*+ 1.00E-01 1.09E-01 2.51E-02 2.56E-02 21.19 (13.2) N/A 0.99

5+* 5.00E-02 5.03E-02 2.92E-02 2.38E-02 6.85 (6.84) N/A 0.52

HiS8 5*+ 1.00E-01 1.11E-01 2.57E-02 2.57E-02 23.59 (14.1) N/A 0.99

5+* 0.00E+00 8.34E-04 2.38E-02 2.25E-02 1.17 (1.27) 0.07 N/A



Group simID True !,
LDSC MRCI

Mean SD Mean SD
Low Polygenicity LoS1 0.000 0.001 0.046 0.001 0.034

(6*,+,. model) LoS2 0.250 0.245 0.082 0.209 0.046
LoS3 0.100 0.114 0.054 0.108 0.035
LoS4 0.348 0.297 0.051 0.285 0.037
LoS5 -0.100 -0.094 0.048 -0.098 0.037
LoS6 0.149 0.115 0.045 0.112 0.034
LoS7 0.149 0.147 0.041 0.151 0.034
LoS8 0.399 0.352 0.050 0.343 0.039
LoS9 -0.149 -0.150 0.051 -0.150 0.036

LoS10 0.101 0.083 0.060 0.045 0.036
LoS11 0.000 -0.002 0.056 0.002 0.040
LoS12 0.245 0.209 0.070 0.190 0.046

High Polygenicity HiS1 0.250 0.246 0.034 0.224 0.040
(6*,+,. model) HiS2 0.348 0.344 0.029 0.340 0.037

HiS3 0.149 0.156 0.032 0.125 0.032
HiS4 0.399 0.392 0.027 0.411 0.043
HiS5 0.101 0.118 0.034 0.087 0.028
HiS6 0.245 0.251 0.033 0.232 0.029

High Polygenicity 6*,+,. (null) 0.250 0.246 0.034 0.224 0.039
(sub-models) 6+,/ (null) 0.500 0.498 0.042 0.476 0.036

6*,+ (null) 0.000 0.002 0.033 0.005 0.037
6/ (null) 0.289 0.295 0.057 0.280 0.051

6*,+,. (uni-directional) 0.348 0.344 0.029 0.340 0.037
6+,/ (uni-directional) 0.686 0.631 0.041 0.630 0.045
6*,+ (uni-directional) 0.100 0.102 0.030 0.104 0.025
6/ (uni-directional) 0.402 0.395 0.045 0.336 0.046
6*,+,. (bi-directional) 0.399 0.392 0.027 0.411 0.042
6+,/ (bi-directional) 0.713 0.649 0.044 0.646 0.043
6*,+ (bi-directional) 0.149 0.150 0.033 0.151 0.028
6/ (bi-directional) 0.446 0.427 0.045 0.407 0.045

Supplementary Table 9. Comparison of genetic correlations (77) estimated by MRCI and LDSC under various simulated scenarios. In the table,
’Mean’ represents the mean estimates from 100 simulations; ‘SD’ represents the standard deviation of the 100 estimates. The column ‘simID’
gives the ID of each simulated scenario, and the parameter settings for each scenario can be found in Supplementary Table S1.



Supplementary Table 10. Estimation with different sample sizes in high polygenicity scenarios. In the table, ’Mean estimate’ represents the mean 
estimates from 100 simulations; ‘Empirical SD’ represents the standard deviation of the 100 estimates; ‘Mean SandwichSE’ represents the mean 
value of the standard error of the parameter using the Sandwich estimator. As sample sizes of GWAS increase, the accuracy becomes higher and 
standard error becomes smaller. The standard errors estimated by Sandwich estimator are close to the empirical SD in all scenarios, indicating the 
accuracy of Sandwich estimator. In the simulations, the mixing proportions were set as #! = ## = #1 = 1×1023; the heritabilities contributed by 
"!-specific, "#-specific and pleiotropic SNPs were set as 0.3, 0.3 and 0.1 respectively, and %$!,$# = 0.1. (#, samples were 100% overlapped; *, the 
20K individuals were completely included in the 50K individuals.)

Parameter True value

Sample sizes (Y1 / Y2)

20K / 20K # 50K / 20K * 50K / 50K #

Mean
Estimate

Mean
SandwichSE

Empirical
SD

Mean
Estimate

Mean
SandwichSE

Empirical
SD

Mean
Estimate

Mean
SandwichSE

Empirical
SD

"*+ 0.100 0.087 0.056 0.043 0.091 0.027 0.027 0.093 0.021 0.019

"+* 0.050 0.055 0.053 0.040 0.036 0.068 0.046 0.049 0.021 0.017


