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Abstract

Brain functional network has been increasingly used in understanding brain functions

and diseases. While many network construction methods have been proposed, the

progress in the field still largely relies on static pairwise Pearson's correlation-based

functional network and group-level comparisons. We introduce a “Brain Network

Construction and Classification (BrainNetClass)” toolbox to promote more advanced

brain network construction methods to the filed, including some state-of-the-art

methods that were recently developed to capture complex and high-order interac-

tions among brain regions. The toolbox also integrates a well-accepted and rigorous

classification framework based on brain connectome features toward individualized

disease diagnosis in a hope that the advanced network modeling could boost the sub-

sequent classification. BrainNetClass is a MATLAB-based, open-source, cross-

platform toolbox with both graphical user-friendly interfaces and a command line

mode targeting cognitive neuroscientists and clinicians for promoting reliability,

reproducibility, and interpretability of connectome-based, computer-aided diagnosis.

It generates abundant classification-related results from network presentations to

contributing features that have been largely ignored by most studies to grant users

the ability of evaluating the disease diagnostic model and its robustness and general-

izability. We demonstrate the effectiveness of the toolbox on real resting-state func-

tional MRI datasets. BrainNetClass (v1.0) is available at https://github.com/zzstefan/

BrainNetClass.
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1 | INTRODUCTION

Functional connectivity (FC) based on resting-state functional MRI (rs-

fMRI) is one of the major methods for brain functional studies. It

describes functional interactions among anatomically separated brain

regions, interpreted as information exchange, a.k.a. functional integra-

tion (Allen et al., 2014; Hutchison et al., 2013; Leonardi et al., 2013;

Thomas Yeo et al., 2011; Van Dijk et al., 2009). Whole-brain large-
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scale FC network is believed to be essential neural substrates for com-

plex cognitive functions (Jiang et al., 2019; Li et al., 2020; Wen et al.,

2019; Zhou et al., 2019), usually modeled as a graph, with nodes rep-

resenting brain regions and edges inter-regional FCs (Hallquist & Hil-

lary, 2018; Sporns, 2010; Van Den Heuvel & Pol, 2010). The network

topological properties can be analyzed based on statistical or compu-

tational methods such as graph theoretical analysis (Bullmore &

Bassett, 2011; Li et al., 2014) to reveal disease-related alterations

(Badhwar et al., 2017; Fornito, Zalesky, & Breakspear, 2015).

While many studies focused on group-level differences in the

brain functional networks between patients and healthy controls

based on statistical inference, an emerging trend is to utilize machine

learning techniques to learn diagnostic connectomic patterns and con-

duct individualized classification for computer-aided diagnosis

(Arbabshirani, Plis, Sui, & Calhoun, 2017; Dubois & Adolphs, 2016;

Rathore, Habes, Iftikhar, Shacklett, & Davatzikos, 2017). It is highly

desirable by clinicians to identify diseased subjects (Shin et al., 2016;

Tan et al., 2019), plan personalized treatment (Gudayol-Ferré, Peró-

Cebollero, González-Garrido, & Guàrdia-Olmos, 2015; Miao et al.,

2017; Miao et al., 2018), or predict outcome of medication (Fan et al.,

2007; Liu et al., 2018; Nie et al., 2019). From the methodological point

of view, such a brain functional network-based classification is essen-

tially a pattern recognition problem, where discriminative features

(e.g., FC links or network properties) can be jointly learned from the

brain networks and weighted in a multivariate manner toward a classi-

fication outcome. It not only helps with better patient-control separa-

tion but also benefits imaging biomarker detection for better

understanding brain diseases (Jie et al., 2013; Yu et al., 2017; Zhang,

Zhang, et al., 2019).

With the fast development in both brain network modeling

(Calhoun, Miller, Pearlson, & Adali, 2014; Dadi et al., 2019; Smith

et al., 2011) and machine learning methods (Bishop, 2006; Xu, Qi,

et al., 2018), rs-fMRI-based clinical studies have been transforming

from bench- to bed-side at an unprecedented speed (Cui & Gong,

2018; Lemm, Blankertz, Dickhaus, & Müller, 2011; Pereira, Mitchell, &

Botvinick, 2009; Shen, Wu, & Suk, 2017). However, the broad inter-

ests are not accompanied by sufficient analytic tools for researchers

from multiple disciplines to conduct brain network construction and

network-based classification. On one hand, the majority of the brain

FC network studies still largely relies on the traditional, static, pairwise

Pearson's correlation-based functional network construction. Disease

diagnosis could largely benefit from advanced brain functional net-

work construction methods that could model high-level, more com-

plex brain functional interactions among multiple brain regions, which

might be more sensitive to the disease-related alterations. On the

other hand, neuroscientists and clinicians with their respective abun-

dant domain knowledge are in a pressing need of such multivariate

analysis-derived biomarkers but not always equipped with the same

amount of knowledge on imaging analysis, network construction, and

machine learning. Without the help of rigorously designed toolboxes,

they might face problems such as double dipping (training and testing

a classification model with the same data) (Kriegeskorte, Simmons,

Bellgowan, & Baker, 2009). Moreover, for classifiers with freely

estimable parameters, arbitrary parameter predefinition, or ad hoc

parameter selection is not uncommon (Demirci et al., 2008). All these

issues harm the generalization ability of the diagnostic model, leading

to degraded reproducibility and finally hindering clinical applications.

A toolbox with standardized and rigorous network-based classification

is highly demanded (Cui & Gong, 2018).

In this article, we present a novel toolbox, namely Brain Network

Construction and Classification toolbox (BrainNetClass, currently in

v1.1). It is a user-friendly graphical-user-interface (GUI)-based Matlab

toolbox designed to help neuroscientists, doctors, and researchers in

other fields easily and rigorously work on advanced brain functional

connectomics construction and connectomics-based individualized

disease diagnosis or other classification tasks. It avoids complicated

demand to the end users by providing them with an easy-to-use,

automated pipelined toolbox that turns BOLD (blood oxygen

level dependent) rs-fMRI time series into brain functional networks

with advanced methods and generates a strictly-designed, well-

accepted classifier for disease diagnosis. It also produces comprehen-

sive and interpretable results for model evaluation toward better

understanding of brain diseases. This toolbox was designed to

help with standardizing methodology and boosting reproducibility,

generalizability, and interpretability of the brain network-based

classification.

BrainNetClass features the following advantages compared to most

of the existing toolboxes. (a) It provides state-of-the-art algorithms for

brain network constructions ranging from a recently developed high-

order functional network for quantifying higher level FC that reflects

more complex brain functional organization principals (Zhang, Chen,

Zhang, & Shen, 2017) to a sparse representation-based brain network

construction that generates more robust and biologically meaningful

networks. (b) It is pipelined, automated, together with parameter optimi-

zation through nested cross-validation (note that GraphVar is also

pipelined and with parameter optimization for the classifiers). (c) It offers

a comprehensive battery of result evaluation metrics, including some

usual analyses, such as parameter sensitivity test, model robustness test

(GraphVar also includes a bootstrapping-based robustness test), discrim-

inative features, among many others. (d) It is flexible, allowing users to

use command line mode or GUI mode and to save the constructed brain

networks for other purposes. Generally, BrainNetClass finds it seats

between widely adopted rs-fMRI preprocessing software (DPABI (Yan,

Wang, Zuo, & Zang, 2016), Brant (Xu, Liu, Zhan, Ren & Jiang, 2018), and

SPM1) and many other Matlab-based network-based post-analysis

toolkits (Brain Connectivity Toolbox (Rubinov & Sporns, 2010), CONN

(Whitfield-Gabrieli & Nieto-Castanon, 2012), and GraphVar (Kruschwitz,

List, Waller, Rubinov, & Walter, 2015; Waller et al., 2018)), warranting

its necessity and practicability.

In the following sections, we introduce all the involved

advanced brain functional network modeling methods in Section 2.1

and a brief classification procedure in Section 2.2, by highlighting

the innovative and comprehensive result report in Section 2.3. After

brief descriptions of the toolbox modules, a walk-through, and the

advanced commands and flexible I/O in Sections 3.1–3.3, we dem-

onstrate four real applications with different classification goals in
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Section 4. We finish up with key discussions on practical guidance

and other aspects.

