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Abstract: We explore the implementation of specific optical properties of armchair graphene nanorib-
bons (AGNRs) through edge-defect manipulation. This technique employs the tight-binding model
in conjunction with the calculated absorption spectral function. Modification of the edge states gives
rise to the diverse electronic structures with striking changes in the band gap and special flat bands
at low energy. The optical-absorption spectra exhibit unique excitation peaks, and they strongly
depend on the type and period of the edge extension. Remarkably, there exist the unusual transition
channels associated with the flat bands for selected edge-modified systems. We discovered the special
rule governing how the edge-defect influences the electronic and optical properties in AGNRs. Our
theoretical prediction demonstrates an efficient way to manipulate the optical properties of AGNRs.
This might be of importance in the search for suitable materials designed to have possible technology
applications in nano-optical, plasmonic and optoelectronic devices.

Keywords: defect graphene nanoribbon; absorption function; tight-binding model

1. Introduction

Seventeen years have now passed since the discovery of graphene in 2004 [1], and this
has unmistakably inspired a huge amount of research on its fundamental properties as well
as those of graphene-related materials. Graphene nanoribbons (GNRs), which are narrow
strips of graphene, possess quasi-one-dimensional properties. This material presents
rich essential physical properties, including electronic, optical, magnetic, and transport
properties [2–7]. Consequently, they acquire additional advantages over graphene sheets in
the point of view of certain technological applications such as nanoelectronics, spintronics,
and photodetectors [8–10]. Up to now, the bottom-up [11–15] and top-down [16–20]
methods have been demonstrated to be efficient for the synthesis of GNRs. It is well known
that GNRs can be classified into two categories based on their edge-state arrangement,
namely, armchair GNR (AGNR) and zigzag GNR (ZGNR) [21,22]. Both the AGNR and
ZGNR can be subjected to edge defects during the fabrication processes, which has been
examined to modify remarkably the essential physical properties of the materials. This
work will mainly focus on the role played by the edge-extension on the electronic and
optical characteristics of AGNRs.

In previous studies, it has been demonstrated that fundamental physical properties of
GNRs can be tailored by the presence of edge defects [13,23–25], besides edge terminations,
ribbon width, vacancy, and applied electrostatic fields [2–5,26]. The edge-defect GNRs
with proper configuration have been demonstrated as being suitable for certain device
applications, such as bandgap engineering for generating semiconductor heterostructure
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devices [12,16], improved electrical conductivity for efficient gas sensing [13], and imbal-
anced sublattice for creating graphene nanomaterials with magnetically nontrivial ground
states [15]. In fact, uncontrolled edge modifications also cause detrimental effects such as
transport deterioration and variability, which negatively impact the possibility of using
GNRs in nanodevices [27], but it is different from controlled edge defects discussed in this
paper. Recently, the band structures and charge-density distribution of AGNRs have been
predicted theoretically as well as examined experimentally to be significantly responsive to
the kinds of edge modification [23]. Various types of electronic topological phases and the
influence of electronic correlations on these topological states have been reported [24,25].
Despite recent progress in this field, the investigation of the optical properties of edge-
extended GNRs is still in its infancy. Consequently, engineering the optical spectra of GNRs
by introducing edge defect is worthy of a careful investigation.

In this paper, we carefully analyze the electronic and optical properties of AGNRs
with various types of edge extensions. The unique absorption spectra and their relations
to the special electronic structure, including the tunable band gap and flat bands, will
be discussed extensively. The density of states (DOS), which is crucial for an in depth
understanding of both the electron state distribution and optical excitation channels, are
presented. Our numerical calculations reveal unusual optical selection rules related to the
transition of the nearly-flat edge bands. We demonstrate that the frequency and amplitude
of the optical-absorption peaks can be efficiently manipulated by both the type and period
of the edge extension.

The rest of this paper is organized as follows. In Section 2, we present our theoretical
method, which we use for executing our numerical computations of the properties of
edge-extended AGNRs. Section 3 contains a detailed discussion of the band structure
and absorption spectra for the systems with three different kinds of edge-extension. The
principal results of this work are summarized in Section 4.

