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Abstract

In this study, we merged methods from engineering control theory, machine learning, and

human neuroimaging to critically test the putative role of the dorsal anterior cingulate cortex

(dACC) in goal-directed performance monitoring during an emotion regulation task. Healthy

adult participants (n = 94) underwent cued-recall and re-experiencing of their responses to

affective image stimuli with concurrent functional magnetic resonance imaging and psycho-

physiological response recording. During cued-recall/re-experiencing trials, participants

engaged in explicit self-regulation of their momentary affective state to match a pre-defined

affective goal state. Within these trials, neural decoding methods measured affect process-

ing from fMRI BOLD signals across the orthogonal affective dimensions of valence and

arousal. Participants’ affective brain states were independently validated via facial electro-

myography (valence) and electrodermal activity (arousal) responses. The decoded affective

states were then used to contrast four computational models of performance monitoring

(i.e., error, predicted response outcome, action-value, and conflict) by their relative abilities

to explain emotion regulation task-related dACC activation. We found that the dACC most

plausibly encodes action-value for both valence and arousal processing. We also confirmed

that dACC activation directly encodes affective arousal and also likely encodes recruitment

of attention and regulation resources. Beyond its contribution to improving our understand-

ing of the roles that the dACC plays in emotion regulation, this study introduced a novel ana-

lytical framework through which affect processing and regulation may be functionally

dissociated, thereby permitting mechanistic analysis of real-world emotion regulation strate-

gies, e.g., distraction and reappraisal, which are widely employed in cognitive behavioral

therapy to address clinical deficits in emotion regulation.
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Introduction

The expression and perception of emotions are valuable social cognitive resources that allow

us to focus our attention to salient environmental features [1], orchestrate social exchanges

[2], prioritize our decisions [3], and engage in appetitive and aversive behaviors [4]. Con-

versely, disruption of the multiple roles that emotions perform in directing our cognitions and

behaviors is associated with mental health problems. Emotion misprocessing (e.g., emotional

hypo/hyperreactivity and lability) engenders maladaptive emotional states implicated in psy-

chiatric illnesses [5]. Thus, we routinely deploy emotion regulation strategies to mitigate such

processing errors and to mold our emotional experiences in ways that benefit our well-being

[6]. Critical to the success of such regulation strategies is the ability to obtain feedback about

momentary states of affect relative to an affective goal state, termed performance monitoring.

The present study sought to utilize computational approaches to compare and contrast the

roles of multiple performance monitoring signals theoretically related to the regulation of

emotion.

The process model of emotion regulation [7, 8] provides a conceptual bridge between the

temporal steps comprising emotion formation (i.e., the modal model [9]) and the multitude of

cognitive processes serving to extinguish, alter, or promote such formation. For example, two

widely deployed emotion regulation strategies, distraction and reappraisal, respectively target

attentional deployment versus cognitive appraisal components of the process model in order

to regulate the prepotent (and potentially dysfunctional) trajectory of emotional response.

Extant empirical studies of emotion regulation in healthy subjects describe the comparative

efficacy of these strategies [10], individual differences in strategy efficacy [11], as well as their

attendant functional neurocircuitry [12–14]. It is the process model that provides an overarch-

ing framework by which to organize these studies and to extrapolate their findings to inform

observed patterns of emotion dysregulation associated with psychopathology [15–19].

Computational models of emotion regulation, therefore, should build on the process mod-

el’s components to elaborate descriptions of its underlying mechanisms [20] by merging

empirical observations with mathematical rigor. A heuristic framework for model develop-

ment is provided by the superordinate process of cognitive control, which has long drawn

mechanistic inference from engineering control theory [21–23] to empirically test computa-

tional models [24, 25] of its mechanisms of control. As a step in this direction, leading scholars

recently proposed a neuroanatomically-constrained unified emotion regulation framework

[26] rooted in reinforcement learning [27], a value-based multi-step decision strategy having

important mathematical and conceptual connections to dynamic programming [28], optimal

control theory [29], and machine learning [30] with theorized links to cognitive control [21].

Building on these ideas, this study formally tested the computational basis of performance

monitoring signals [31] during emotion regulation. To accomplish this goal, we constrained

our study’s focus to the top-down cognitive control of affect processing [20, 32] (i.e., explicit

regulation [33]) and, drawing on results from prior work within the cognitive control litera-

ture, assigned patterns of functional neuroanatomical activation associated with explicit affect

regulation to the roles performed by subcomponents of a formal engineering control system.

These subcomponents included the plant (the system to be controlled, i.e., affect processing)

and the control law (the system that monitors control performance and acts to best align the

plant’s state with a desired goal state). To approximate a relevant control law we input extant

theoretical measures of performance monitoring, previously posited by the cognitive control

and emotion regulation research communities, into this computational model and measured

the concordance between the model’s predictions and neural activation patterns observed in

the dorsal anterior cingulate cortex (dACC), a region consistently linked to performance
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monitoring [24, 31, 34–46]. Thus, this study sought to merge the potential of computational

neuroscience with the robust field of engineering control theory to provide a fresh perspective

on the role of the dACC in emotion regulation.

Methods

Study overview

This study analyzed behavioral, psychophysiological, and functional brain imaging data

acquired from two separate experiments, the Intrinsic Neuromodulation of Core Affect

(INCA) experiment and the Cognitive Control Theoretic Mechanisms of Real-time fMRI-

Guided Neuromodulation (CTM) experiment (National Science Foundation, BCS-1735820).

Both experiments were based in control theoretic functional neuroimaging explorations of the

brain representations of affect processing and regulation, and incorporated both unguided and

real-time fMRI-guided affect regulation tasks. Importantly, both experiments shared identical

affective stimuli as well as identical design and ordering of the affect processing, affect regula-

tion, and resting state tasks. The following expands on the experimental design details that

enabled the present affect regulation analysis.

We conducted both the INCA and CTM studies over two separate sessions, each occurring

on separate days. During Session 1, participants provided written informed consent, received

screening for clinically relevant exclusionary criteria via structured clinical interview, and

completed behavioral assessments and questionnaires. We acquired magnetic resonance imag-

ing (MRI) and concurrent psychophysiological measurements during Session 2. The analyses

reported here focus on data acquired during the first three functional image acquisitions (i.e.,

scans) of Session 2, which correspond to the two System Identification task scans and one

Resting State task scan. The relevant task descriptions are elaborated below.

Experimental task design and conceptual model

The System Identification task performed two independent roles in our study. First, this task

implicitly induced, via visual image stimuli, affect processing in our participants that was mea-

sured via concurrent functional MRI (fMRI) and psychophysiology in order to construct and

validate study-specific neural decoding models of affect processing. Second, this task, via cued-

recall and re-experiencing trials, induced explicit affect regulation to attain an objectively

known goal, allowing for the measurement of moment-to-moment affect regulation perfor-

mance. Note, we employ the definitions proposed by Mauss et al., (2007) [33] in which the

term implicit describes effortless (i.e., automatic) affect processing and regulation whereas the

term explicit relates to effortful (i.e., volitional) affect processing and regulation. By this design,

isolation of the specific process of explicit affect regulation did not rely on the perhaps more

conventional use of affective state manipulation tasks such as re-appraisal or distraction, but

rather focused on the effortful re-creation of a prior implicitly induced affective state (goal

state) to best approximate the relevant components of the engineering control system frame-

work. Additionally, because the initial cue conditions of these trial types are identical, we con-

trol for a potential attentional bias effect arising from the cue conditions of these trials.

We induced the affect processing state using 90 image stimuli that were computationally

sampled from the International Affective Picture Set (IAPS) to maximize the range of valence

and arousal processing demands induced by the resultant set of image stimuli [47, 48] (see S1

Fig). We presented each image stimulus for 2 s followed by an inter-trial interval (ITI) uni-

formly randomly sampled from the range 2–6 s during which we presented a fixation cross.

We labeled these image presentation sequences as implicit affect processing induction trials.
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We induced the affect regulation goal state using 30 image stimuli (independently but iden-

tically sampled as described above from the remaining IAPS images, see S1 Fig) as part of the

experiment’s cued-recall/re-experiencing trials (see Fig 1, panel A). In these trials, we pre-

sented a cue image stimulus for 2 s followed by a visual preparation instruction (the word

“FEEL” superimposed over the still-observed image) for 2 s followed by a recall/re-experienc-

ing instruction in which the image disappears (leaving only the word “FEEL”) for 8 s. Partici-

pants were instructed to respond to the “FEEL” prompt during recall/re-experiencing trials by

explicitly regulating their affect processing state to match the affect processing state induced

by implicit responses to the cue image stimulus. Finally, a fixation cross replaced the word

“FEEL” for an ITI sampled uniformly randomly from the range 2–6 s. We thus induced partic-

ipants to regulate their affect state relative to a goal state, upon seeing the recall/re-experience

instruction (i.e., “FEEL”), according to the following instructions. “[W]hen the image disap-

pears and just the word ‘feel’ remains, we want you to re-imagine the image you just saw and

try to re-feel how the image made you feel when you first saw it. Hold that feeling the entire

time the word ‘feel’ is on the screen.”