2 | MATERIALS AND METHODS

2.1 | Functional network construction

Pearson's correlation (PC) analysis between BOLD rs-fMRI signals

associated with any pair of ROIs is the most popular FC network

construction method. PC is intuitive and easy to interpret, but only

captures the pairwise relationship between two ROIs. Partial corre-

lation, or more generally, sparse representation (SR) is a popular

method to characterize multi-ROI relationship. In SR, the BOLD

signal of a brain region is represented by a linear combination of

the signals from a few of other regions. To measure higher-level

relationship between two ROIs, “high-order” FC (HOFC) was pro-

posed to define inter-regional relationship by not measuring “low-

level” features (i.e., BOLD signals) but various “high-level” features,

which provides complementary information to the traditional “low-

order” (PC-based) brain networks and indicates improved perfor-

mance in disease diagnosis (Zhang, Chen, et al., 2016; Zhang, Chen,

et al., 2017; Zhang, Shen, & Lin, 2019; Zhou, Zhang, Teng, Qiao, &

Shen, 2018; Zhou, Qiao, Li, Zhang, & Shen, 2018). On the other

hand, to avoid too sparse (thus may miss disease-related FC alterations)

brain networks derived from SR and respect inherent structures in the

brain network, recent research has been designing new regularization

terms to build more biologically meaningful brain networks, resulting in

many variants of the SR methods (Qiao et al., 2016; Yu et al., 2017;

Zhang, Zhang, et al., 2019). While promising, these novel methods

require more complex computations than PC does.

BrainNetClass enables users to implement these state-of-the-art

network construction methods to bring the methodological advance

to the connectome-based disease studies. In next paragraphs, we will

provide a brief introduction of each network construction method; for

more details, refer to respective original methodology papers. We ten-

tatively categorize these algorithms into two types, pairwise and

multi-ROI-based (or SR-based) methods. In the toolbox GUI, they are

grouped into methods without any need of parameter optimization

and methods requiring parameter optimization, an implementation-

orientated categorization. Table 1 summarizes the meaning of the

symbols used later. Note that there are many other advanced network

construction methods such as brain states analysis based on dynamic

FC (Calhoun et al., 2014), but it is not the topic of this article and not

included in BrainNetClass.

2.1.1 | Pairwise FC-based network construction
methods

Given a brain parcellation atlas with N ROIs, rs-fMRI signal at the ith

ROI can be represented as a column vector xi = [x1i, x2i, …, xTi]
0
∈ RT (0

denotes transpose operation), and a data matrix X = [x1, x2, …,

xN] ∈ RT × N. PC-based brain functional network can be represented

as a graph with an edge weight matrix W ∈ RN × N whose element

w is calculated by pairwise temporal correlation of the raw BOLD sig-

nals. In BrainNetClass, PC-derived FC network usually serves as a

baseline method to be compared with other advanced methods. To

differentiate from the high-order FC methods (HOFC) (Jia, Zhang,

Adeli & Shen, 2017; Zhang, Zhang, Chen, & Shen, 2017; Chen,

Zhang, & Shen, 2016), it is also referred to as low-order FC (LOFC).

In a similar manner, with each ROI's (one-to-all) topographical FC

profiles used as high-level features of this ROI, topographical profile

similarity-based HOFC (tHOFC) can be calculated using PC on the

features between each pair of ROIs:

tHOFCij =

P
k

wik− �wi�ð Þ wjk− �w j�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

wik− �wi�ð Þ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
wjk− �w j�
� �2r ð1Þ

where wi� = {wik j k∈N, k 6¼ i} and i, j, k = 1, 2, …, N, k 6¼ i, j. Due to the

LOFC features rather than the BOLD signals are used in the tHOFC

calculation, the result is essentially different from that of LOFC

between the same ROIs. It has been shown that tHOFC could provide

supplementary information to the conventional LOFC and help reveal-

ing additional group differences between mild cognitive impairment

(MCI) subjects and cognitively normal controls (Zhang, Chen, et al.,

2016; Zhang, Giannakopoulos, et al., 2019).

Associated HOFC (aHOFC) is defined based on pairwise PC

between the topographical profiles of tHOFC and those of LOFC for

any pair of ROIs, in a similar manner as PC and tHOFC (Equation (2)).

In the psychophysiological interaction modeling, high-level preset of a

psychological statuses (e.g., attention level) may change sensory infor-

mation collection, processing, and synthesis. Similarly, in the human

brain network, different brain regions collaborate with each other at

different levels, mediating different sensory and cognitive functions.

For example, the LOFC may collect and process domain-specific infor-

mation while the tHOFC may further integrate the information from

multiple domains according to the functional hierarchy. aHOFC can

measure such inter-level (between low-level and high-level) functional

TABLE 1 Symbols used in the current study

Symbol Meaning

L Window length of sliding windows for dynamic FC

M Number of subjects

N Number of brain ROIs

T Number of time points in rs-fMRI data

K Number of clusters (new nodes) for clustering dynamic FC

time series

W Connectivity matrix, or brain functional network

wij FC weight of an edge connecting two nodes (i, j) in a network

W

X,Xm rs-fMRI data matrix of the mth subject

xi Mean rs-fMRI time series of the ith ROI

Abbreviation: FC, functional connectivity.
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associations and complements the LOFC and tHOFC. Including all

three types of the pairwise functional association indices (namely,

hybrid HOFC) could further improve the diagnostic accuracy of MCI

diagnosis (Zhang, Zhang, Chen, Lee, & Shen, 2017). By definition,

aHOFC matrix is not symmetric, and the self-connections are not 1 s,

which is unlike PC and tHOFC. We found that the upper triangular

and the lower triangular of the aHOFC matrices are highly correlated.

Therefore, the matrix symmetry should have very limited influence on

the result. In practice, to make the generated matrix more interpret-

able, we further symmetrized it by W (W + W
0
)/2.

aHOFCij =

P
k

tHOFCik− �tHOFCi�
� �

wjk− �w j�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

tHOFCik− �tHOFCi�
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
wjk− �w j�
� �2r ð2Þ

Increasing evidence has shown that FC is actually varying across

time and such variation could not be purely caused by noise. Such a

dynamic FC may reflect brain flexibility and moment-to-moment adap-

tion (Gonzalez-Castillo et al., 2015). Chen et al. (2016) proposed a new

brain network construction method based on dynamic FC, namely

dynamics-based HOFC (dHOFC). First, dynamic FC wij(θ) is calculated

between ROIs i and j based on BOLD rs-fMRI signals in the sliding win-

dows (θ = 1, 2, …, Θ), each of which includes a small temporal segment

of rs-fMRI signals in a length of L with a step size s (thus, Θ = b(T − L)/

sc + 1). Then, dHOFC is calculated based on another round of PC

between any pair of the dynamic FC time series (Equation (3)).

dHOFCij,pq =

PΘ
θ =1

wij θð Þ− �wij �ð Þ
� �

wpq θð Þ− �wpq �ð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPΘ
θ =1

wij θð Þ− �wij �ð Þ
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPΘ

θ =1
wpq θð Þ− �wpq �ð Þ
� �2s ð3Þ

By definition, dHOFCij, pq characterizes temporal synchronization

of dynamic FC time series, thus defining the relationship among four,

instead of two ROIs. Therefore, the dHOFC network is defined in a

RN2 ×N2

space, instead of PC, tHOFC, and aHOFC networks (all in a

RN×N space). To reduce the exponentially increased dimensionality

for better classification, the third step of dHOFC is to run a clustering

algorithm to reduce the dimension from N2×N2 to K×K, where K is

the number of clusters, or “high-order nodes” in the dHOFC network.

By grouping the dynamic FC time series with similar temporal pat-

terns, we use the cluster averaged dynamic FC time series to con-

struct a lower-dimension approximation of the dHOFC ∈ RK×K. The

window length L and the cluster number K are two important parame-

ters for dHOFC.