2. Theoretical Method

We begin by noting that a GNR consists of carbon atoms stacked together to form
a honeycomb lattice with a bond length of b = 1.42 Å. The tight-binding model (TBM)
is employed to investigate the electronic and optical properties of AGNR. The couplings
between nearest-neighbor atoms are included in our calculations. For pristine AGNR
along the x direction, the width (N) is estimated by the number of carbon atoms across
the ribbon along the y axis. Here, we consider the AGNR with extended segments being
added periodically on both sides along the x direction. Figure 1a through Figure 1c
illustrate, respectively, three different configurations of edge-extended AGNRs; they are
7/9−AGNR heterojunction (J-(n, m)), staggered edge-extended AGNR (S-(n, m)), and
inline edge-extended AGNR (I-(n, m)). In this notation, n and m stand for the length of the
edge-extended and original segments, respectively. They are integers in the unit of 3b. A
primitive unit cell comprises two continuous n and m segments. For J-(n, m) and S-(n, m),
the two component segments possess the widths of N and (N + 2), while they are N and
(N + 4) for I-(n, m). Furthermore, the two edges of J-(n, m) and I-(n, m) are equivalent
along the backbone of the ribbon. On the other hand, the edge-extended segments are
located alternately on each side of the S-(n, m) AGNR. The difference in configuration
among these AGNRs gives rise to their distinctive electronic and optical characteristics.

The low-energy electronic properties of an edge-extended AGNR can be described in
terms of the pz-orbital tight-binding Hamiltonian, which we write as

H = ∑
〈i,j〉

γRij C†
i Cj + h.c.. (1)
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Figure 1. (color online) Lattice structures of edge-extended AGNRs for (a) 7/9-AGNR nanoribbon,
(b) staggered edge-extended AGNR, and (c) inline edge-extended AGNR. The grey hexagons denote
pristine AGNRs while the red hexagons represent the edge-extended areas. The green and blue
dashed rectangles indicate the units of n and m segments, respectively.
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In this expression, i and j denote lattice sites, C†
i (Cj) is a creation (annihilation) operator,

Rij is the translation vector between two atoms, γRij = −2.6 eV is the nearest-neighbor
atomic interaction [28], and h.c. stands for the Hermitian conjugate of the first term. In
general, the hopping term of graphene is defined as the π bond between carbon atoms,
which takes the value −3.033 eV [29]. When ones only consider the monorail domain
model, this number corresponds directly to the energy at the M point of the first Brillouin
zone. However, the energy at the M point of the actual band is usually lower than the
expected value due to the influence of other orbital domains. As a matter of fact, the
commonly used hopping range of the tight-binding model is [−3.033,−2.4] eV [29–31].
This range has been widely adopted to study the electronic structure of GNRs and get a
good agreement with experimental observations. We know that the change of hopping
interaction can lead to modification of the energy scale of the band structure, but its main
features remain unchanged.

This Hamiltonian is properly constructed based on selected lattice sites i and j of
individual AGNR for each edge-extended type to ensure that the boundary conditions are
satisfied on a lattice-atomic level. Consequently, the corresponding band structure and
wave functions automatically satisfy the boundary condition of the system. Physically, the
dominant effect from the edge atomic environment has already been included by employing
atomically-satisfied boundary conditions for edge atoms on the lattice. Therefore, the
change of bonding strength of edge atoms with respect to interior atoms is considered
to be a higher-order correction. In this study, we consider the same hopping interaction
for the interior and at the edges of the GNR, but ignore the higher-order effect due to the
difference in atomic environment. In this way, we are able to highlight the major effects
of edge-extension on the band structure and absorption spectra of armchair GNRs with
a narrow width. Moreover, the effect of edge states on the electronic properties of GNRs
has been addressed in ref. [32] based on a first-principles (FP) approach. Explicitly, the
authors tested the consistency between the FP and (identical hopping integral) TBM results
associated with N-AGNR for three different cases: (1) N = 3p (p is a positive integer),
(2) N = 3p + 1, and (3) N = 3p + 2. It turned out that the remarkable inconsistency between
the two methods only occurs for the case of (3) N = 3p + 2. In other words, the effect of
the modified edge-atom integral on the electronic properties becomes significant only for
the case with N = 3p + 2. In our present study, we consider the AGNR with the backbone
width of N = 7 (corresponding to 3p + 1). Thus, our current TBM with identical hopping
integral for edge and interior atoms in the lattice structure is acceptable for the study of
electronic properties of the materials.