Both the 90 implicit affect processing induction trials and the 30 recall/re-experiencing tri-

als were pseudo randomly interleaved across the two System Identification task scans. The

complete list of IAPS images used in this experiment, including their task role and normative

valence and arousal properties, are summarized in S1 Table.

Conceptually, our System Identification task facilitated the construction of two control sys-

tem subcomponents necessary to conduct our proposed test of dACC function. Implicit affect

processing induction trials yielded fMRI-derived brain states from which we built neural

decoding models of affect processing. These decoding models (see Fig 1, panel B) served as the

computational representation of the state of the plant, allowing us to quantitatively measure

affect processing during regulation. The cued-recall/re-experiencing trials provided brief tests

Fig 1. Explicit affect regulation task design and conceptual model of affect regulation in an engineering control system framework. (A) Schematic of a

cued-recall/re-experiencing trial. The trial presents a cue image stimulus for 2 s. The trial then overlays the word “FEEL” for 2 s in yellow font. The image

disappears, replaced by a black screen, leaving only the word “FEEL” for 8 s. The trial ends with a fixation cross for an inter-trial interval sampled uniformly

randomly on the range of 2–6 s. (B) A closed-loop conceptual model of the brain processing related to explicit affect regulation induced by the cued-recall/re-

experiencing task. The proposed closed-loop control system’s box diagram falls within the dashed area of the figure. The system of interest, aka the plant, P, is

assumed to be observable according to measurements of its state, s. In this study, the plant is composed of the independent dimensions of affect processing,

valence and arousal. The control law, L, evaluates the plant’s momentary state (i.e., performance monitoring) and responds with a control action, u, intended to

perturb P such that the system state moves closer to the desired state, i.e., the goal, s�. Each cued-recall/re-experiencing task trial first captures the goal state and

then captures four separate dynamic measurements (brain state representations and psychophysiological responses) of the system state as the subject explicitly

regulates their affective state to match the goal state. Brain representations of the goal and system states are measured by submitting whole-brain gray matter

patterns of neural activation extracted from the subject’s fMRI BOLD signal to neural decoding models of affective valence and arousal processing. To

characterize s� and the momentary states of P, psychophysiological measures of arousal (skin conductance response, SCR) and valence (facial

electromyography, EMG) are captured concurrently with fMRI BOLD signal.

https://doi.org/10.1371/journal.pone.0273376.g001
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of the processes of explicit affect regulation. Critically, the cue conditions of these trials

induced subject-specific implicit affect processing that was captured by the decoding model,

forming objective goal states for post-hoc analysis of subsequent regulation performance. The

trajectory of affect processing (our measure of affect regulation relative to the goal state) was

decoded post-hoc from the sequence of fMRI-derived brain states induced by the recall/re-

experiencing condition’s instruction (“FEEL”) to explicitly regulate one’s affect to achieve and

maintain the goal state. Theoretical measures of performance monitoring, which we hypothe-

size are executed by the control law within the dACC, were then constructed from these affect

processing measurements (see Fig 1, panel B).

Finally, we acquired 7.5 min of fMRI resting state data in which subjects performed mind-

wandering. During training, subjects were instructed to “let your mind wander, not focusing

on any specific thought” and to “try to keep your head still and your eyes open [and] . . . blink

naturally.” We used resting state fMRI as a control condition by which to measure baseline

fluctuations of affect processing dynamics in the untasked brain.

Ethics statement

All participants provided written informed consent after receiving written and verbal descrip-

tions of the study procedures, risks, and benefits. We performed all study procedures and data

analysis with approval and oversight of the Institutional Review Board at the University of

Arkansas for Medical Sciences (UAMS) in accordance with the Declaration of Helsinki and

relevant institutional guidelines and policies.

Participants

We sought to enroll study participants who lived within a one hour drive of the UAMS campus in

Little Rock, Arkansas who responded to recruitment materials in the forms of publicly posted fly-

ers, direct emails to identified research volunteers in the ARresearch registry (arresearch.org), and

social media advertisements. From our total participant sample (n = 97), we excluded from analy-

sis two subjects enrolled in the CTM study who did not complete the resting state task scan (due

to early exit from the scanner) as well as one subject enrolled in the INCA study who was inadver-

tently included in the study despite meeting exclusionary criteria. The final participant sample

(n = 94; nCTM = 75 and nINCA = 19) possessed the following demographic characteristics: age

[mean(s.d.)]: 36.6(13.8), range 18–64; sex: 61(65%) female, race/ethnicity: 80(85.1%) self-reporting

as White or Caucasian, 11(11.7%) as Black or African-American, 1(1.1%) as Asian, and 2 (2.1%)

reporting as more than one race; education [mean(s.d.)]: 16.7(2.6) years, range 12–23; WAIS-IV

IQ [mean(s.d.)]: 105.8(14.0), range 74–145. All of the study’s participants were right-handed

native-born United States citizens who were medically healthy and exhibited no current Axis I

psychopathology, including mood disorders, as assessed by the SCID-IV clinical interview [49].

All participants reported no current use of psychotropic medication and produced a negative

urine screen for drugs of abuse (cocaine, amphetamines, methamphetamines, marijuana, opiates,

and benzodiazepines) immediately prior to the MRI scan. CTM participants also produced a neg-

ative urine screen prior to SCID-IV clinical interview. When necessary, we corrected participants’

vision to 20/20 using an MRI compatible lens system (MediGoggles™, Oxfordshire, United King-

dom), and we excluded all participants endorsing color blindness.

MR image acquisition and preprocessing

We acquired all imaging data for the INCA and CTM experiments using the same Philips 3T

Achieva X-series MRI scanner (Philips Healthcare, Eindhoven, The Netherlands) with a

32-channel head coil. We acquired anatomic images using an MPRAGE sequence (matrix = 256
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x 256, 220 sagittal slices, TR/TE/FA = 8.0844/3.7010/8˚, final resolution = 0.94 x 0.94 x 1

mm3). We acquired functional images using the following EPI sequence parameters: TR/TE/

FA = 2000 ms/30 ms/90˚, FOV = 240 x 240 mm, matrix = 80 x 80, 37 oblique slices, ascending

sequential slice acquisition, slice thickness = 2.5 mm with 0.5 mm gap, final resolution 3.0 x

3.0 x 3.0 mm3. We performed all MRI preprocessing using AFNI [50] (Version AFNI_19.1.04)

unless otherwise noted. We processed anatomical data according to the following sequence of

steps: skull stripping, spatial normalization to the MNI152 brain atlas, and segmentation (via

FSL [51]) into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). From the

individual participant GM segmentations we constructed a group-level GM mask composed

of voxels in which� 50% of individuals exhibited the presence of GM. Our pipeline processed

functional images according to the following sequence of steps: despiking, slice-time correc-

tion, deobliquing, motion correction, transformation to the spatially normalized anatomic

image, regression of the mean time courses and temporal derivatives of the WM and CSF

masks as well as a 24-parameter motion model [52, 53], spatial smoothing (8 mm FWHM

Gaussian kernel), and scaling to percent signal change. For resting state functional images we

performed global mean signal subtraction prior to smoothing and scaling.

Psychophysiology data acquisition and preprocessing

We acquired putative psychophysiological correlates of affect processing using the BIOPAC

MP150 Data Acquisition System (BIOPAC Systems, Inc., Goleta, CA) in conjunction with

AcqKnowledge software. We simultaneously captured multiple physiological modalities: gal-

vanic skin response (EDA 100C-MRI module), pulse plethysmography (TSD200-MRI mod-

ule), respiration transduction (TSD221-MRI module), and facial electromyography

(EMG100C-MRI module). We acquired galvanic skin responses from electrodes placed on the

medial portions of the thenar and hypothenar eminences of the left hand [48]. We also cap-

tured two separate measurements of facial electromyography (EMG), zygomaticus major

(zEMG) and corrugator supercilii (cEMG) responses, using the electrode placement guidelines

reported in Fridlund and Cacciopo [54]. Physiological signals were acquired at 2000 Hz.

We used the canonical skin conductance response function [55] in conjunction with the

beta-series method [56] to capture temporally succinct physiological correlates of autonomic

arousal associated with affect processing induced by both the implicit induction trials [57] and

cued-recall/re-experiencing task trials. In cue-recall/re-experiencing task trials we extracted

arousal responses for the cue condition to define the subsequent goal state, s�, as well as at 2 s

intervals commencing with the onset of the “FEEL”-prompted recall/re-experiencing condi-

tion (see Fig 1, panel A) to define the momentary states, s, of P. Similarly, we modeled facial

electromyography as an independent physiological measure of hedonic valence. We first band-

pass filtered the raw EMG signal on the range 10–500 Hz to remove artifacts [58], rectified the

filtered signal, and then extracted the sum of the rectified signal for each relevant task period

as our feature set, e.g., over the 2 s cue stimulus as well as over 2 s intervals (commencing at

condition onset) of the recall/re-experiencing condition (4 intervals total, see Fig 1, panel A).