2.1.2 | Multi-region-based network construction
methods

The methods in Section 2.1.1 all measures pairwise relationship,

in this section, we introduce SR-based methods for measuring

inter-regional relationship when considering other regions' influence.

The SR-based methods also have an advantage that it could suppress

spurious connections as shown in PC-based results. SR generates the

network W by adding a l1-norm regularization in a matrix inversion

problem to reveal two regions' relationship after ruling out the influ-

ence from other regions, efficiently conducting the partial correlation

between any pair of ROIs. It does so by minimizing the loss function

denoted in Equation (4):

min
W

1
2

X−XWk k2F + λ Wk k1 ð4Þ

where λ > 0 is a parameter controlling network sparsity. A higher λ

forces more links in W to be zeros (no connection). In the toolbox, for

all the SR-based methods (including SR), an additional step is con-

ducted to make the network symmetric, similar to that used in aHOFC

via W (W + W
0
)/2 (Yu et al., 2019; Zhang, Zhang, et al., 2019). Of

note, another symmetrization method w*
ij sign wij

� � ffiffiffiffiffiffiffiffiffiffiffi
wijwji
p

can also

be used (Peng, Wang, Zhou, & Zhu, 2009). The SR can serve as

another baseline method. Next, we introduce several SR variations,

which makes the resultant networks have additional desired proper-

ties (e.g., modular structure). Of note, we use SLEP (Liu, Ji, Ye, et al.,

2009) package v4.12 for optimization for all SR-related methods.

An FC-strength penalty was introduced in SR, namely weighted

sparse representation (WSR) (Yu et al., 2017; Chen, Zhang, Zhang,

Li, & Shen, 2017). In WSR, the sparse regularization is weighted by

Cij = exp −FC2
ij=σ

� �
, where the FCij is the PC-based FC strength

between the ith and jth ROIs and σ is a positive parameter (σ can be

set as all subjects' mean of standard variation of the absolute PC-

based FC strengths) used to adjust the decay speed of the FC-based

weights (Equation (5)). If the BOLD signals of two ROIs strongly

synchronized (indicating a strong FC), then their connection should

be penalized less, thus making it more possible to be retained to

preserve potentially biologically putative FC links. It has been

shown that the WSR network is more biologically meaningful and

more suitable for disease diagnosis than the SR network

(Yu et al., 2017).

min
W

1
2

X−XWk k2F + λ1 C�Wk k1 ð5Þ

In another method called strength-weighted sparse group repre-

sentation (WSGR), strong FC links can be well preserved as in WSR,

and the original structured FC information in the PC-derived network

can also be preserved, thanks to another regularization term encour-

aging a joint preservation or suppression of a group of FC links with

similar strength (Simon, Friedman, Hastie, & Tibshirani, 2013; Yu et al.,

2017). In WSGR, the PC-derived FC links are first grouped into a few

subsets {Og, g = 1, 2, …, G (G� N)}, each of which is assigned a

predefined weight dg = exp −E2g=σ
� �

, where Eg is the averaged abso-

lute PC-based FC strength for the subset Og and σ is set as all

subjects' mean of standard variation of absolute PC-based FC

strengths. Then, the WSGR can be formatted as Equation (6), where
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WOg

�� ��
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i, jð Þ∈Og

wij

� �2s
is a l2-norm penalty for each subset Og for

joint selection or de-selection. Collectively, WSGR results in an FC

network featuring overall sparsity (controlled by l1-norm penalty), and

group sparsity (controlled by l2-norm penalty). WSGR has two param-

eters (λ1 and λ2) to optimize for balancing such a tradeoff.

min
W

1
2

X−XWk k2F + λ1 C�Wk k1 + λ2
XG
g =1

dg WOg

�� ��
2

ð6Þ

It is notable that the SR constructs a network for each subject inde-

pendently. This could lead to large inter-subject variability in the derived

networks. This is unfavorable for subsequent classification, as it will

increase within-group variability and make between-group separation

more difficult. Group sparse representation (GSR) is put forward to

address this problem by jointly estimating non-zero connections across

all subjects (Wee, Yap, Zhang, Wang, & Shen, 2014; Zhang, Zhang,

Chen, Liu, Zhu, & Shen, 2017). It encourages the derived connectivity

networks to have similar topological structures across all the subjects

through a l2, 1-norm regularizer, as formulated in Equation (7), where

Wi = w1
i ,…,w

m
i ,…,w

M
i

� 	
denotes the regional one-to-all PC-derived FC

profiles of the ith ROI for all M subjects and λ controls the extent of

group sparsity.

min
Wi

XM
m=1

1
2

xmi −Xm
i w

m
i

�� ��2
2


 �
+ λ Wik k2,1 ð7Þ

Zhang, Zhang, et al. (2019) recently proposed another GSR, namely

strength and similarity guided GSR (SSGSR), aiming at better separating

two groups. They assumed that the PC-derived FC networks should

inherently have higher within-group similarity but lower between-group

similarity. For example, a network from a patient could be more similar to

that from another patient but less similar to that from a healthy control.

To this end, the inter-subject similarity of the PC-derived FC profiles can

be used as a regularizer as the last term of Equation (8). Letting wm
i: and

wl
i: be the regional one-to-all PC-derived FC profiles of the ith ROI

from the mth subject and the lth subject, a graph Laplacian ℒi can be

obtained by ℒi = Di− Si, where Si = sm,l
i

n o
∈RN×N is a similarity matrix

with element sm,l
i = exp − wm

i: −wl
i:

�� ��2
2

� �
measuring the FC-profile simi-

larity for the ith ROI between the two subjects.

min
Wi

XM
m=1

1
2

xmi −Xm
i w

m
i

�� ��2
2


 �
+ λ1 Bi�Wik k2,1 + λ2tr Wiℒi Wið ÞT

� �
ð8Þ

The second term of Equation (8) has a weight mat-

rix Bi = b1i ,…,bmi ,…,bMi

h i
with each column characterizing

exponentially-transformed one-to-all PC-derived FC profiles

bmi,j = exp − wm
i,j

� �2

 �� 

i, j= 1,…,N, i 6¼ jð Þ to penalize weak connectivity.

There are two parameters controlling the tradeoff between weighted

group sparsity (λ1) and between-subject variability (λ2). Of note, SSGSR

(including GSR) were designed to construct brain networks for all of the

subjects simultaneously by leveraging the group information to ensure

the networks constructed are consistent across individuals. The subject

labels will not be used when constructing the brain networks.

Qiao et al. (2016) and Qiao, Zhang, Chen, and Shen (2018) pro-

posed another functional brain network construction method, namely

sparse low-rank (SLR) graph learning, by incorporating a low-rank prior

into the SR-based network modeling. SLR results in a sparse yet mod-

ularity structure-preserved (more and stronger within-module connec-

tions but less and weaker between-module connections) FC network,

which is considered biologically meaningful (Bullmore & Sporns, 2012;

Newman, 2006). It has been shown that, by increasing modularity of

the constructed FC network, disease classification accuracy could be

increased (Qiao et al., 2016). SLR is formulated in Equation (9), where

kWk* is a trace norm (a.k.a. nuclear norm) that encourages the esti-

mated adjacency matrix W to have a low-rank property. The combina-

tion of sparse and low-rank properties mathematically lead to a larger

modularity. It has two parameters (λ1, controlling sparsity, and λ2, con-

trolling modularity) to be optimized.

min
W

X−XWk k2F + λ1 Wk k1 + λ2 Wk k* ð9Þ

2.2 | Network-based classification

After brain network is constructed, BrainNetClass continues to con-

duct feature extraction from the constructed networks and train a

classifier. Figure 1 summarizes the workflow. As the main contribution

of BrainNetClass is providing advanced network construction

methods (Section 2.1) and comprehensive results (Section 2.3), we

only briefly describe the classification (more details can be found

elsewhere).