An electromagnetic field carrying the electric polarization Ê with frequency ω can
lead to vertical optical transitions from occupied to unoccupied states in an AGNR. The
resulting absorption function for vertical transition and EF = 0 can be shown to be given
by [33]

A(ω) ∝ ∑c,v,α,β
∫

1stBZ
dk

(2π)2

∣∣∣〈Ψc(k, β)
∣∣∣ Ê·P

me

∣∣∣Ψv(k, α)
〉∣∣∣2

×Im
[

f (Ec(k,β))− f (Ev(k,α))
Ec(k,β)−Ev(k,α)−ω−iΓ

]
.

(2)

Here, P is the momentum operator, me is the free-electron mass, f (Ec,v(k, α)) is the
Fermi–Dirac distribution function, and Γ (= 10 meV) is a broadening parameter. Note
that, the broadening factor could be sample dependent. In fact, the broadening factor
associated with electron optical transitions results from scattering, including both intrinsic
coulomb scattering (important for high density and low temperature) and phonon scatter-
ing (important for low density and high temperature), as well as extrinsic impurity and
defect scatterings (significant in low-quality samples). In general, Γ = 1 meV, 5–10 meV and
much greater than 10 meV correspond to high-, intermedium- and low-quality samples,
respectively. Therefore, the selection of Γ = 10 meV in this paper corresponds to an average-
quality sample, which is expected to display unique optical features, but not to present in a
very-sharp form. It guarantees no overlapping of the peaks so that the main features of
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the spectra are clearly revealed. Furthermore, this choice of Γ is to be consistent with the
reported theoretical calculations and experimental measurements [34–36]. Remarkably, the
discussed physics mechanism for our current system remains unchanged.

For the absorption function, the available excitation channels are determined by the

non-vanishing of the velocity matrix element
〈

Ψc(k, β)
∣∣∣ Ê·P

me

∣∣∣Ψv(k, α)
〉

. Explicitly, it can be
seen from Equation (2) that the absorption coefficient becomes finite only if the velocity

matrix element term (
〈

Ψc(k, β)
∣∣∣ Ê·P

me

∣∣∣Ψv(k, α)
〉

) is nonzero. This indicates that there exist
finite interband transitions between initial and final electronic states in different valence
and conduction subbands under irradiation of light. Moreover, the velocity matrix element
can be estimated based on the gradient approximation of the form [37]

〈Ψc(k, β| Ê · P
me
|Ψv(k, α)〉 ≈ 1

h̄
〈Ψc(k, β| ∂H

∂kx
|Ψv(k, α)〉 . (3)

Therefore, the finite transition occurs only if the wave function of an initial valence
subband (α) and that of a final conduction subband (β) have the same number of zero
modes. This directly leads to the optical selection rule of the system. If the wave functions
of initial and final states do not satisfy this selection rule, optical transition between them
is forbidden. On the other hand, the absorption strength is proportional to the joint DOS

Im
[

f (Ec(k,β))− f (Ev(k,α))
Ec(k,β)−Ev(k,α)−ω−iΓ

]
.

From a numerical computation aspect, the integration over the k-space in Equation (2)
can be calculated as a summation over many integrand values in very small subdivided
regions of the first Brillouin zone corresponding to different k values. Particularly, we first
multiply divide the first Brillouin zone uniformly so that it contains a sufficiently large
number of k points (5000 points in our calculations), and then do the sum of these points.
The accuracy of this numerical procedure is ensured by requiring these subdivided regions
small enough so that the integrand nearly becomes a constant within them. Moreover, the
tight-binding wave function can be expressed as

|Ψ(k, j)〉 =
Na

∑
j=1

(Aj|Aj〉+ Bj|Bj〉) ,

where Aj (Bj) is the subenvelope functions on the A (B) sublattices which represents
amplitude of the tight-binding functions |Aj〉 (|Bj〉), and Na is the number of atom in a unit
cell. Since the wave functions of the initial and finial states are required to be normalized for
computing the absorption coefficient, only the subenvelope functions will be needed. Here,
we numerically solve the tight-binding Hamiltonian to obtain the energy and subenvelope
functions (by applying a widely used Matlab code).