Note, due to changes in neuroimaging procedures put in place in response to the COVID-19

pandemic, the final 20 participants of the CTM study were required to wear surgical masks at

all times up to insertion as well as removal from the MRI bore, making zEMG placement infea-

sible. Therefore, zEMG was not acquired from these subjects.

Decoding affect processing

In this work we relied on neural decoding models that have been extensively tested and vali-

dated in prior work [47, 48, 59, 60]. We detail key aspects of the modeling processing as follows.

PLOS ONE Action-value processing underlies performance monitoring in the dorsal anterior cingulate cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0273376 August 30, 2022 6 / 28

https://doi.org/10.1371/journal.pone.0273376


Feature and label extraction. We combined the canonical hemodynamic response func-

tion and the beta-series method [56] to capture whole-brain gray matter patterns of neural

activation in response to the implicit affect processing induction trials within the System Iden-

tification task fMRI scans. We refer to these patterns as affective brain states. We then paired

these states with class assignment labels {+1,1} derived from the relationship of the known

IAPS normative valence and arousal scores (see S2 & S3 Tables) of the corresponding image

stimuli to the middle Likert IAPS score (5 of a 9-point scale). These brain states and class labels

form the set of feature-label pairs (one pair each for the independent dimensions of valence

and arousal). Also, for validation purposes, we created a second set of features for each subject

by projecting the whole-brain gray matter patterns of neural activation to 90-dimensional

orthogonal features according to the Gram-Schmidt process [61].

Within-subject decoding of affect processing. As in earlier work [47, 48], we fit neural

decoding models of affect processing according to a support vector machine (SVM) model

(using Matlab’s fitcsvm function and default hyperparameters). We modeled affect processing

within each subject separately for valence and arousal. These neural decoding models repre-

sent the plant of each subject’s control system. We estimated decoding model performance

accuracy based on within-subject leave-one-out-cross-validation (LOOCV). For each hold-out

feature-label pair (i.e, the test set of the LOOCV), we randomly balanced the training dataset

to insure a null accuracy of 0.5 prior to model fitting. For each test set, we repeated this sam-

pling and model fitting process 30 times. The mean prediction accuracy over these samples

formed the accuracy of each test set. We then calculated the mean accuracy over all test sets to

estimate the prediction accuracy for a single subject.

In contrast to prior work, however, here we took the additional step of re-executing all within-

subject cross-validations in a manner where the training dataset’s class-labels were uniformly ran-

domly assigned to features in order to establish the true null distribution of our fitting process

according to permutation testing [62]. We then compared the group-level accuracy (mean accu-

racy across all within-subject models) against the permutation-derived group-level null accuracy

in order to report statistical significance of our prediction accuracies. We also substituted the

within-subject permutation-derived accuracy as the null probability of the binomial distribution

in order to report statistical significance of single-subject decoding performance.

Decoding performance validation. We designed our neural decoding methodology to be

able to generalize to novel task environments (e.g., affect regulation) due to the unknown

valence and arousal processing demands these tasks induce. In particular, the IAPS images we

used to induce affect processing for training of the neural decoding models were computation-

ally selected [48] to maximize the difficulty of the classification problem by sampling the full

range of valence-arousal experiences available in the IAPS stimuli set (see S1 Fig), including

weakly valent and neutrally arousing experiences. We have shown in prior work [48] that our

affect processing decoding performance is equivalent to the best available performance in the

literature by a method that identifies and measures decoding performance of reliable stimuli

(i.e, those stimuli that induce consistent affective experiences across subjects). Indeed, reliable

stimuli cluster at the affective extremes similar to hand-generated IAPS datasets used in prior

work to produce group-level significant and within-subject significant classification accuracies

[63]. We executed the reliable stimuli sampling method in this work (see S1 Methods) to allow

comparison of our decoding performance with the broader affective neuroscience literature.

Decoding affect regulation

Recent work supports out-of-sample application of affect processing neural decoding models

[59, 64–66]. We decoded affect processing within cued-recall/re-experiencing trials by

PLOS ONE Action-value processing underlies performance monitoring in the dorsal anterior cingulate cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0273376 August 30, 2022 7 / 28

https://doi.org/10.1371/journal.pone.0273376


extracting two separate beta-series per trial: (1) the cue presentation condition (see Fig 1, panel

A), indexed by i, which yielded series β(i); and (2) the four individually acquired volumes

related to the recall/re-experiencing condition following the cue condition of each trial (see

also Fig 1, panel A), each volume indexed by t given i, which yielded series β(t|i), where t|i

referred to the tth recall/re-experiencing volume succeeding the ith cue. We then decoded the

resultant beta-series, yielding SVM hyperplane classification distances, hP
β(i)(i) and hP

β(t)(t),

for all i and t where: (1) P denoted the plant of interest, P2{valence,arousal}, (2) subscripted β
(�) denoted the index of the beta-series feature input to the decoding model, and (3) (�)

denoted the index of the decoding. In the base case, described here, these indices matched, but

they differed, e.g., when we applied the model to forecast future affect processing states. As a

final step, we applied Platt scaling [67] to convert our models’ predictions of hyperplane dis-

tance (i.e., distance from a classification decision boundary) to continuous predictions of the

affective state’s probability of conforming to the positive class (i.e., the probability of positive

valence or high arousal) such that pP(+)
β(�)(�) = 1/(1+exp(-hP

β(�)(�))).

We validated this transformation of our model predictions according to two tests. First, we

applied Platt scaling to the decodings (and normative scores) of the implicit affect induction

trials and tested, via a linear mixed-effects model, the group-level significance of the models’

predictive fidelity in the transformed probability space. Second, we repeated this validation

test for the cue condition stimuli of the cued-recall/re-experiencing task trials using their IAPS

normative scores as labels.

Cued-recall/Re-experiencing task control condition modeling

Attempts to identify the brain representations of explicit affect regulation rely on establishing

a counter factual condition reflecting the brain states related to affect state when it is not

explicitly regulated. In previous work we demonstrated (and validated via independent

psychophysiological measures of affect state) the application of neural decoding models to

reveal moment-to-moment affect processing dynamics entrained in the resting-state fMRI

BOLD signal [59]. In brief, for each subject and for each time point, this approach averaged

the neurally decoded affect processing of beta-series constructed from sets of uniformly ran-

domly sampled onset times. Here we leveraged this methodology to construct surrogate cued-

recall/re-experiencing tasks within resting state task data which provided experimental con-

trols representing non-explicitly regulated affect states against which to measure the signifi-

cance of affect processing dynamics entrained during explicit affect regulation. From each

subject’s resting state task fMRI data we constructed affect processing estimates, respectively,

for valence and arousal. We then uniformly randomly sampled (n = 30) onset times of cue sti-

muli and extracted the attendant cue and recall/re-experiencing affect processing predictions

according to the trial’s structure (see Fig 1, panel A).

Computational models of performance monitoring

We designed the cued-recall/re-experiencing task as a means of exploring the mathematical

structure of regulation process-related performance monitoring to define the functional attri-

butes of dACC activation during explicit affect regulation. From the cognitive control research

literature, we initially identified five influential explanatory models of dACC activation (see

Table 1); however, upon inspection, we restricted our exploration to just those three models

which most closely align with the performance monitoring function of the control law in the

engineering control literature and would be best evaluated by our experiment design. We

included error processing [68], which directly represents the plant’s current state with respect

to a goal (closed-loop control), predicted response outcome [25], which estimates the plant’s
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likely future state with respect to a goal (model-based control), and expected value of control

[21], which estimates the expected value (with respect to a goal, operationalized as a reward

function) of making a particular control decision in the current state (reinforcement learning).

The remaining two performance monitoring-related models, cognitive conflict [39] and

prediction error likelihood (PEL) [24], describe important theoretical aspects of cognitive con-

trol that are related to our three included models and may be subsumed by, or derived from,

them. However, PEL research has shown that the dACC activates in response to contexts in

which there is a learned probability of failure, even when acting rationally. It is questionable as

to whether the neural mechanisms underlying explicit affect regulation conform to such a

highly stochastic transition function. Moreover, our analysis plan relied on the subject’s aware-

ness of the affective goal state throughout the cued-recall/re-experiencing trial, thereby con-

ceptually excluding this model from our comparative analysis. Similarly, our task design did

not include a canonical test of cognitive conflict. We had two lines of reasoning that supported

this research design. First, our previous work showed that affect processing was neurally

encoded orthogonally across the independent affective dimensions of valence and arousal

[47]; therefore, affect processing should not be dependent on a conflict signal in the dACC.

Second, our most plausible assumption of the prepotent response to explicit affect regulation

was that of “non-action”. Baseline dACC activation during the regulation demand of the cued-

recall/re-experiencing task would suggest cognitive control recruitment to overcome this pre-

potent response and, therefore, conflict did not need to be modeled explicitly.

