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After publication of this supplement [1, 2], it was
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uting author while in fact they didn't contribute in the
following abstracts. In addition affiliations were listed
where in fact there were no contributing authors affili-
ated with them in the following abstracts. This has now
been included in this correction.
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Background
Multispectral immunofluorescent (mIF) staining of
formalin-fixed paraffin-embedded (FFPE) tissue allows
spatially-resolved quantitative analysis of cell position
and protein expression. The design and validation of
mIF panels is a challenge. Our goal was to develop a
7-plex assay for characterizing PD-1 and PD-L1 expres-
sion, with high sensitivity for multiple markers and min-
imal bleed-through between fluorescent channels, while
avoiding steric hindrance among markers occupying the
same cellular compartment.

Methods
Single IF slides were stained for PD-1, PD-L1, CD8,
FoxP3, CD163, and a tumor marker (e.g. Sox10/S100 for
melanoma) using primary antibodies at manufacturer’s
recommended concentrations and visualized with an Opal
kit (PerkinElmer). Positive signal was compared to
chromogenic IHC (n=3 tonsil specimens). In some in-
stances, the kit’s HRP-polymer was substituted for one
that provided greater amplification. Primary antibody ti-
trations were performed, and the concentration with com-
parable signal to chromogenic IHC that showed the
highest IF signal to noise ratio was selected. Using the se-
lected primary antibody concentration, TSA dilution series
were performed on n=5 tumor specimens to minimize
bleed-through. Finally, the optimized single IF stains were
combined into multiplex format, which was again vali-
dated to ensure no positivity loss. Images were scanned
with the Vectra 3.0 and processed using inForm (Ver 2.3).

Results
The percent positive pixels for CD163, CD8, and tumor
marker expression by IF were comparable to chromo-
genic IHC with manufacturer’s recommended protocols
(p>0.05). However, PD-1, PD-L1, and FoxP3 showed
~50% loss of signal (p<0.05), which was recovered by re-
placing the Opal kit's secondary HRP polymer with
PowerVision (Leica). Unbalanced fluorescence intensities

between 540 to 570 Opal dyes resulted in significant
bleed-through and led to false positive pixels. This error
was minimized >2 fold (2.5% to 1.1%) by concentrating
the 570 dye and ensuring that this dye pair was used to
study markers in different cellular compartments (nu-
clear FoxP3 vs. membrane CD8), so any residual
bleed-through could be discounted during image ana-
lysis. Using the optimized panel, we are able to reliably
identify cell types contributing PD-L1 and PD-1 to the
TIME, and even resolve populations of PD-1high vs.
PD-1low lymphocytes.

Conclusions
We demonstrate successful optimization of a 7-color
multiplex panel characterizing the PD-1/PD-L1 axis to
provide high quality data sets for whole slide or regional
analysis of the TIME. With the use of multiparametric
assays such as this, we hope to guide improved ap-
proaches to patient selection and potentially identify
additional tumor types likely to respond to anti-PD-(L)1
immunotherapy.

Ethics Approval
The study was approved by Johns Hopkins University
Institutional Review Board.
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Background
Based on demonstrated clinical activity and manageable
safety profiles, checkpoint inhibiting antibodies block-
ing PD 1, PD-L1, or CTLA-4 have received regulatory
approvals for the treatment of various malignancies
[1-5]. The combination therapy with anti-PD-1 and
anti-CTLA-4 agents is approved by FDA for metastatic
melanoma, renal cell carcinoma and microsatellite
instability-high (MSI-H) or mismatch repair deficient
(dMMR) metastatic colorectal cancer, based on im-
proved overall survival versus either agent alone [6-10].
Numerous clinical studies of combination immunother-
apy are currently investigating the same combination
across a range of solid tumors [11- 15]. Although the
efficacy of these drug combinations is dose dependent,
the toxicity associated with anti-CTLA-4 agents, in par-
ticular, is dose limiting, thereby potentially affecting treat-
ment outcomes with combination therapy.- MEDI5752 is
a bispecific humanized IgG1 monoclonal antibody that
binds PD-1 and CTLA-4. In contrast to the combination
therapy, MEDI5752 exhibits a novel T cell targeting
mechanism that could provide a favorable toxicity
profile. In addition, we have shown that MEDI5752
can impact cell surface expression of PD-1. Based on
these novel mechanisms of action, MEDI5752 may
show improved efficacy and safety in comparison to
co- administration of conventional anti-PD1/anti-PD-
L1 and anti-CTLA-4 antibodies.

Methods
This is a Phase 1, first-time-in-human, multicenter,
open-label study in patients with advanced solid
tumors. The dose-escalation phase will evaluate ap-
proximately six MEDI5752 dose levels to identify a
maximum tolerated dose. Dose escalation will be
followed by two dose-expansion cohorts in defined
setting with patients with advanced or metastatic
solid tumor and tested against a control arm. Subjects
will remain on treatment until confirmed progressive
disease, initiation of alternative cancer therapy, un-
acceptable toxicity, or other reason for discontinu-
ation. The primary endpoints are safety and efficacy
(objective response in the dose-expansion phase).
Secondary endpoints include additional efficacy as-
sessment across both phases, pharmacokinetics, and
immunogenicity.

Trial Registration
NCT03530397
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Background
MIW815 (ADU-S100) is a novel synthetic cyclic di-
nucleotide that can activate human STING (STimulator
of INterferon Genes) in antigenpresenting cells. In pre-
clinical models, STING pathway activation can induce
tumor antigen-specific T-cell priming within the tumor
microenvironment, leading to antitumor immunity and
tumor destruction.