As for features, both connection coefficients and network prop-

erty for each ROI (local clustering coefficients (Rubinov & Sporns,

2010; Chen et al., 2016; Zhang, Zhang, et al., 2017) is provided in this

version) are provided for user to choose. With local clustering coeffi-

cients, the feature dimension can be significantly reduced from N × N

(or K × K for dHOFC) to N (or K for dHOFC). Of note, for certain net-

work construction methods (e.g., dHOFC and SSGSR), we fixed the

feature extraction methods to keep consistent with the previous stud-

ies (Chen et al., 2016; Zhang, Zhang, et al., 2019). There are many

other network properties, such as the shortest path length and

betweenness centrality; they could also be jointly used as network

features for better capturing the network topology in the future ver-

sion (Liu et al., 2018).

As for feature selection or reduction, users can choose one from

two-sample t-test (p < .05) (Yu et al., 2016), LASSO (least absolute

shrinkage and selection operator) (the feature sparsity is controlled by

a hyper-parameter λ that is fixed [0.05] in this version but users are

allowed to change it if the number of selected features is too small or

too many) (Tibshirani, 1996), and both (Zhang, Zhang, et al., 2019).

This is an important step to reduce feature dimension and improve

model generalizability. For certain methods, we fixed the feature

extraction and selection to keep consistent with previous studies.
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SVM is adopted as the classifier in BrainNetClass (Cortes &

Vapnik, 1995; Misaki, Kim, Bandettini, & Kriegeskorte, 2010), which is

a popular classification model and has been proved to be powerful

and robust even with small sample size. We use LIBSVM v3.23

(Chang & Lin, 2011) to train SVM. We used a linear kernel and the

hyper-parameter C in SVM is set to 1, but users are allowed to change

it if necessary (or users are advised to save the constructed networks

and use other classification toolboxes that include automatic parame-

ter tuning for classifiers, such as GraphVar).

Cross-validation is important for classification performance evalu-

ation but it could be done incorrectly by inexperienced users. Among

many other strategies (Varoquaux et al., 2017), we provide two classic

and popular cross-validation strategies: leave-one-out cross-validation

(LOOCV, suitable for small sample size) and 10-fold cross validation

(suitable for large sample size). In LOOCV, the training and testing

procedures are repeated for M times, each time leaving out a different

subject for testing, and the performance is computed across the M

classification results. It is similar for 10-fold cross validation but each

time one tenth of the subjects is left out for testing. The 10-fold cross

validation is repeated for 10 times (default) or more, each time with

random subject partitioning. The classification performance is then

averaged across all folds and all repetitions. Feature selection is con-

ducted on the training set and the selected feature indices are applied

to the testing set. If there is freely estimable parameter(s) for the

parameter requested network construction methods, nested cross-

validation will be implemented for parameter optimization (see (Chen

et al., 2016) for detailed procedures). Put it simple, the parameter

optimization is carried out in the inner cross validation to make sure

the test set in the outer cross validation is not involved in choosing

parameter(s).

Classification performance is evaluated based on a battery of

assessment metrics, including classification accuracy (ACC), the area

under ROC curve (AUC), sensitivity (SEN), specificity (SPE), precision,

balance accuracy (BAC), Youden Index (Yonden), and F-score

(Sokolova, Japkowicz, & Szpakowicz, 2006) (see (Yu et al., 2017) for

the definitions). The ROC curve describes the diagnostic ability of a

binary classifier when its discrimination threshold is varying. The AUC

measures the probability that a classifier assigns a higher score to a

randomly chosen positive example than that to a randomly chosen

negative example.

2.3 | Result display and interpretation

2.3.1 | Contributing features

In addition to the numeric classification performance evaluations and

the ROC curve plot, users usually want to know which features con-

tribute more (a.k.a., contributing features) or are more important to

the classification. In BrainNetClass, we provide two types of feature

importance measurements for the users to determine contributing

features. First, the average weight derived from the SVM for each fea-

ture across all cross-validation runs can be used as feature importance

measurement. The larger the absolute weight a feature has, the more

important this feature could be. Therefore, the feature importance

can be represented by an N × N matrix if the features are connection

coefficients and by a length-N vector if the features are local cluster-

ing coefficients. Users may visualize the most important links or ROIs

that may help to discover potential disease biomarkers. For dHOFC, a

total of K matrices (each has a size of N × N) will be generated to iden-

tify the important “high-order” nodes (i.e., a cluster of synchronized

dynamic FC links), as shown in (Liu et al., 2018).

Another quantitative measurement of feature importance is the

occurrence of each feature being selected in the feature selection

across all cross-validation runs (Chen, Zhang, Lee, et al., 2017; Yu

et al., 2017; Zhang, Zhang, et al., 2019). The contributing features can

be those consistently selected in most, if not all, of the cross-

F IGURE 1 Workflow of BrainNetClass toolbox and its role in a
general setting. BrainNetClass receives inputs from many other rs-
fMRI preprocessing software, performs network construction, and
extracts network features for classification. After performance
evaluation, results are saved for further interpretation and they can
be visualized by other toolboxes. It also has flexibility if users just
want to save the constructed networks for another purpose or they
have predefined brain networks derived from another toolbox
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validation runs. Similarly, it takes a form of an N × N matrix if features

are connection coefficients and a length-N (or length-K for dHOFC)

vector if features are local clustering coefficients. The more frequently

a feature has been selected, the more important this feature could

be. Of note, none of the previous toolboxes provides such a compre-

hensive contributing feature report.

2.3.2 | Constructed networks

Aside from the discriminative features, the pattern of the constructed

brain functional networks is also informative to network neuroscience

researchers. The toolbox also provides the group-averaged brain net-

work for each group in a form of weighted adjacency matrix. If choos-

ing a brain network construction method that requires parameter

optimization, the group-averaged brain network constructed using the

optimal parameter(s) will be generated (Chen, Zhang, Lee, et al.,

2017)). If users want to save the constructed networks for all subjects

separately, they are referred to use command line mode (see

Section 3.3).

2.3.3 | Log file

Meanwhile, a full log of model configuration and performance are

summarized in a log file, including the network construction method

used, feature extraction and selection methods used, the ranges of

parameters to optimize from, and the model evaluation method

used, the suggested parameters (according to the parameter sensi-

tivity test, see Section 2.3.4), the parameter selection occurrence

(Chen, Zhang, Lee, et al., 2017), and all the numeric model perfor-

mance evaluation metrics. Many of them are uniquely provided by

this toolbox.

2.3.4 | Parameter sensitivity test and the
suggested parameters

Most of the brain network construction methods require parameter

tuning. It is necessary to know which parameters could be the best for

the future classification to a new subject. On the other hand, one may

want to test if the achieved classification performance is sensitive to

specific parameter choices (if so, parameter choosing will be done

more carefully in the future application). To this end, our toolbox

implements a comprehensive assessment of the variations in model

performance in terms of different parameters used, as did previously

(Yu et al., 2017; Zhang, Zhang, et al., 2019).

Specifically, the classification model is re-trained with each value

(or each combination) of the freely estimable parameter(s) with

LOOCV, which will create a bar plot showing the effects of varying

parameter values on the classification accuracy. If a classification

model is sensitive to the parameters, there should be a bar signifi-

cantly higher than others. In this case, the user is advised to narrow

down the parameter range by centering the candidate parameters on

those corresponding to the peak bar. On the other hand, if the con-

tour spanned by the bars is smooth and the peak performance is quite

similar to the performance generated by the rigorous nested cross-

validation, the classification model is less sensitive to the parameters.

The parameter(s) associated with the peak bar is (are) the Suggested

Parameters for future use.

2.3.5 | Model robustness test and the most
consistently chosen parameters

For classification studies, model robustness evaluation is equally

important. Therefore, how many times a specific parameter (or a com-

bination of parameters) is selected as the optimal parameter(s) is

recorded by the toolbox and reported as Parameter Selection Occur-

rence. If the parameter was selected more frequently than others, the

classification model is robust. An evenly distributed parameter selec-

tion occurrence may indicate that the model could be drastically chan-

ged in the cross-validation (i.e., less robust or more data-dependent).