Error formed the foundation of our modeling approach. As indicated in Table 1 (and con-

ceptualized by Fig 1, panel B), we computed error, δ, as the difference in Platt-scaled decoded

affect processing between each regulation-related volume and that related to the target cue

response (i.e., the affective goal) separately for both valence and arousal. From these basic cal-

culations, we constructed the remaining models.

Both the PRO and EVC models relied on predictions of derived quantities, which them-

selves are based upon a state space of neural activations. This posed a significant challenge in

that task-related activations of the dACC are likely to be temporally correlated with other neu-

ral activations throughout the brain, potentially resulting in false positive model outcomes. To

control for this possibility, we constructed a novel image processing pipeline to isolate our

models of the performance monitoring signals (in both time and neuroanatomical space) from

the dACC activations that were the subject of functional characterization.

First, we generated a mask of the entire medial frontal cortex (mFC) by inflating an existing

mask [69] by two voxels. We then used this mask to exclude mFC voxels from an established

20-component (18 usable components) partition of the brain derived from independent

Table 1. Summary of cognitive control models of dACC function.

Model Class dACC Activation Measure Computational Model

Performance Error δ(t) = ||pP(+)
β(t)(t)—pP(+)

β(i)(i)||

Predicted Response Outcome δPRO(t) = δψ(β(t-1))(t)

Expected Value of Control Q(s(t),a(t))

s(t)� ψ(β(t))

a(t)� pP(+)
β(t+1)(t+1)—pP(+)

β(t)(t)

r(t) = —fa�|a(t)|—(1-fa)�δ(t+1)

Cognitive Demand Conflict 1�

Control Outcome Uncertainty Prediction Error-likelihood n/a

�Theorized model of conflict assuming that “non-action” is a valid prepotent response to the cued-recall/re-

experiencing task.

https://doi.org/10.1371/journal.pone.0273376.t001
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components analysis of the BrainMap database [70]. We then mapped all beta-series into this

mFC-excluded 18-dimensional space. We denoted this transformation of the beta-series as ψ
(β) and refer to it as the restricted beta-series, which was used (as described below) to model

task-related neural activity for neural processing networks that excluded the mFC.

We next fit linear support vector machine regression models of the computed error trajec-

tories, using the restricted beta-series as input features, where the input feature is drawn from

the previous time index as the error to be predicted (i.e., error forecasting, see Table 1, PRO).

To predict each target subject’s future error, we fit within-subject regression models for each

of the remaining set of subjects, using these subjects’ restricted beta-series and error trajecto-

ries for training. We then estimated the target subject’s PROs by ensemble averaging the

remaining subjects’ model predictions, using the target subject’s restricted beta-series as input

features to these models. This model-building step is critical in that potential temporal correla-

tions between the dACC and the remainder of the brain are not available to be learned by the

PRO decoding models. In order to validate this modeling approach, we measured the effect

size of the ensemble average of the remaining subjects’ model predictions in approximating

the target subject’s predictions. We measured this effect size using a linear mixed-effects

model where random slope and intercept effects were modeled subject-wise. We estimated

effect sizes separately for valence and arousal.

We showed by direct proof (see S1 File) that EVC is mathematically equivalent to Q-learn-

ing [71] with a composite reward function that incorporates the cost of action in addition to

the transition reward. We computed an approximate batch solution to the action-value func-

tion, Q, via fitted Q-iteration [72] using the following constituent components: states, s,

actions, a, and rewards, r (see Table 1, EVC). We modeled actions as the differences between

successive affect processing predictions (i.e., forward Euler approximations of the first tempo-

ral derivative), respectively, for valence and arousal. We modeled states identically to the meth-

ods used for the PRO model (i.e., restricted beta-series). Finally, we modeled the reward

function as the weighted combination of the action and the error (note, these equations

assume the machine learning convention in which rewards can have either positive or negative

sign).

We conducted all EVC experiments over a parameter space composed of the cross product

of the discount factor, γ, sampled from the range [0,1] at intervals of 0.1 and fraction of action

cost, fa, sampled from the range [0,1] at intervals of 0.2. We also discretized the action space to

five actions, ad 2 [–2,–1,0,1,2] according to the following heuristic. We computed actions for

each subject and standardized these values subject-wise. We then pooled all standardized

actions and computed the group standard deviation, σ. We then assigned discrete actions

according to a standard deviation-driven partition of the standardized action space of each

subject such that

For each subject, we separately standardized the actions and errors for all cued-recall/re-

experiencing task trials and then calculated the reward according to the appropriate meta-

parameters for the given experiment. We then fit the action-value function according to a ran-

dom forest-based implementation of fitted Q-iteration [72, 73]. However, similar to our

2 : a� 2σ
1 : a� 1σ and a < 2σ

ad = 0 : a < 1σ and a > -1σ
-1 : a� -1σ and a > -2σ
-2 : a� -2σ.

https://doi.org/10.1371/journal.pone.0273376.t002
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scheme for estimating PROs, we employed an out-of-sample ensemble averaging for our EVC

estimate for each action at each state. We stored for additional analysis: (1) the ensemble aver-

age prediction of Q-value for the on-policy actions, (2) the expected Q-values of random

action at each state (where probabilities of each discrete action were estimated from the sub-

ject’s distribution of actions), and (3) the errors between the on-policy action and the optimal

action for each state.

For each set of parameters, we tested for group-level significant differences between the Q-

values of on-policy actions and the expected Q-values of random actions using the Wilcoxon

rank-sum test. Within identified significant parameter sets, we calculated the group-level

mean error between on-policy actions and optimal actions. We then selected the meta-param-

eter set such that group-level mean error was minimized. We broke ties as follows: maximum

γ (to decorrelate EVC from PRO) and minimum fa (we assumed cognitive effort was subordi-

nate to control performance).

Comparing performance monitoring models of medial prefrontal cortical

activation

We critically compared our constructed models of performance monitoring using whole-

brain gray matter linear mixed-effects models, implemented via AFNI’s 3dlme function. To

control for our use of neural activations outside the dACC to predict model values within the

dACC, we constructed two separate mixed-effects models. The first model (see Eq 1) incorpo-

rated the performance monitoring fixed effects. We used this model to characterize only neural

activations within the dACC. The notation (Fixedi x Sex x Age) represents an expansion of

fixed effects representing all possible interactions of age and sex with each of the explicitly

listed primary fixed effects, Fixedi, which by default also included pair-wise interactions, e.g.

Fixedi x Sex and Fixedi x Age as well as Sex and Age alone.

b ¼ 1þ Durationþ Affectþ Errorþ PROþ nEVCþ ð1þ AffectjSubjÞ
þ ðFixedi x Sex x AgeÞð1Þ

We used the second model (see Eq 2), which omitted the measurements of performance

monitoring as fixed effects, to characterize neural encodings falling outside of the dACC.

b ¼ 1þ Durationþ Affectþ ð1þ AffectjSubjÞ þ ðFixedi x Sex x AgeÞ ð2Þ

The resulting solutions provided F-statistics for each fixed-effect (and interaction) for each

voxel included in the model. We also constructed general linear tests for all primary fixed effects

of interest to characterize the sign of the effect sizes for subsequent analysis. An important detail,

we negated our EVC predictions (denoted nEVC) to enforce semantic symmetry among all per-

formance monitoring regressors such that positive values indicated poor quality states and nega-

tive values indicated high quality states across all three models (Error, PRO, and nEVC).

We computed cluster-size thresholds according to recently reported methodological

advances [74]. First, we used the mixed-effects model residuals to estimate the shape parame-

ters of the spatial autocorrelation function (ACF) via AFNI’s 3dFWHMx function. We then

simulated, via AFNI’s 3dClustSim function (-acf option), the cluster-size threshold for our

voxel-wise statistical maps (thresholded to p<0.001, uncorrected) that survive family-wise

error (FWE) corrected thresholds of p< 0.05, assuming clusters were formed from contiguous

(face-touching, NN = 1) voxels. We performed this thresholding process separately for F- and

Z-statistical maps.

Finally, we restricted reporting of our first model to only those voxels within a dACC mask

(see Fig 3) constructed from the dACC-engaged component of an established 70-component
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independent component analysis-based partition of the BrainMap database [70]. Note, this

mask was thresholded to remove several small activations or voxel clusters not belonging to

the dACC proper. We restricted our reporting of the second model to all surviving voxels fall-

ing outside of our inflated mFC mask.

Overview of analyses

In our first experiment, we constructed and validated predictive models of affect processing

according to whole-brain neural activation responses to image stimuli in order to confirm

prior reports of prediction performance in this class of model. In our second experiment, we

applied these models to measure trajectories of affect processing from whole-brain neural acti-

vation responses to the cued-recall/re-experiencing task of image stimuli in order to test the

effect size of explicit affect regulation against affect regulation occurring at rest. In our third

experiment, we converted the cued-recall/re-experiencing task’s affect processing trajectories

into estimates of affect regulation-related performance monitoring relative to the task goal and

critically tested their association with activations in the dACC. In our fourth experiment, we

characterized the neural activations associated with the cued-recall/re-experiencing task itself

to contextualize our findings within the extant emotion regulation literature.