3. Results and Discussion

For a pristine AGNR, the band structure exhibits a band gap that is inversely pro-
portional to the ribbon width [32]. In order to highlight the influence of the edge ex-
tension on the electronic properties of AGNRs, we introduce defects into a narrow rib-
bon (N = 7). It is worth mentioning that the current experiments for the edge-defect
GNRs mainly focus on the narrow GNR [14,23]. Our numerical calculations for three
different types of edge extension show that the edge bands occur in the vicinity of the
Fermi level EF = 0. The valence and conduction edge bands retain the mirror symmetry
as for the pristine systems. The main features of energy dispersion are sensitive to both
n and m. These characteristics are in good agreement with the experimental measure-
ments and previous theoretical predictions on the electronic properties of edge-extended
GNRs [13,14,23–25]. The unique band structures are associated with the corresponding
absorption spectra which we will discuss thoroughly next.
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In order to investigate the roles played by n and m on the energy dispersion of the
system, we first keep n fixed but change m, and then keep m fixed while altering the value
of n. We find that the variation of m can greatly modify both the energy dispersion and
the band gap while n is the dominant factor to tune the band gap. Note that, the change
of band shape by varying m as well as the engineering of band gap by varying n are not
significant in several cases. For the heterojunction J-(n, m), the band structures obtained
by varying n and m are displayed in Figure 2a,d. Particularly, for n = 1, the increase of m
gradually reshapes the (v1, c1) pair of the bands from parabolic to nearly-flat formations, as
shown in Figure 2a. On the other hand, the size of the band gap possesses a proportional
relationship with n for chosen m, referring to Figure 2d for m = 10. The substantial band
features and their dependence on the lattice configuration are clearly reflected in the DOS.
Figure 2b,e illustrate the DOS where the individual curves correspond to the energy bands
with the same color. There exist the dominant peaks at the energies where the extrema of
the valence and conduction bands or the nearly-flat bands are located. Consequently, these
peaks are symmetric with respect to the Fermi level. Their amplitudes imitate the energy
dispersion, i.e., the flat bands present predominant DOS features. Furthermore, the zero
DOS in the vicinity of EF = 0 indicates the absence of electronic states within the band gap.
The DOS spectrum is crucial for an extensive understanding of the optical excitations via
the absorption intensity, according to the absorption function in Equation (2).

(a) (b) (c)

(d) (e) (f)

Figure 2. (color online) (a) Electronic band structure of J-(n, m) AGNRs with n = 1 and various chosen
values of m, (b) the corresponding DOS and (c) the absorption spectra. Panels (d–f) illustrate similar
plots for m = 10 and various n’s.

The ω-dependent absorption spectra exhibit unique peaks, as demonstrated in
Figure 2c,f for various sets of (n, m). Each peak corresponds to a specific transition between
the extreme values of the valence and conduction bands or the nearly-flat bands. The
frequency of the optical threshold (ω1) reflects on the band gap. Meanwhile, its amplitude
contains information regarding the state distribution and Hamiltonian matrix based on the
velocity matrix elements in Equation (2). For example, the threshold frequency of J-(1,5)
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(red line) is higher than that of J-(1,1) (blue line), but lower than that of J-(1,10) (green line)
(see Figure 2c). This is consistent with the band gap size relation for these three systems.
This can also explain the difference in frequency of ω1 for J-(1,10), J-(5,10), and J(10,10)
shown in Figure 2f. Moreover, the absorption peaks in the higher frequency range labeled
as ω2, ω3, and ω4 for J-(5,10) and J(10,10) come from the transitions associated with the
states at higher and deeper energies, such as v2 and c2 (not shown). These energy bands
move towards the Fermi level for increasing n. Hence for AGNR, the absorption spectrum
in the low-frequency region can be significantly enriched by the proper modification of the
edge configuration.