Of note, it is not necessary that the parameter(s) with the highest

occurrence is the same as the suggested parameter(s), but we have

observed that a good classification model resulted in the suggested

parameter(s) same as that with the highest occurrence (see examples

in Section 4).

3 | TOOLBOX DESIGN AND USAGE

3.1 | Functional modules and designing logics

BrainNetClass (v1.0) consists of several sequentially executed mod-

ules (Figure 1). The toolbox takes region-averaged rs-fMRI time

series as inputs, which can be generated by other toolboxes, such as

SPM3 or FSL4. The user does not need to do any further

preprocessing. However, the user needs to decide which brain net-

work construction method to use beforehand. All the available net-

work construction algorithms are organized into Type I (those

without any parameter to optimize) and Type II (those with parame-

ter optimization required). The parameter-required network con-

struction methods gain certain advantages but need more work to

test the model robustness and parameter sensitivity. How to choose

the proper network modeling algorithm will be provided in

Section 5.1. For some network construction methods, default fea-

ture extraction and feature selection are provided and a default

parameter range will also be provided to facilitate decision making.

However, the user can change the default parameter range (see an

example in Section 2.3.4). The choice of cross-validation method

depends on sample size.

Before starting, the required memory will be estimated and dis-

played to users. The memory required and the computing time are

proportional to the number of ROIs and the total sample size and

depend on the network construction method. Generally, dHOFC
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consumes more memory, and SR-related methods with two estimable

parameters need longer computational time. When the process has

successfully finished, the toolbox generates multiple results in the

result folder (users will have freedom to choose any network visuali-

zation software to visualize the contributing features) and the classifi-

cation performance is shown in the GUI. The figures and the log file

summarizing major methods and results are generated to assist paper

writing. It is advocated that not only the diagnosis accuracy but

also the constructed networks, contributing features, and model

robustness assessment should be reported in the paper. All the model

information can be retrieved afterwards. The user is advised to inter-

pret the results with their domain knowledge.

3.2 | Step-by-step usage

We give a brief walkthrough of the toolbox (see more details in the

manual5):

F IGURE 2 Step-by-step setup in BrainNetClass and its result report, including (a) Specifying inputs and output, (b) selecting network
construction method as well as feature extraction/selection and validation methods, (c) model evaluation, and (d) log file generation
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1. Specify region-averaged rs-fMRI time series data of all subjects

and a text-formatted label file containing a column of the labels for

all subjects (e.g., 1 for patient and −1 for control) in the same

order. Specify output directory (Figure 2a).

2. Choose network construction method. The user may need to spec-

ify the parameter range(s) or use the default setting. See brief

explanations of the parameter meanings (Figure 2b).

3. Select or use predefined feature extraction and feature selection

methods. See brief explanations of the methods selected.

4. Choose a cross-validation method. If choosing 10-fold cross-vali-

dation, specify how many times the cross-validation will be

repeated.

5. All set. Clicking the Run button and wait for all processes com-

pleted, as indicated by an “All Jobs Completed” window popping

out. Some important results will be printed on the result panel and

the suggested parameters panel (Figure 2c).

6. A full log for a hassle-free report is generated in the result folder

(Figure 2d).

7. The users may repeat the steps 1–6 to generate results from other

baseline methods, such as PC and SR, for comparison purpose.

3.3 | Useful commands

Our toolbox also provides helpful and efficient commands that can be

executed to conduct entire works for skilled users and they can be

run easily with minimum coding on computing clusters or servers

without using the GUI. See complete list of the commands or func-

tions in the manual.

We provide one function that can save the constructed brain net-

work for any user who wants to perform further analysis based on the

saved networks constructed by any of the network construction

methods mentioned above. Also, some users may want to choose other

methods or algorithms for feature selection and classification and they

can perform further analysis using other machine learning based tool-

boxes (e.g., WEKA (Hall et al., 2009)) with more advanced machine

learning based algorithms (such as optimizing the SVM hyper-parame-

ters). We can take the brain network constructed by user themselves

using other methods as input, and perform feature extraction, feature

selection, classification and detect discriminative features.

4 | TOOLBOX VALIDATIONS

To further evaluate the effectiveness of our toolbox, we applied it to

real rs-fMRI datasets. For the first three applications, we chose one

advanced method to construct the brain network and compared it

with two baseline methods (PC and SR). In the fourth application, we

chose a multi-center dataset and tested the cross-center generaliza-

tion ability. All the experiments were conducted using Matlab version

2018a based on a Window desktop computer with six CPU kernels

and 64Gb physical memory.

4.1 | Application 1: SSGSR-based MCI diagnosis

4.1.1 | Materials and methods

The dataset is from the Alzheimer's Disease Neuroimaging Initiative

(ADNI) database6. MCI is a transitional stage between Alzheimer's

Disease (AD) and cognitively normal subjects, which has a high chance

to progress to AD (Gauthier et al., 2006). This application is to demon-

strate the feasibility of timely detection of MCI based on brain func-

tional networks.

The rs-fMRI data from 52 MCI patients and 52 matched normal

controls (NCs) were selected from the ADNI-2 database. The two

groups were all scanned using 3.0-T Philips scanners with the same

imaging protocols7. The data are from multiple imaging centers but

imaging quality control was carefully carried out to make sure the

across-site consistency. The rs-fMRI data were preprocessed by using

SPM8 with a standard procedure described elsewhere (Chen, Zhang,

Zhang, et al., 2017). Automated Anatomical Labeling (AAL) template

was used to extract ROI-averaged time series from the 116 ROIs.

SSGSR can reduce individual variability by using the group spar-

sity constraint and improve between-group separability. Since the

MCI group may have large individual variability, we applied SSGSR to

construct brain networks for all the subjects. The parameters including

λ1 (controlling the group sparsity) ranging in [0.01, 0.02, …, 0.1] and λ2

(controlling inter-subject network similarity) ranging in [0.01, 0.02, …,

0.1]. The connection coefficients were used as features. Two-sample

t-test (p < .05, uncorrected) was adopted to initially remove less dis-

criminative features and LASSO was further applied to further select

features. The MCI versus NC performance was compared with those

of PC and SR. LOOCV was adopted to evaluate the performance. The

optimal λ1 and λ2 were determined with inner LOOCV.

4.1.2 | Results

SSGSR achieved much better performance than that of PC and SR

(Table 2, Figure 3a). As shown in Figure 3b, the model was more sensi-

tive to λ1 than λ2. The suggested parameters are λ1 = 0.02 and

λ2 = 0.03. The classification accuracy is 90.38% yielded with nested

LOOCV (Table 2), close to the accuracy obtained by the suggested

parameters (93.27%, Figure 3b). The most frequently selected parame-

ters are the same as the suggested parameters, as shown in Figure 3c.

The prognostic connectivity features that were 100% selected

during the LOOCV were plotted in Figure 3d, with link thickness and

node size indicating the feature importance in terms of MCI classifica-

tion. A total of 17 discriminative connections were identified. Most of

them are closely related to AD pathology as suggested by previous

studies (Buckner et al., 2005; Buckner, Andrews-Hanna, & Schacter,

2008; Frisoni, Prestia, Rasser, Bonetti, & Thompson, 2009; Jacobs

et al., 2012; Li et al., 2012; Thomann et al., 2008; Wee et al., 2016),

such as the default mode network and the connections between cere-

bellum and cortical regions. All the results shown here were generated

by our toolbox.
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4.2 | Application 2: SGR-based brain-state
classification

4.2.1 | Materials and methods

Eyes open (EO) and eyes closed (EC) states have been used in many

rs-fMRI studies, and several studies have shown that there are funda-

mental differences between these two states (Liang et al., 2014; Yu-

Feng et al., 2007; Zhou, Wang, Zang, & Pan, 2018). This dataset was

also provided as” Toydata1.zip” (see” Toydata2.zip” for a simplified

version for a quick run) in a text format as well as” EC.mat” and” EO.

mat” in the BatchExamples folder in https://github.com/zzstefan/

BrainNetClass. In this experiment, we aimed to evaluate the feasibility

of individualized brain-state classification (EO vs. EC) based on brain

FC networks. We also aimed to identify important FC links that played

significant roles in the classification.