Results

Neural decoding models accurately classify implicitly induced affect

processing states

We constructed linear support vector machine (SVM) classifiers for 89 subjects (excluding 5

subjects for excessive head motion) based upon responses to 90 image stimuli computationally

sampled from the IAPS. We observed classification accuracies (see S4 Table) that were both

group-level significant (p<0.001; Wilcoxon signed rank; h0: μ = 0) and consistent with the

highest classification accuracies reported in the literature when controlled for the affect pro-

cessing induction reliability of stimuli, which was previously shown to be a function of the sti-

muli’s affective properties [48]. We also found that 79 of 89 subjects (88.8%) exhibited

significant within-subject classification of affective valence and arousal stimuli, respectively

(p<0.05; binomial distribution, h0: within-subject permutation test accuracy). Further, we

controlled for the dimensionality of the feature space [48] by relating affective decodings pre-

dicted using whole-brain gray matter voxel-wise features (30,000–40,000 dimensions) to

decodings predicted using Gram-Schmidt dimensionally-reduced features (90 dimensions, see

S2 Fig), which confirmed that our decoding models scaled well to the whole-brain gray matter

feature space. As further evidence of the validity of the neural decoding models, conversion of

the decoding models into their equivalent encoding models via Haufe-transform [75] con-

firmed that the resultant encoding models broadly recapitulate the established distribution of

the neural correlates of affective valence and arousal processing identified through both uni-

variate [76] and multivariate [48, 77, 78] methodology (see S3 Fig). These results support the

ability of the IAPS stimuli to induce the expected affect processing responses and the ability of

the neural decoding models to accurately classify and isolate their putative neural processing

correlates. To the computational modeling approach, these results also support the assumption

that the plant is observable based on the ability to measure its state, s.

In this work, we applied these neural decoding models to measure moment-to-moment

affect processing states during affect regulation. Our control theoretic analysis presumed that

these state measurements conform to a continuum of real-values. Therefore, we converted our

predictions of hyperplane distance (i.e., classification label assignments) into probabilities via
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Platt scaling [67], using the probability of affect state membership to the positive class (i.e.,

positive valence or high arousal) as our measurement convention. We then validated this con-

version by predicting the Platt-scaled known normative scores of IAPS training stimuli from

Platt-scaled within-subject neural decodings (see S4 Fig) and demonstrated significant predic-

tion performance, respectively, for valence (p<0.001; t-test; h0: β = 0) and arousal (p<0.001; t-

test; h0: β = 0). These results support our approach to neural pattern classification as a means

of tracking momentary affect processing states and thus the ability to temporally characterize

the performance monitoring (control law, L) function of affect regulation.

We also extended our validation of the decoding models to include those image stimuli

reserved for the cued-recall/re-experiencing task (a distinct set of 30 image stimuli sampled

independently, but identically, to the training image set). We tested the prediction accuracy of

the Platt-scaled known normative affect dimension scores of these task cue image stimuli

using Platt-scaled within-subject decodings (see S5 Fig) and, again, demonstrated significant

predictive effects, respectively, for valence (p<0.001; t-test; h0: β = 0) and arousal (p<0.001; t-

test; h0: β = 0).

Independent validation of experimentally-induced affect processing

We also employed independent psychophysiological measures of affect processing to confirm

the induction of affect processing for trials on which we trained our predictive models, a critical

manipulation check [79]. We predicted the known normative scores of the stimulus set from

their induced facial electromyography and electrodermal responses, respectively, for the inde-

pendent affective dimensions of valence and arousal. We found that corrugator supercilii elec-

tromyography is a weak (R2 = .0007), but significant (p = .024; t-test; h0: β = 0), index of IAPS

stimuli valence scores (see S6 Fig as well as S7 Fig, panel A) when applied to detect valence in

polar-extreme implicit stimuli (thresholded to remove approximately the middle third of sti-

muli as measured by normative score). Similar analysis of zygomaticus major electromyography

was not significant (p = 0.78; t-test; h0: β = 0). We also found electrodermal activity to be a weak

(R2 = .002), but significant (p<0.0002; t-test; h0: β = 0), index of IAPS stimuli arousal score (see

S7 Fig, panel B), which was consistent with previous reports using similar methods [47].

Estimating affect regulation effect sizes within the cued-recall/re-

experiencing task

We applied our models to decode moment-to-moment trajectories of affect processing under

regulation during the cued-recall/re-experiencing task for (n = 86) subjects (we excluded 3

additional subjects due to head motion censoring that precluded extraction of task-related

neural activations via the beta-series method). We measured explicit affect regulation accord-

ing to a linear mixed-effects model in which the fixed-effects were the standardized Platt-

scaled predictions of affect processing-related brain states in response to the cue stimuli as well

as the times elapsed since presentation of the cue. The measurements of interest were stan-

dardized Platt-scaled predictions of affect processing for the recall/re-experiencing-related

fMRI volumes. We modeled random slope and intercept effects subject-wise. For each subject

we also constructed a cued-recall/re-experiencing task control condition composed of neural

activations extracted from 30 uniformly randomly sampled time-points within the subject’s

resting state fMRI scan. We found a significant explicit affect regulation effect related to the

goal state corresponding to the individual affective response properties of the cue stimulus (see

Fig 2) across both affective dimensions. Further, we demonstrated that, due to its explicit and

goal-directed nature, this regulation effect was significantly greater than that of the resting

state task control effect for both valence and arousal.
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Independent validation of task-related explicit affect regulation

In support of these findings of significant task-related affect regulation, we took the additional

step of independently verifying, via psychophysiological measurements [79], affect processing

states in the context of explicit regulation. To this end, we constructed both the cued-recall/re-

experiencing and the comparison control condition (i.e. resting state) measurements of facial

electromyography (cEMG and zEMG) associated with hedonic valence [80] as well as electro-

dermal activity (SCR) associated with autonomic arousal [80]. We then calculated the effects

of explicit affect regulation according to linear mixed-effects modeling (see S8 Fig) and we ver-

ified the existence of explicit affect regulation-related psychophysiological responses that were

positively related to the goal state psychophysiological responses induced by the cue stimuli

across all three psychophysiological measurements: zEMG, cEMG, and SCR. Further, we con-

firmed that the explicit affect regulation effects were significantly greater than the control con-

dition (non-explicit) regulation effects extracted from resting state measurements, again,

across all three physiological measurements.

Functional neuroanatomical correlates of affect regulation-related

performance monitoring

Having established the neural and psychophysiological correlates of task-related explicit affect

regulation we next sought to identify the most mathematically plausible theoretical model of

performance monitoring encoding within the dACC. To this end, we first computed the

moment-to-moment error trajectory for each cued-recall/re-experiencing trial for each sub-

ject. We partitioned our neural activation maps into two sets: activations falling within our

Fig 2. Estimation and validation of explicit affect regulation effects within the cued-recall/re-experiencing task. The figure depicts the effect size of cue

affect processing in explaining the regulation of affect processing occurring during recall/re-experiencing (controlling for time lag in the 4 repeated measures of

recall per each cue condition). Here affect processing measurements are standardized Platt-scaled neural decodings from our fitted SVM models. Valence and

arousal dimensions of affect are decoded separately. The figure’s scatterplots depict the group-level effects computed using linear mixed-effects models which

model random effects subject-wise. Bold red lines depict group-level fixed-effects of the cued affect. Bold gray lines depict significant subject-level effects

whereas light gray lines depict subject-level effects that were not statistically significant. The figure’s boxplots depict the group-level difference between each

subject’s explicit affect regulation measured during the cued-recall/re-experiencing task in comparison to non-explicit affect regulation constructed from the

resting state task. The bold red line depicts the group median difference in effect size between cued-recall/re-experiencing and resting state. The red box depicts

the 25–75th percentiles of effect size difference. Valence. The fixed effect (R2 = .15) is significant (p<0.001; t-test; h0: β = 0). Random effects significantly

improve effect-size (p<0.05; likelihood ratio test; h0: observed responses generated by fixed-effects only). Cued-recall/re-experiencing affect regulation effects

are significantly greater than that of resting state effects (p<0.001; Wilcoxon signed rank; h0: βCued-Recall-βRest = 0). The fixed-effect of control condition

duration is significant (β = .02; p = .035; t-test; h0: β = 0). Arousal. The fixed effect (R2 = .11) is significant (p<0.001, t-test; h0: β = 0). Random effects

significantly improve effect-size (p<0.05; likelihood ratio test; h0: observed responses generated by fixed-effects only). Cued-recall/re-experiencing affect

regulation effects are significantly greater than that of resting state effects (p<0.001; Wilcoxon signed rank; h0: βCued-Recall-βRest = 0). The fixed-effect of control

condition duration is not significant (β = .01; p = .26; t-test; h0: β = 0).

https://doi.org/10.1371/journal.pone.0273376.g002
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liberal mask comprising the medial frontal cortex (mFC, including dACC), and those falling

outside the mFC. We then constructed and validated out-of-sample, between-subject ensemble

moment-to-moment estimates (temporally aligned with the error measurements) of both the

predicted response outcome (PRO, see S9 Fig) and expected value of control (EVC, see S5

Table). We based these estimates solely on machine learning models of task-related neural acti-

vations falling outside the mFC mask. As an additional test of model performance, we com-

puted bivariate correlation coefficients, R, between our models of performance monitoring

and observed small (|R|<0.10), but significant, positive correlations between estimated

expected value of control (EVC) and estimated predicted response outcome (PRO) as well as

between error and PRO. also observed small (|R|<0.10), but significant, negative correlations

between EVC and error. The strength, direction, and significance of these correlations were

similar across both the orthogonal affective dimensions of valence and arousal (see S6 Table).