The spectral intensity can be understood via the DOS. The transition between the
occupied and unoccupied bands with higher-DOS is expected to yield stronger absorption
intensity. This is generally true for most J-(n, m) systems, as illustrated in Figure 2c.
Interestingly, this explanation fails for specific configurations of edge-extended AGNRs,
such as the J-(5,10) and J-(10,10) (see the orange and purple lines in Figure 2e). These
systems present relatively low threshold optical peaks though the corresponding DOS
shown in Figure 2e is predominant. We observe that the optical transition is enhanced if
the initial and final states belong to the parabolic bands with opposite slopes. However,
it is suppressed for the nearly-flat bands. Our numerical calculations show that, for the
J-(n, m) type, the Hamiltonian matrices of the systems possessing the nearly-flat edge bands
contain special elements, which lead to the inconsequential velocity matrix elements. These
elements are constructed from multiple interaction terms, which exhibit special real-space
lattice symmetry resulting from the presence of edge defects. In particular, it is seen from
Equation (1) that each Hamiltonian matrix element consists of the hopping interactions
between a carbon atom and its nearest-neighboring ones. These hopping parameters
are further accompanied by corresponding geometric phases, which describe both the
inner and edge lattice structures of the system, such as the lattice constant and symmetry.
Therefore, the Hamiltonian matrix elements of AGNRs will depend on various selected
edge defects. In this way, both the inner-lattice periodicity and the edge-lattice periodicity
can be fully built into the Hamiltonian in Equation (1). As a result, the associated velocity
matrix elements in Equation (2) are infinitesimal. This can account for the extremely low
threshold peaks of the systems with nearly-flat v1 and c1 edge bands. This unusual optical
selection rule is attributed to the influence of edge-modification on the state distribution of
the system.

For the S-(n, m) AGNR, the change in energy dispersion with varying (n, m) is more
clear compared with that of the J-(n, m). For a fixed n, the increase of m notably reduces
the band gap within the conduction states (for example, c1 and c2) or valence states (for
example, v1 and v2), as shown in Figure 3a. This forms the double-peaks of the DOS (red
lines in Figure 3b) and also the absorption spectrum (red lines in Figure 3c) for the case
S-(1,5). Actually, this behavior also exists in the S-(1,10) case, but with smaller spacing
between the two components of the double-peaks (green lines). It is predicted that for the
precise choice of (n, m), the double-peaks might merge together to form a single structure
with enhanced amplitude. However, even for the cases of S-(5,10) and S-(10,10) when v1
and v2 (also c1 and c2) mostly overlap (see Figure 3d), the aforementioned optical selection
rule results in suppression of the ω1 absorption intensity (see Figure 3f).

Another optical selection rule is realized for the S-(n, m) case, which disallows the
v1 → c2 and v2 → c1 transitions. It is noticed that, the unoccupied and occupied bands
belonging to the forbidden excitation channels exhibit the same slopes. Such a phenomenon
is related to their wave functions, which determine the optical selection rule for the system.
Explicitly, the dissimilarity between the number of zero modes of wave functions of the

initial
∣∣∣Ψv(k, i)

〉
and final

∣∣∣Ψc(k, j)
〉

excitation states in Equation (2) in the cases S-(1,5)

and S-(1,10) gives rise to certain forbidden optical transitions. In general, the S-(n, m)
AGNR is subject to two different optical selection rules, i.e., (1) the suppression of velocity
matrix elements associated with special H matrix elements due to the edge defect; (2) the
correlation between the number of zero modes of the the initial and final wave functions for
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an excitation. The fact that the S-(n, m) AGNR is subject to two different optical selection
rules is attributed to its special energy dispersion due to the asymmetry of two ribbon sides.

(a) (b) (c)

(d) (e) (f)

Figure 3. (color online) (a) Electronic structure of S-(n, m) AGNRs with n = 1 and various m’s. (b) The
corresponding DOS and (c) absorption spectra. Panels (d–f) present similar plots for m = 10 and
various n’s.

The edge-extended AGNRs with I-(n, m) configuration present a distinctive energy
dispersion and absorption spectra. In Figure 4a, the reformation of band structure follows
the same way as for the J-(n, m) and S-(n, m) systems. Though, the energy spacing between
the first (v1, c1) and second (v2, c2) pairs is quite large throughout the first Brillouin zone,
which we refer to the purple lines in Figure 4d for I-(10,10). Furthermore, there exist the
double-peak structures for I-(1,5), coming from the multi-extreme points of v1 and c1 at
kx = 0, π, 2π. This is different from the double-peak initiation of S-(1,5) where the two
component peaks correspond to two separated energy bands.