The data from 48 (22 females) college students (aged

19–31 years) was downloaded from a publicly available dataset, Bei-

jing Eyes Open Eyes Closed Study8. The rs-fMRI data during EC and

EO were separately acquired from the same subject using a SIEMENS

TRIO 3.0-T scanner at the Beijing Normal University and the imaging

protocol can be found in (Liu, Dong, Zuo, Wang, & Zang, 2013). One

subject was excluded due to the incomplete data. The conventional

rs-fMRI preprocessing was conducted using DPABI (Yan et al., 2016).

F IGURE 3 MCI diagnosis results, including ROC curve comparisons between SSGSR and PC/SR (a), parameter sensitivity testing result (b),
model robustness evaluation (c), and the contributing features suggested by the SSGSR-based classification according to the feature selection
occurrence (d). The contributing FC links were visualized by using BrainNet Viewer, with only the features being 100% selected shown, where the
edge thickness represents the averaged absolute weight and the node size represents the averaged absolute weights associated with each node.
FC, functional connectivity; SSGSR, strength and similarity guided GSR

TABLE 2 MCI diagnostic
performance by using SSGSR, PC, and SR

AUC ACC SPE Youden BAC SEN F-score Time

SSGSR 0.9589 90.38% 88.46% 80.77% 90.39% 92.31% 90.57% 4.63 hr

PC 0.5680 51.93% 50.00% 3.85% 51.93% 53.85% 52.83% 12.27 s

SR 0.3081 34.62% 38.46% −30.77% 34.62% 30.77% 32.00% 0.66 hr

Abbreviations: ACC, accuracy; AUC, area under ROC curve; BAC, balance accuracy; dHOFC, dynamics-

based HOFC; PC, Pearson's correlation; SEN, sensitivity; SPE, specificity; SR, sparse representation;

SSGSR, strength and similarity guided GSR.
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None of the subjects was excluded due to excessive head motion

(>2 mm in displacement or >2
�
in rotation, or with mean framewise

displacement [FD] > 0.5 mm).

SGR was used to construct brain networks consisting of 116 ROIs

according to the AAL template. The parameters of the SGR model

were set up as follows: λ1 = [0.01, 0.02, …, 0.1] and λ2 = [0.01, 0.02, …,

0.1]. All the other settings are the same as those in Application 1. The

performance of the SGR model was compared with those of PC and

SR based on LOOCV.

4.2.2 | Results

The performance of SGR was better than that of PC and SR, though

we found a method as simple as PC can result in a satisfactory accu-

racy as well (Figure 4a, Table 3). Parameter sensitivity test shows that

the results are not very sensitive to different parameters (Figure 4b),

and the suggested parameters (λ1 = 0.08 and λ2 = 0.02) resulted in a

similar accuracy as that derived from nested LOOCV (82.98%

vs. 79.79%). The suggested parameters are the second most selected

parameters (Figure 4c). The top two mostly selected parameters

were only selected for 16 and 15 times (~17% and 16% of all the

LOOCV runs), indicating that the model robustness requires future

check. In this case, the PC could be the most suitable model, as it

involves no parameter tuning. Nevertheless, we plotted six most consis-

tently selected connections in Figure 4d. Most of them are consistent

with the previous studies, such as the FC links in the sensorimotor and

visual networks (Zou et al., 2015; Zhou, Wang, et al., 2018).

4.3 | Application 3: dHOFC-based depression
diagnosis

4.3.1 | Materials and methods

Accurate diagnosis of treatment-naïve and first episode major depres-

sive disorder (MDD) can be quite challenging (Souery et al., 1999).

Computer-aided diagnosis is necessary as it can not only conduct

objective diagnosis but also can identify depression-related pathologi-

cal changes in brain. Therefore, we performed a brain network-based

individualized classification between MDD and NC using our toolbox.

The major depressive disorder patients, compared to the NCs,

may have subtle changes in terms of the static FC networks. As we

stated in the algorithm selection recommendation in Discussion,

F IGURE 4 Eyes closed versus eyes open (EC vs. EO) classification results, including ROC curves for the SGR, PC, and SR (a), result from
parameter sensitivity test (b), parameter selection occurrence (c), and the important features identified (d). PC, Pearson's correlation; SGR, sparse
group representation; SR, sparse representation

2818 ZHOU ET AL.



dynamic FC-based dHOFC could better capture the differences

between these two groups. The data was from the First Affiliated

Hospital, Guangzhou University of Chinese Medicine, consisting of

53 MDDs and 53 matched NCs (age between 19–32 years). They

were all acquired using a 3.0-T GE Signa HDxt scanner. The data was

also used in Zheng et al. (2019) with similar method but without

parameter optimization. To demonstrate the effectiveness of our tool-

box, we re-applied dHOFC to the same data but allowing the parame-

ters to be optimized based on a nested LOOCV. We built dHOFC

networks for the diagnosis because the dynamic FC-derived dHOFC

has been found to be quite sensitive in brain disease diagnosis (Chen

et al., 2016; Zhang, Zhang, et al., 2017). The AAL template was used

and the window size was optimized from [50, 60, …, 120] (step size

was set to 2). The number of clusters was optimized from [100,

200, …, 800]. Local clustering coefficients were used as features and

LASSO was used for feature selection (Chen, Zhang, Zhang, et al.,

2017). We compared the performance of dHOFC with that of PC or

SR. Due to the limited sample size, LOOCV was used to evaluate

performance.

4.3.2 | Results

As shown in Table 4 and Figure 5a, dHOFC outperformed PC and

SR. The MDD diagnosis accuracy (76.42%) based on dHOFC was

close to the upper limit of the accuracies in the parameter sensitivity

test (78.30%, Figure 5b). The suggested window length was 120 and

the suggested number of clusters was 100. Figure 5c shows that the

most frequently selected parameters are the same as the suggested

parameters. Importantly, the model seemed quite robust, as there was

a dominant parameter combination being selected (in ~95% of the

total LOOCV runs).

Each feature in the dHOFC network are not simple pairwise FC

links between two regions. Instead, each dHOFC feature constituted

several FC links with temporally synchronized FC dynamics. We visu-

alized four features that were consistently selected, each of which

was shown as a group of connections (Figure 5d). The connections

between the visual and sensorimotor networks, as well as the connec-

tions between the subcortical and cerebellar networks were indicated

to be contributive to the MDD classification, which are consistent

with the previous studies (Kaiser, Andrews-Hanna, Wager, &

Pizzagalli, 2015; Mulders, van Eijndhoven, Schene, Beckmann, &

Tendolkar, 2015; Zeng et al., 2012; Zheng et al., 2019).

4.4 | Application 4: dHOFC-based autism
spectrum disorder diagnosis

4.4.1 | Materials and methods

Autism spectrum disorder (ASD) is characterized by impairments in

social cognition, communication with narrow and repetitive behaviors

and interests (Lord, Cook, Leventhal, & Amaral, 2000). We adopted

the data from the Autism Imaging Data Exchange (ABIDE I) dataset

and performed an independent-center cross validation (i.e., leave-cen-

ter-out cross validation) to evaluate the generalization ability of our

network construction method from one center to another. ABIDE is a

consortium that provides collected rs-fMRI ASD and matched controls

data with the purpose of sharing data in the scientific community

(Di Martino et al., 2014; Zhao, Zhang, Rekik, An, & Shen, 2018).