We then estimated, via linear mixed-effects model, observed mFC neural activations as

functions of error, PRO, and negated EVC (i.e., nEVC) measurements as well as affect process-

ing measurements, time elapsed since cue onset (i.e., regulation duration), and the base task

(i.e., model intercept). Note, negating the action-value fixed-effect (nEVC) enforced semantic

symmetry among the three competing models of dACC activation such that poor-quality con-

trol states were associated with positive values and high-quality control states were associated

with negative values. As part of this modeling process, we controlled for age and sex and

included interaction terms between age and sex and all other fixed effects. Finally, we exam-

ined the specific role of the dACC in performance monitoring by restricting the model’s out-

puts to a dACC anatomic mask. Our findings are summarized in Fig 3.

We found that the dACC activation positively encoded performance according to the

negated action-value (nEVC) as well as the base task (within the superior dACC bordering on

the pre-supplementary motor area, pre-SMA). These findings were duplicated across the inde-

pendent affective dimensions of valence and arousal. Concurrently, the dACC positively

encoded arousal processing (see Fig 3, Arousal: Affect). In contrast, we observed that dACC

activation negatively encoded error forecasting (PRO) for both valence and arousal. Further,

Fig 3. Group-level linear mixed-effect model distributions for the main fixed-effects of error, predicted response outcome (PRO), negated expected

value of control (nEVC), affect processing, regulation duration, and base task (i.e., intercept) constrained to a mask of the dorsal anterior cingulate

cortex (dACC). The figure depicts slices in MNI coordinate space and neurological convention (image left equals participant left). The figure depicts voxel

intensities as colors having a minimum (thresholded) voxel intensity of |z|> 3.291 and a maximum absolute voxel intensity of |z| = 8.0, i.e., color saturates for

absolute z-scores above the maximum intensity. To correct for multiple comparisons (p<0.05), the figure depicts only valence-derived clusters having� 15.3

contiguous voxels (measured as face-wise nearest neighbors, i.e., NN = 1) or arousal-derived clusters having� 15.8 contiguous voxels. Note, the sagittal plane

slice representing effects of regulation duration has been shifted to accommodate the entirely left-lateralized effect. Also note that an alternate sagittal slice

representation of valence-derived predicted response outcome is presented in S10 Fig, which more fully captures this measure’s negative encoding.

https://doi.org/10.1371/journal.pone.0273376.g003
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we observed that the left-lateralized superior dACC (bordering the pre-SMA) negatively

encoded the duration of affect regulation (see Fig 3, Reg. Duration) whereas negative encoding

of the base task was isolated to a small inferior and posterior region of the dACC, bordering

the mid-cingulate cortex. We also observed significant dACC activation clusters supporting

the interaction of age and sex effects with fixed effects in our model (see S7 Table for a sum-

mary of these clusters).

We then modeled effects for the second neuroanatomical partition of the neural response

data, those activations falling outside the mFC, using affect processing and regulation duration

as well as age and sex effects and their interactions with the prescribed fixed effects. We spa-

tially restricted our analysis to these fixed effects in order to avoid false positive associations

between these data and the performance measurements that we constructed from these data

using machine learning models. We summarize our findings in Fig 4.

The base task activated bilateral dmPFC, vlPFC, parietal cortex, and cerebellum as well as

the left temporal parietal junction. The base task was also associated with bilateral deactivation

in the striatum, dorsolateral prefrontal cortex, temporal poles, and posterior temporal cortex

as well as the medial occipital cortex. We observed regulation duration to be associated with

Fig 4. Group-level linear mixed-effect model distributions of the main fixed-effects of base task (i.e., model intercept), regulation duration, and affect

processing for all gray matter voxels excluding the medial frontal cortex. The medial frontal cortex gray matter exclusion mask is displayed in the upper left.

We report only the distributions for valence as they were highly similar to those for arousal (see OSF repository full maps). The figure depicts slices in MNI

coordinate space and neurological convention (image left equals participant left). The figure depicts voxel intensities as colors having a minimum (thresholded)

voxel intensity of |z| = 3.291 and a maximum absolute voxel intensity of |z| = 8.0, i.e., color saturates for z-scores above and below the maximum intensity. To

correct for multiple comparisons (p<0.05), the figure depicts only valence-derived clusters having� 14.9 contiguous voxels (measured as face wise nearest

neighbors, i.e., NN = 1) or arousal-derived clusters having� 16.5 contiguous voxels.

https://doi.org/10.1371/journal.pone.0273376.g004
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broad bilateral deactivation of the striatum, visual cortex, and ventral visual stream as well as

left-lateralized frontoparietal network deactivation. Finally, we localized affect processing

encodings that agreed well with distributed activations related to prior multivariate representa-

tions drawn from similar subjects in a similar task environment [47, 77, 81]. Again, we

detected significant clusters implicating age and sex effects and their interactions with fixed

effects in our model. Due to the large number of surviving clusters, we provide direct access to

these cluster maps via our Open Science Framework repository (see Source Code and Data

Availability).

Discussion

The findings of this study constitute two important contributions to the affect regulation liter-

ature. First, we constructed affect processing measurement instruments, derived from machine

learning predictive models, to neurally decode moment-to-moment fluctuations in affect pro-

cessing during regulation. We then applied these instruments to the cued-recall/re-experienc-

ing task and demonstrated significant explicit affect regulation effects that were concordant

across two independent, objective response measurement modalities (fMRI and psychophysi-

ology) as well as across the orthogonal affective dimensions of valence and arousal. These mea-

surement instruments provide a novel framework to observe, analyze, and parse the functional

neuroanatomical mechanisms underlying a control theoretic description of affect regulation.

The second contribution of this work was our application of these novel measurement tools to

construct competing computational models of performance monitoring and to critically com-

pare each model’s ability to explain the putative role of the dACC in affect regulation.

Task-related functional neuroanatomical maps associated dACC activation with perfor-

mance monitoring (Fig 3). Extended to theoretical model testing, the results most plausibly

indicate that the observed dACC activation encodes the negated action-value of the control

decision (nEVC model) which was conserved across both the valence and arousal dimensions

of affect regulation. We interpret these findings as suggesting that dACC activation signals the

expected sum of the discounted future costs of the control decision, which, according to our

parameter selection process, integrates both estimated future errors and future effort in its cost

expectation.

In addition to supporting the nEVC model, our findings provide evidence to reject the

PRO model of the role of the dACC in performance monitoring. We observed negatively

encoded prediction response outcomes related to dACC activation, which is inconsistent with

the canonical definition of PRO. Moreover, we demonstrated that the PRO and nEVC regres-

sors were weakly but positively correlated (see S6 Table); therefore, the dACC’s differential

encoding of these performance models cannot be attributed to our mixed-effects modeling.

This interpretation of the study’s findings was influenced by the consideration of several

alternative explanations. First, one could view our implementation of PRO as a special case of

nEVC in which there was no cost of acting (fa = 0) and future action-value was completely dis-

counted (γ = 0). During a parameter search (see S5 Table), we found that on-policy control

decisions input to a Q-function built using these parameters yielded action-values significantly

greater than that of a random control policy. We concluded from this finding that, in general,

control actions target a goal of decreased future error (as the average random action would

induce zero change relative to the goal). Second, one could interpret the dACC’s negative

encoding of PRO as either deactivation associated with relatively higher error or activation

associated with relatively lower error. Combined, these observations suggest that the dACC

positively encodes the signal for engagement of control actions, which we indirectly detected

as a forecast of decreased future error.
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We also observed that the dACC positively encoded the base task via the mixed-effects

model’s intercept (Fig 3). We hypothesized two complementary sources of this encoding [20].