Interestingly, the breakdown of the conventional optical selection rules discussed
above is found in the I-(n, m) AGNRs. It is straightforward that the (v1, c1) pair becomes
more flat for I-(1,5) (red lines in Figure 4a) than for I-(1,1) (blue lines). Moreover, the
corresponding DOS is higher for I-(1,5) (see Figure 4b). However, as illustrated in Figure 4c,
the threshold absorption peaks of I-(1,5) are lower than that of I-(1,1). We observe that
the extraordinary H matrix elements originated from the unique lattice configuration
of I-(n, m) leading to such unpredicted optical features. Explicitly, such elements are
associated with the defect-enabled special symmetry in the lattice structure so that their
corresponding velocity matrix elements in Equation (2) become unique for defect-specific
bands. Additionally, the optical excitations between the nearly-flat bands give rise to
substantial absorption peaks, for example, the v2 → c2 of the I-(10,10) system (purple line
in Figure 4f). These behaviors are contrary to the cases of J-(n, m) and S-(n, m) discussed
above, as they do not obey the aforementioned selection rule, which is based on the
relationship between the wave functions. We note that both the optical selection rules are
only applicable for the first pairs of edge bands. Our observation of such a singular optical
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characteristic is considered as a hint for the possible explanation of similar results from
spectroscopy measurements.

(a) (b) (c)

(d) (e) (f)

Figure 4. (color online) (a) Band structure of I-(n, m) AGNRs with n = 1 and various m’s. (b) The corresponding DOS and
(c) absorption spectra for Γ = 10 meV. Panels (d–f) present similar plots for m = 10 and various n values.

Now we turn our attention to investigating the role played by the type of edge-
extension in the electronic and absorption spectra of AGNRs. This can be understood
via the comparison between the three different types of edge defects in terms of band
structure, DOS, and absorption spectra. Due to special lattice asymmetric arrangement,
the S-(n, m) type of edge defect can adjust the band degeneracy, while this is absent for
the J-(n, m) and I-(n, m) configurations. This explains the relatively higher DOS for S-
(n, m). The low-frequency absorption spectra present comparable absorption intensities
regardless of the difference in DOS. In general, proper modification of (n, m) can notably
alter both the optical threshold and absorption intensity of the edge-extended AGNRs. The
theoretical prediction offered in this work provides useful information in the search for
suitable materials for possible technology applications.

4. Concluding Remarks

In summary, we have investigated the rich electronic and optical properties of edge-
extended AGNRs. The tight-binding Hamiltonian was constructed for each ribbon system
with specific boundary conditions to study the band structures and DOS. The absorption
spectra were computed from the absorption function. We found that these essential
properties of AGNRs are remarkably enriched by modification of the edge states. The flat
bands, band gap variation, and unique features of the DOS and absorption spectra were
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presented for various types and periods of the edge extension. Moreover, the unusual
optical selection rule was demonstrated via the unusual transition channels associated with
the flat bands for selected edge-modified systems. We showed that proper modification
of (n, m) can significantly alter both the optical threshold and absorption intensity of the
edge-extended AGNRs. Our theoretical prediction opens an opportunity for extensive
comprehension of the influence of edge defects on the electronic and optical properties
of AGNRs.

Possible applications of nanoribbons could be in sensing and nano-imaging in very
large wavelength range, extending from visible to infrared frequencies [38,39]. Addition-
ally, plasmons have been studied considerably in graphene [40,41] and other bulk Dirac
materials. Now, after almost two decades of unrelenting perseverance [42,43], the plasmon
dynamical properties of low-dimensional structures are now well understood with the
help of many-particle theory. The polarization function can now be accurately calculated
and plays a key role in calculations of the dielectric function, which can in turn be used
for determining plasmon dispersion and screening. Our results, on the other hand, reveal
unique optical properties capable of generating significant interest. These nanomaterials
are capable of hosting extremely strong light–matter interactions as a consequence of the
enhanced excitonic effect in two dimensions. Therefore, it is crucial to fully understand the
excitons to unlocking the potential of these nanoribbons for future photonic and optoelec-
tronic devices. Finally, possible devices include optical modulators, excitonic light emitting
diodes, lasers, and coupling in an optical cavity.
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