Processed rs-fMRI data was downloaded from the Preprocessed Con-

nectomes Projects9. Data were selected from the DPARSF pipeline10

with the details listed elsewhere. The time series was extracted using

the AAL template. We selected 6 sites: (1) California Institute of Tech-

nology (Caltech, 19/18 ASD/controls), (2) Kennedy Krieger Institute

(KKI, 10/25 ASD/controls), (3) Social Brain Lab, Netherlands Institute

for Neuroscience (SBL, 14/12 ASD/controls), (4) San Diego State Uni-

versity (SDSU, 12/21 ASD/controls), (5) Stanford University

TABLE 3 The classification
performance of EC/EO by SGR, PC,
and SR

AUC ACC SPE Youden BAC SEN F-score Time

SGR 0.8927 79.79% 76.60% 59.98% 79.79% 82.98% 80.41% 4.81 hr

PC 0.7841 71.28% 70.21% 42.55% 71.28% 72.34% 71.58% 9.53 s

SR 0.4595 43.62% 44.68% −12.77% 43.62% 42.55% 43.01% 1.31 hr

Abbreviations: ACC, accuracy; AUC, area under ROC curve; BAC, balance accuracy; dHOFC, dynamics-

based HOFC; PC, Pearson's correlation; SEN, sensitivity; SGR, sparse group representation; SPE,

specificity; SR, sparse representation.

TABLE 4 The classification
performance of MDD/NC by dHOFC,
PC, and SR

AUC ACC SPE Youden BAC SEN F-score Time

dHOFC 0.7964 76.42% 73.58% 52.38% 76.42% 79.25% 77.06% 2.53 hr

PC 0.5931 60.38% 49.06% 20.76% 60.38% 71.70% 64.41% 13.83 s

SR 0.3300 33.96% 39.62% −32.08% 33.96% 28.30% 30.00% 0.73 hr

Abbreviations: ACC, accuracy; AUC, area under ROC curve; BAC, balance accuracy; dHOFC, dynamics-

based HOFC; MDD, major depressive disorder; PC, Pearson's correlation; SEN, sensitivity; SPE,

specificity; SR, sparse representation.
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(Stanford, 17/19 ASD/controls), and (6) Trinity Centre for Health Sci-

ences (Trinity, 21/23 ASD/controls). We left each of the six centers'

data out as a testing set (e.g., KKI) and used the data from remained

five sites (e.g., Caltech, SBL, SDSU, Stanford, and Trinity) as a training

set. We also built the dHOFC networks because of its established

sensitivity in brain disease diagnosis. We used 10-fold cross validation

in the inner cross-validation with the training data to optimize the

estimable parameters, window size and the number of clusters. The

parameter ranges were set to be the same as those in Section 4.3.1.

We implemented the same performance evaluation methods to evalu-

ate performance and generalization ability.

4.4.2 | Results

The dHOFC's performance in separating ASD subjects from the con-

trols ranged from 53.33% to 74.29% (61.04% ± 7.86%), according to

the leave-center-out cross validation. The suggested window length

was 90 and the suggested number of clusters for dHOFC network

construction was 400, based on the best performance. Our method

achieved generally acceptable performance even with a stringent

cross-center-validation.

5 | DISCUSSION

In this article, we presented an easy-to-use Matlab toolbox, Brain-

NetClass v1.0, for brain network construction and network-based

classification. The toolbox integrates state-of-the-art network con-

struction methods and provides a comprehensive and rigorous

solution of individualized rs-fMRI-based classification. It was

designed to encourage clinical applications using brain functional

networks derived from rs-fMRI. The target users are the clinicians

with data and domain knowledge but are less familiar with machine

learning. The toolbox provides a standard and widely-adopted

pipeline to minimize possible confusion with quite a lot freedom

such as parameter optimization. It generates multi-facet qualitative

(e.g., network visualization) and quantitative (e.g., model perfor-

mance and robustness) results and allows users to explore the con-

tributing features to further push the boundary of imaging-based

machine learning studies in the clinical field. Effectiveness of the

toolbox was proven by real rs-fMRI experiments with varied classi-

fication goals. The paper will be of broad interests to clinicians and

neuroscientists. BrainNetClass is the first toolbox that focused on

advanced network construction and network-based classification

result interpretation.

F IGURE 5 MDD versus NC classification results based on dHOFC, including the ROC curves of dHOFC, PC, and SR (a), parameter sensitivity
testing result (b), the model robustness testing result (c), and the top four contributing features (d). MDD, major depressive disorder
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5.1 | Algorithm selection determination

Our toolbox extends the conventional network construction (PC-

based FC network) to high-order FC networks and SR-based net-

works. It brings a new requirement to choose proper network con-

struction methods as previous toolboxes did not provide such an

option. While we separate these network construction algorithms into

two categories in the toolbox based on the requirement of parameter

optimization, we could also separate them into pairwise (PC, tHOFC,

aHOFC, and dHOFC) and multi-region-based methods (all the SR-

based algorithms). While the test–retest reliability of the PC and all

the HOFC algorithms has been verified (Zhang, Chen, et al., 2017), a

similar study has not been done for the SR-based network construc-

tion. Therefore, if users want to use proved reliable network construc-

tion methods, PC, tHOFC, and aHOFC are suggested. Compared to

PC, tHOFC and aHOFC are more robust to noise and, most impor-

tantly, they could provide supplementary information to PC (Zhang,

Chen, et al., 2016; Zhang, Giannakopoulos, et al., 2019). From another

viewpoint, only dHOFC utilizes dynamic FC, while all other methods

still focus on static FC. These general considerations should be taken

when choosing network construction algorithms.

Network construction method could be chosen based on specific

research question. For example, it has been shown that there are

fewer differences in the PC-based static FC networks comparing

patients with mental disorders with NCs (Zheng et al., 2019). Instead,

dynamic FC could reveal more subtle differences associated with

mental disorders (Demirtaş et al., 2016; Kaiser et al., 2016; Rashid,

Damaraju, Pearlson, & Calhoun, 2014). By using dynamic FC, dHOFC

could capture higher level of complex interactions among brain

regions and might perform better than the conventional low-order

static FC approaches (Zheng et al., 2019). Since most biological net-

works are intrinsically sparse (Rubinov & Sporns, 2010), SR has been

widely used in biological signal analysis, such as electroencephalogra-

phy (EEG) (Wen, Jia, Lian, Zhou, & Lu, 2016; Zhang, Zhou, et al., 2016;

Zhang et al., 2018) and rs-fMRI studies (Lv et al., 2015; Suk, Wee,

Lee, & Shen, 2015). Another advantage of the SR-based brain network

construction is that weak FCs that might be highly affected by noise

and artifacts can be suppressed without an arbitrarily defined thresh-

old (Wee et al., 2014). Therefore, for data with potentially higher

noise level (e.g., the temporal signal-to-noise ratio is smaller than

50 (Murphy, Bodurka, & Bandettini, 2007), or the subject's head

motion is relatively large with mean frame-wise displacement larger

than 0.25 mm (Shen et al., 2016)), SR-based methods can be used to

suppress the excessive noise. Of note, the parameter(s) associated

with this type of methods should be tuned rather than preset to

achieve an adaptive sparsity adjustment to specific datasets. Users

are recommended to assess model robustness and parameter sensitiv-

ity according to Sections 2.3.4 and 2.3.5. Users are also advised to

check Section 2.1.2 for specific benefits that each method can offer.

For example, the WSR, WSGR, and SLR methods can make the esti-

mated network more biologically meaningful (Qiao et al., 2016; Yu

et al., 2017). If certain subjects have relatively higher level of noise

and artifacts compared to others, the PC-based networks could show

excessive individual variability that could overwhelm a true group

effect. The group-wise sparse representation, such as GSR or SSGSR,

can make the networks topologically more identical across subjects

and facilitate classification (Zhang, Zhang, et al., 2019).

We advise the user to include the results from PC and SR as base-

line methods (see Section 3.2), as these two methods are traditionally

used to estimate full correlation and partial correlation, respectively.

Their results can be served as baseline to compare with that from a

more advanced network construction method. By comparing their

results, users can have a better understanding of the advanced net-

work construction methods and the benefit they could offer.