Cognitive control theory would suggest that the observed dACC encoding represented conflict

detection and processing driven by the base task’s cognitive demand, assuming that non-

action was the prepotent response (see Table 1). A process model perspective of the base task

would alternatively suggest that the observed dACC encoding signaled attentional deployment

preceding (and in concert with) the implementation of self-control processes. Incorporating

evidence from the broader view of base task-related cortical activation (Fig 4) we observed that

bilateral parietal cortex, implicated in attentional shifting [12, 82], positively encoded the base

task whereas the dorsolateral prefrontal cortex, strongly implicated in cognitive emotional

control [32], negatively encoded the base task. These observations suggested that attentional

deployment, rather than cognitive control, was the most plausible interpretation of the role of

the dACC in the base task. Alternatively, the dACC response may reflect the role of emotion

reactivity (i.e., arousal), also linked to attentional deployment [83]; however, we rejected this

alternative as we explicitly modeled this possibility and observed a strong dACC encoding of

affective arousal that is spatially distinct (inferior and posterior dACC).

Our analysis of the neural encodings related to the cued-recall/re-experiencing task also

suggests that, compared to the canonical emotion regulation tasks of reappraisal and distrac-

tion [12], this regulation task engages a different set of cognitive, emotional, and attentional

mechanisms that may aide in disambiguating the contributions of individual neural regions to

emotion regulation. Similar to reappraisal, the cued-recall/re-experiencing task exhibits activa-

tion in the vlPFC and dmPFC, suggesting a link to goal-appropriate action selection [84] in

which high-level emotional appraisal [12] contextualizes the role of the dACC in lower level

performance monitoring of the current brain state relative to a desired affective goal state.

However, distinct from both the distraction and reappraisal forms of cognitive emotion regu-

lation, cued-recall/re-experiencing did not recruit the dlPFC. This suggests that, despite this

task’s explicit demand on affect regulation, it recruits an alternate mechanism relative to that

for distraction or reappraisal, and, therefore, may fall elsewhere on the proposed continuum of

explicit versus implicit emotion regulation tasks [33].

Limitations

Beyond the difficulty in disambiguating and interpreting the dACC’s encoding of prediction

response outcome, our analysis excluded one important model of dACC activation (predic-

tion-error likelihood); it also relied on a strong a priori assumption concerning the nature of

the prepotent response to task demand in order to frame and interpret our findings within the

context of cognitive conflict. We acknowledge these limitations and admit that, due to our

multivariate approach to modeling dACC activation as a function of multiple performance

monitoring theories, our inferences are conditional based upon the absence of explicit and

convincing representations of these models. We also acknowledge that the presence of signifi-

cant interactions of sex and age with several of our primary performance monitoring fixed

effects suggests that the inferences we have drawn may be conditional on the demographic

composition of our study’s sample. Similar analyses conducted on data from more homoge-

neous populations could, potentially, yield different inferences. The age and sex diversity

within the studied sample, however, does provide a source of confidence concerning the gen-

eralization of inferences draw from our main fixed effects.

As with all machine learning studies, our model predictions (on which we built the primary

findings of this work) relied extensively on the quality of the fMRI-derived features and their

labels. We have previously reported on the limitations of exploiting IAPS normative scores as
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affective labels for training predictive models [47, 48, 60], which also likely contributed to our

observed interactions of age and sex with the neural encodings of both performance monitor-

ing and the base task. We have also previously reported limitations related to the non-critical

use of galvanic skin response as a surrogate measure of autonomic arousal [47] and as an inde-

pendent source of validation of machine learning models. We acknowledge similar limitations

in our application of facial electromyography to signal stimulus-related induction of hedonic

valence processing in the cued-recall/re-experiencing task.

Broader contributions

Beyond our exploration of the computational models underlying dACC-based performance

monitoring, both the conceptual model we introduced and the methods we developed in this

study may represent a novel framework for future computational approaches to the study of

emotion regulation. When viewed through the lens of engineering control theory (Fig 1, panel

B), our cued-recall/re-experiencing task, which elicits a quantifiable affect regulation goal and

facilitates moment-to-moment self-assessment of emotion regulation dynamics, have enabled

us to:

1. clarify the differences between affect processing and affect regulation [85–87] and, for the

specific form of emotion regulation we studied, dissociate control components involved in

this process;

2. formalize and study affective self-awareness, previously posited as a determining factor for

successful emotion regulation [86], enabling novel discovery in this area; and,

3. envision future control theoretic explorations of clinically relevant emotion regulation

strategies, e.g. distraction and reappraisal, through formal mapping to emotional goals and

goal-directed actions of relevant cognitive processes.

Conclusion

We combined established machine learning methodology for the prediction of affect process-

ing states from fMRI BOLD signal with independent psychophysiological measures of affect

processing to validate the cued-recall/re-experiencing task as a probe and model of explicit

affect regulation. We then exploited the cued-recall/re-experiencing task’s design to separate

the affective goal from moment-to-moment affect regulation in order to computationally

model multiple measures of performance monitoring and critically test the specific association

of dACC recruitment with these model variants. We found that the dACC most plausibly com-

putes the estimated sum of discounted future costs, including both regulation error and effort.

This role was conserved across the orthogonal affective dimensions of valence and arousal.

Concurrently with performance monitoring, we demonstrated that the dACC directly encodes

affective arousal and also likely encodes recruitment of attention and regulation response

resources.

Supporting information

S1 Methods. Supplemental materials and methods.

(DOCX)

S1 Fig. Summary of the affective properties of the implicit induction and cued-recall/re-

experiencing trial image stimuli based on IAPS reported normative scores. Solid red
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markers depict (n = 30) individual cue stimuli plotted in coordinates representing mean nor-

mative arousal and valence scores. For comparison, solid gray markers depict (n = 90) individ-

ual implicit induction stimuli plotted in similar coordinates.

(TIF)

S2 Fig. Comparison of support vector machine predictions based upon whole-brain gray

matter versus Gram-Schmidt reduced dimensionality features. Gram-Schmidt dimension-

ality reduction projects the original whole-brain gray matter features (n~30,000–40,000) onto

an orthogonal basis in which the coordinate dimension is less than or equal to the number of

sample features (n�90). We report the effect size of the reduced dimensional predictions in

explaining predictions in the original feature space using a linear mixed-effects model in

which random effects are modeled subject-wise. Gray symbols depict individual trials. The

bold red line depicts the group-level effect. Bold gray lines depict significant subject-level

effects whereas light gray lines depict subject-level effects that were not significant. Valence.

The fixed effect (R2 = .71) is significant (p<0.001; t-test; h0: β = 0). Random effects significantly

improve effect-size (p<0.05; likelihood ratio test; h0: observed responses generated by fixed-

effects only). Arousal. The fixed effect (R2 = .72) is significant (p<0.001; t-test; h0: β = 0). Ran-

dom effects significantly improve effect-size (p<0.05; likelihood ratio test; h0: observed

responses generated by fixed-effects only).

(TIF)

S3 Fig. Neural encodings of affect processing. Color gradations indicate the group-level t-

scores of the encoding parameters (red indicating positive valence or high arousal, blue indi-

cating negative valence or low arousal). T-scores are presented only for those voxels in which

encoding parameters survived global permutation testing (p<0.01, uncorrected, N = 1000 ran-

dom permutations). Image slices are presented in MNI coordinate space and neurological con-

vention. Maximum voxel intensity is |t| = 6.0, i.e., color saturates for t-scores with absolute

values falling above this value.

(TIF)

S4 Fig. Validation of Platt-scaling of the hyperplane distance predictions of affect process-

ing. The figure depicts the effect size of Platt-scaled hyperplane distance predictions in

explaining the Platt-scaled normative affect scores of IAPS stimuli used to train the support

vector machine classifiers, separately for the orthogonal affective dimensions of valence and

arousal. Hyperplane distance predictions resulted from within-subject leave-one-out cross-val-

idation. The figure depicts the group-level effects computed using a linear mixed-effects model

which modeled random effects subject-wise. Gray symbols depict individual trials. The bold

red line depicts the group-level effect. Bold gray lines depict significant subject-level effects

whereas light gray lines depict subject-level effects that were not significant. Valence. The

fixed effect (R2 = .03) is significant (p<0.001; t-test; h0: β = 0). Random effects significantly

improve effect-size (p<0.05; likelihood ratio test; h0: observed responses generated by fixed-

effects only). Arousal. The fixed effect (R2 = .07) is significant (p<0.001, t-test; h0: β = 0). Ran-

dom effects do not significantly improve effect-size.

(TIF)

S5 Fig. Out-of-sample validation of linear support vector machine model predictions. The

figure depicts the effect size of Platt-scaled hyperplane distances predicted by the fitted SVMs

in explaining the Platt-scaled normative affect scores of IAPS stimuli used as cue stimuli in the

cued-recall/re-experiencing affect regulation task. Effect-sizes are reported separately for the

orthogonal affective dimensions of valence and arousal. The figure depicts the group-level

effects computed using a linear mixed-effects model which modeled random effects subject-
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wise. Gray symbols depict individual trials. The bold red line depicts the group-level effect.