5.2 | Comparison with other similar toolboxes

There exist several freely available packages for machine learning

study with neuroimaging data, including PyMVPA, Sci-kit Learn,

PRoNTo, and GraphVar. We briefly compare them with our toolbox,

as summarized in Table 5. PyMVPA (Hanke et al., 2009) and Scikit

Learn (Abraham et al., 2014) are two sophisticated and flexible soft-

ware packages primarily written in Python. The wide applications of

these two packages allow them to be easily combined with other neu-

roimaging and machine learning packages. See many applications to

magnetoencephalography (MEG), EEG, structural MRI, and fMRI

(Abraham et al., 2014; Guntupalli, Feilong, & Haxby, 2018; Hanke

et al., 2009). However, these two packages only provide command

line-based analysis without any GUI, which is not easy for less experi-

enced users to use. PRoNTo and GraphVar are both Matlab toolboxes

with GUI and provide abundant functions, including pattern recogni-

tion analysis of neuroimaging data. PRoNTo aims at providing a com-

prehensive and user-friendly framework for multivariate analysis of

neuroimaging data (Schrouff et al., 2013). GraphVar provides

pipelined machine learning-based model construction, validation, and

exploration, which can use various graph attributes to model their

relationship with other variables, thus is quite flexible in different neu-

roimaging applications (Kruschwitz et al., 2015; Waller et al., 2018).

Compared to our toolbox, these toolboxes did not provide plenty

(if any) state-of-the-art network construction methods such as the

SR-based algorithms and the high-order network construction

methods. We think that the network construction is as equal as, if not

more important than, classification, and that the network construction

is becoming more and more important in the network neuroscience. A

good network construction method can play an important role in the

subsequent network-based classification.

Compared to these toolboxes, BrainNetClass provides compre-

hensive functions for result display, classification model evaluation,

and interpretation (Section 2.3). Many practical features that have

been reported in the previous disease classification studies are

included, such as saving important features for visualization and con-

structed networks visualization (Chen, Zhang, Lee, et al., 2017), as well

as parameter sensitivity test (Yu et al., 2017; Zhang, Zhang, et al.,

2019). Some features that are essential for clinical applications such

as model robustness test were not even reported in the previous
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studies. The above mentioned features are all provided by our tool-

box. For advanced users, we also provided command line mode for

more flexible and efficient analysis.

5.3 | Compatibility and computational requirement

The toolbox works well with Matlab 2016a and all later versions on a

Linux desktop computer or Windows Personal Computer or comput-

ing servers. All the experiments were performed on a Windows-based

desktop computer, with 64 GB memory, i7-8700K CPU @ 3.70 GHz.

We show the computational time of each experiment in Tables 2, 3,

and 4.

For a typical desktop personal computer with 2–4 cores and

8–16 GB physical memory, it can meet the computation requirement

of ~100 samples with a small range of parameters to estimate. For the

methods requiring no parameters, it can handle a larger sample size

and will not take too long to finish the whole process. For methods

requiring parameter tuning, BrainNetClass can distribute network con-

structions with different combinations of the parameter(s) to different

CPU cores using the Matlab parallel computing modules to save com-

putational time. We also provide 10-fold cross validation if the study

involves a larger sample size, as it will significantly decrease the com-

putational time. The computational time and resource is proportional

to the sample size. The prediction performance and its stability expo-

nentially increased with sample size as suggested by Cui and Gong

(2018). They also found that the average prediction accuracy and its

stability appear to reach plateau when sample size reaches 200–300,

regardless of the classification algorithm used and a minimum sample

size of 200 is recommended (Cui & Gong, 2018). For studies involving

such sample size, we recommend using a computer with more physi-

cal memory (e.g., at least 32 GB for ~200 samples or larger for more

samples). The computational time is also related to the ROI template

used to extract the rs-fMRI time series. We compared the computa-

tional time in the EC/EO classification experiment using the Dose-

nbach's 160-ROI atlas (Dosenbach et al., 2010) to extract time series.

The computational time increased to about 6.68 hr compared to that

with 116 ROIs (4.81 hr) and the computational complexity also

increased.

5.4 | Limitations and future works

We provide BrainNetClass to meet the urgent call for standardization

of the methodology with an emphasis on (re-evaluation of) the repro-

ducibility, generalizability, and interpretability of the (existing)

network-based classification. It is yet in its first official version and

unavoidably has limitations. First, it now only allows users to conduct

two-class classification. We will add support vector regression (SVR)

and multi-class classification in the future. Second, more feature

extraction options will be provided beyond the current two type of

features (FC links and local clustering coefficients) to better character-

ize network topology and further boost classification performance.

Third, more sophisticated feature selection methods, such as

ElasticNet and SVM wrapped method (recursive feature elimination

(Duan, Rajapakse, Wang, & Azuaje, 2005)), might be implemented in

the future. Fourth, more options of classifiers, such as random forest

and Naïve Bayes, could be provided, and the final classification result

may come from the ensemble of multiple classifiers to improve perfor-

mance. Of note, the toolbox focuses more on brain network

TABLE 5 Comparison of the main features of the available software packages

PyMVPA Scikit-learn PRoNTo GraphVar BrainNetClass

Inputs Numpy arrays, *.txt,

NIFTI, EEP

Numpy arrays, metadata,

*.txt, *.csv

MRI/fMRI feature

maps (NIFTI)

Time series, connectivity

matrix (*.mat)

Time series (*.

txt,*.csv)

Language Python Python Matlab Matlab Matlab

Voxel/network-wise Voxel Voxel/network Voxel Network Network

Interface Command line Command line GUI, command line GUI GUI, command

line

Static or dynamic FCa Static Static Static Static, dynamic Static, dynamic

Result displayb × × ✓ ✓ ✓

Network construction × × × ✓ ✓

High-order FC × × × × ✓

SR (and its variants) × × × × ✓

Contributing features × × ✓ ✓ ✓

Parameter sensitivity/

robustness test

× × × ✓c ✓d

Abbreviations: FC, functional connectivity; GUI, graphical-user-interface; SR, sparse representation.
aDynamic FC means whether toolbox provides any direct package to let the users calculate dynamic FC.
bResult display means displaying some of the results directly on the software panel.
cModel robustness test is performed in GraphVar via permutation test.
dFor network construction methods with freely estimable parameter(s).
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construction and it will include more flexible machine learning strate-

gies in its future version. Fifth, more complex network definitions

(e.g., hyper-connectivity-based network (Jie, Wee, Shen, & Zhang,

2016)) and more dynamic FC-based network construction methods

(e.g., the variability of the dynamic FC (Chen, Zhang, Zhang, et al.,

2017)) should be added. Other effective inter-regional interaction

parametrization methods (e.g., tangent-based parametrization of

covariances (Dadi et al., 2019)) should be included. In addition, com-

bining different networks (constructed by different methods) into

ensemble learning could be promising in which the supplementary

information provided by different network construction methods can

be effectively fused to achieve better classification performance.

Sixth, the optimization of parameters for network construction and

classification could be the most important yet difficult problem in the

current studies. At present, we only allow at most two freely estima-

ble parameters at the current stage to compromise between the com-

putational time/memory required and the model flexibility. In the

future, with well-designed parameter optimization strategies

(e.g., adaptive parameter range determination), we might allow more

parameters to be simultaneously optimized, such as hyper-parameter

tuning in SVM. Finally, SSGSR and GSR require all data to construct

the brain network, which reduced the flexibility of both methods. This

could be solved by developing a transfer learning-based model for

brain network construction for the testing subjects. The brain net-

works constructed by SSGSR from training sets could be used as ref-

erences and as prior constraints into a subsequent sparse

representation-based model for the testing subjects.

6 | CONCLUSIONS

We introduce a novel, Matlab GUI-based, open-coded, fully automated

brain functional network construction and classification toolbox, namely

BrainNetClass. It allows users to construct brain networks with

advanced methods and conduct rigorous feature extraction/selection,

parameter optimization, classification, and model evaluation in a stan-

dard and well-accepted framework. This toolbox is friendly to neurosci-

entists and clinicians for facilitating their function connectomics-based

disease diagnosis or classifications with comprehensive yet intuitive and

interpretable results. It is helpful for standardizing the methodology and

boosting the clinical application of neuroimaging-based machine learn-

ing with improved reproducibility, generalizability, and interpretability.

The toolbox, manual, and exemplary datasets are available at https://

github.com/zzstefan/BrainNetClass.
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