Bold gray lines depict significant subject-level effects whereas light gray lines depict subject-

level effects that were not significant. Valence. The fixed effect (R2 = .05) is significant

(p<0.001; t-test; h0: β = 0). Random effects do not significantly improve effect size (likelihood

ratio test; h0: observed responses generated by fixed-effects only). Arousal. The fixed effect (R2

= .01) is significant (p<0.001; t-test; h0: β = 0). Random effects do not significantly improve

effect-size (likelihood ratio test; h0: observed responses generated by fixed-effects only).

(TIF)

S6 Fig. Facial electromyography sensitivity analysis in the prediction of normative valence.

(A) Valence prediction effect-size, measured as adjusted R2, as a function of the polar extremes

of affectively valent stimuli used to construct the prediction, plotted separately for facial EMG

signals recorded from the corrugator supercilii (blue) and zygomaticus major (red). Polar-

extremity is reported as a factor of the standard deviation of the normative valence scores used

to threshold stimuli for exclusion from the prediction. The symbols represent thresholds for

which the plotted effect-size is statistically significant. (B) The fraction of the total number of

image stimuli remaining in the set after thresholding. The symbol denotes the minimum

threshold level for which the corrugator signal significantly predicted normative valence score

of the remaining stimuli.

(TIF)

S7 Fig. Validation of psychophysiological measures as predictors of normative scores of

the implicit induction stimulus set. (A) Facial electromyography based prediction of norma-

tive valence scores of the stimulus set (thresholded .4σ, see S6 Fig). The group-level fixed effect

(R2 = .0002) of zygomaticus major, zEMG, differences between pre- and post-stimulus recti-

fied signals is not significant (p = .78; t-test; h0: β = 0). The group-level fixed effect (R2 = .0007)

of corrugator supercilii, cEMG, is significant (p = .024; t-test; h0: β = 0). Random effects did

not significantly improve effect-size (p<0.05; likelihood ratio test; h0: observed responses gen-

erated by fixed-effects only). (B) Electrodermal activity based prediction of normative arousal

scores of the full (i.e., unthresholded) stimulus set. The group-level fixed effect (R2 = .002) of

the skin conductance response, SCR, beta-series is significant (p<0.0001; t-test; h0: β = 0). Ran-

dom effects did not significantly improve effect-size (p>0.05; likelihood ratio test; h0: observed

responses generated by fixed-effects only). In both panels, gray symbols represent individual

trials, bold gray lines depict significant subject-level effects, and light gray lines depict subject-

level effects that were not significant.

(TIF)

S8 Fig. Validation of explicit affect processing induction within the cued-recall/re-

experiencing task via psychophysiological response measurement. The figure depicts the

effect sizes of cued affect processing in explaining affect processing occurring during recall/re-

experiencing (controlling for the duration of the 4 repeated measurements of recall/re-experi-

ence per each measurement of cue) for each of three unique psychophysiological measure-

ments: facial electromyography of the zygomaticus major (zEMG), facial electromyography of

the corrugator supercilii (cEMG), and electrodermal activity measured as galvanic skin con-

ductance response (SCR). Here affect processing induction measurements are standardized

measurements specific to each measurement modality (differences between pre- and post-

stimulus for electromyography or modeled betas for skin conductance response). Scatterplots

depict the group-level effects computed using linear mixed-effects models which model ran-

dom effects subject-wise. Bold red lines depict group-level fixed-effects of the cue affect. Bold

gray lines depict significant subject-level effects whereas light gray lines depict subject-level
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effects that were not significant. The figure’s boxplots depict group-level affect processing

induction measured during the cued-recall/re-experiencing task in comparison to affect pro-

cessing induction constructed from the resting state task. The bold red line depicts the group

median difference in effect size between cued-recall/re-experiencing and resting state. The red

box depicts the 25-75th percentiles of effect size difference. Note, we measured zEMG and

cEMG for CTM subjects (n = 56) only. We measured SCR for all subjects. (A) The fixed effect

(R2 = .45) of zEMG is significant (p<0.001; t-test; h0: β = 0). Random effects significantly

improve effect-size (p<0.05; likelihood ratio test; h0: observed responses generated by fixed-

effects only). Cued-recall/re-experiencing affect processing induction effects are significantly

greater than that of resting state control condition effects (p<0.002; Wilcoxon signed rank; h0:

βIN- βRST = 0). The control duration fixed-effect is not significant (β = -.006; p = .0415; t-test;

h0: β = 0). The fixed effect (R2 = .52) of cEMG is significant (p<0.001, t-test; h0: β = 0). Ran-

dom effects significantly improve effect-size (p<0.05; likelihood ratio test; h0: observed

responses generated by fixed-effects only). The control duration fixed-effect is not significant

(β = -.011; p = .076; t-test; h0: β = 0). Cued-recall/re-experiencing affect regulation effects are

significantly greater than that of resting state control condition effects (p<0.001; Wilcoxon

signed rank; h0: βIN- βRST = 0). (B) The fixed effect (R2 = .11) of SCR is significant (p<0.001, t-

test; h0: β = 0). Random effects significantly improve effect-size (p<0.05; likelihood ratio test;

h0: observed responses generated by fixed-effects only). The control duration fixed-effect is sig-

nificant (β = -.129; p< .001; t-test; h0: β = 0). Cued-recall/re-experiencing affect regulation

effects are significantly greater than that of resting state control condition effects (p<0.001;

Wilcoxon signed rank; h0: βIN-βRST = 0).

(TIF)

S9 Fig. Validation of out-of-sample inter-subject ensemble moment-to-moment estimates

of predicted response outcome (PRO) within the dACC based upon neural activations fall-

ing outside the medial frontal cortex (mFC). Scatterplots depict the group-level effects com-

puted using linear mixed-effects models which model random effects subject-wise. Bold red

lines depict group-level fixed-effects of the models’ predictions of the true PRO. Bold gray

lines depict significant subject-level effects whereas light gray lines depict subject-level effects

that were not significant. Valence. The fixed effect (R2 = .039) is significant (p<0.001; t-test;

h0: β = 0). Random effects significantly improve effect-size (p<0.05; likelihood ratio test; h0:

observed responses generated by fixed-effects only). Arousal. The effect (R2 = .031) is signifi-

cant (p<0.001; t-test; h0: β = 0). Random effects significantly improve effect-size (p<0.05; like-

lihood ratio test; h0: observed responses generated by fixed-effects only).

(TIF)

S10 Fig. Group-level linear mixed-effect model distributions for the main fixed-effect of

predicted response outcome (PRO) constrained to a mask of the dorsal anterior cingulate

cortex (dACC). The figure depicts slices in MNI coordinate space and neurological conven-

tion (image left equals participant left) that highlight the strongest effects of PRO (compare to

Fig 3). The figure depicts voxel intensities as colors -8< z< -3.291. Color saturates for z-scores

below minimum intensity and no color is presented for z-scores above -3.291. The figure

depicts only valence derived clusters having� 15.3 contiguous voxels (measured as face wise

nearest neighbors, i.e., NN = 1) or arousal derived clusters having� 15.8 contiguous voxels.

(TIF)

S1 Table. Image stimuli IAPS identifiers and normative valence and arousal scores sepa-

rated by trial type.

(DOCX)
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S2 Table. Implicit induction stimuli class counts.

(DOCX)

S3 Table. Implicit induction stimuli class normative affect score distributions.

(DOCX)

S4 Table. Support vector machine prediction performance.

(DOCX)

S5 Table. Validation of inter-subject ensemble moment-to-moment estimates of expected

value of control (EVC) within the dACC based upon neural activations falling outside the

medial frontal cortex (mFC) and selection of optimal EVC parameters. Q Performance

depicts the median action-value advantage of on-policy control versus a random policy. Policy

Error depicts median squared error between the on-policy action and the optimal action. Gray

cells depict the cells selected as the parameters for this experiment (see Main Manuscript

Methods: Control Performance Evaluation Monitoring). Note, all parameter combinations in

the Q Performance represent significant action-value advantages for on-policy control

(p<0.05; Wilcoxon rank-sum test; h0: μ1-μ2 = 0). Valence. Selected parameters: discount fac-

tor, γ = 0.9; fraction of action, fa = 0.2. Arousal. Selected parameters: discount factor, γ = 1.0;

fraction of action, fa = 0.2.

(DOCX)

S6 Table. Summary of bivariate correlation coefficients calculated between each of the pri-

mary control performance evaluation models compared in this study. �p<0.05, ��p<0.01,
���p<0.001.

(DOCX)

S7 Table. Clusters of age and sex related interactions with the performance monitoring

model fixed effects separated by affect property. CoM: Center of Mass. Direct access to these

cluster maps is available via our Open Science Framework repository (see Main Manuscript:

Source Code and Data Availability).

(DOCX)

S1 File. Direct proof demonstrating that the expected value of control (EVC) is equivalent

to a Q-function with a compound reward that incorporates the cost of action.

(DOCX)

S1 Dataset. Figure data, models, and activation maps. Raw data files, Matlab formatted general

linear model binary files, and NIFTI formatted neuroimaging files needed to reconstruct the main

effects displayed within each figure of the main manuscript as well as each supporting figure.

(ZIP)
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