Methods
Eligible patients (≥2 accessible tumors; Eastern Cooperative
Oncology Group Performance Status ≤1) include those
with advanced/metastatic solid tumors or lymphomas with
progressive disease despite standard of care or for whom
there is no standard treatment.
MIW815 (ADU-S100) is administered by weekly intratu-
moral injections (3 weeks on/1 week off ) at escalating
doses (starting dose: 50μg) in 28-day cycles. Primary
objectives are to characterize safety and tolerability and
to identify a recommended dose for future studies.
Secondary objectives include preliminary efficacy,
pharmacokinetics (PK), and pharmacodynamics (PD).
The study is currently in dose escalation.

Results
As of June 15, 2018, 41 heavily pretreated patients
(median age 62 years; range 26–80 years) with various
solid tumors or lymphomas were enrolled. Thirty-five
patients have discontinued from the study for the fol-
lowing reasons: disease progression (n=26), physician/
patient decision (n=8), and death (n=1); 6 patients
continue to receive treatment. No dose-limiting toxic-
ities (DLTs) were reported during the first cycle at any
dose level. The most common (≥10% of patients)
treatment-related AEs (TRAEs) were pyrexia (n=7;
17.1%), injection site pain (n=6; 14.6%), and headache
(n=6; 14.6%). Grade 3/4 TRAEs included increased
lipase (n=2; 4.9%) and elevated amylase, tumor pain,
dyspnea, respiratory failure, and injection site reaction
(n=1 each; 2.4%). Systemic MIW815 (ADU- S100) ex-
posure increased with dose. On-treatment tumor bi-
opsies showed increases in CD8 T cells infiltrating the
injected tumors in a subset of patients. Preliminary
antitumor activity, PK analysis, and PD data from
injected lesions, noninjection lesions, and peripheral
blood, will be presented.

Conclusions
Intratumoral injection of MIW815 (ADU-S100) was well
tolerated in doses tested thus far in patients with
advanced solid tumors and lymphoma, with no DLTs
reported to date. Trials evaluating combinations of
MIW815 (ADU-S100) with anti-PD1 or anti-CTLA4
antibodies are ongoing.
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Ethics Approval
This study was approved by an independent ethics
committee or institutional review board at each site.

P383
Combination therapy with M7824 (MSB0011359C)
and NHSmuIL12 enhances antitumor efficacy in pre-
clinical cancer models

Chunxiao Xu, PhD2, Bo Marelli2, Jin Qi2, Guozhong Qin2,
Huakui Yu2, Molly Jenkins2, Kin-Ming Lo2, Joern-Peter
Halle2, Yan Lan, MD2

2EMD Serono Research and Development, Belmont,
MA, USA
Correspondence: Yan Lan (yan.lan@emdserono.com)
Journal for ImmunoTherapy of Cancer 2018, 6(Suppl
1):P383

Colleen Stanton was not a contributing author and
has therefore been removed from the author list in
this correction article. The redundant affiliation
Nucleus Global as shown on the original article is no
longer listed on this correction article.

Background
PD-1/PD-L1 pathway inhibition is a clinically validated
approach in cancer therapy. However, most patients do
not respond to the monotherapy due to multiple immuno-
suppressive mechanisms. Combining anti-PD-1/ PD-L1
with other immunotherapeutic agents targeting additional
immunomodulatory pathways in the tumor microenviron-
ment (TME) is one strategy to overcome resistance and
improve response rates. M7824 is an innovative
first-in-class bifunctional fusion protein composed of two
extracellular domains of TGF-β receptor II (a TGF-β
“trap”) fused to a human anti-PD-L1 IgG1 monoclonal
antibody. Through simultaneous blockade of the PD-L1
and TGF-β pathways, M7824 demonstrated enhanced
anti-tumor activity in preclinical models [1]. NHS-IL12,
and the surrogate NHS- muIL12, are immunocytokines
designed to target tumor necrotic regions to deliver IL-12
into the TME, where they can activate NK cells and CD8+
T cells to increase their cytotoxic functions. The surrogate
NHSmuIL12 has demonstrated antitumor efficacy in pre-
clinical models [2].
This study is designed to investigate whether M7824
treatment may further benefit from combination therapy
with NHS-muIL12.

Methods
Mice bearing MC38, EMT-6, or 4T1 tumors were
treated with M7824, NHS-muIL12, or combination
therapy. Tumor growth and survival were assessed in

each model, and tumor recurrence following remis-
sion and rechallenge was evaluated in the EMT-6
model. Immune cell populations in the spleens and
tumors were evaluated by flow cytometry and the
frequency of tumor antigen-reactive IFNγ-producing
CD8+ T cells was evaluated by an ELISpot assay in
the MC38 model.

Results
Combination of M7824 and NHS-muIL12 enhanced
antitumor activity and extended the survival relative
to either monotherapy in preclinical tumor models.
Combination therapy also enhanced the proliferation,
infiltration, and cytotoxicity of CD8+ T cells relative
to monotherapies. In addition, the combination ther-
apy increased the frequency of tumor antigenreactive
T cells and induced the generation of tumor-specific
immune memory, as demonstrated by protection
against tumor rechallenge.

Conclusions
These data demonstrate that combination therapy
with M7824 and NHS-muIL12 improved anti-tumor
efficacy in multiple preclinical tumor models and
suggest that combining these therapies may be a
promising therapeutic strategy for patients with solid
tumors.
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Background
Lenvatinib is a multikinase inhibitor of VEGFR 1−3,
FGFR 1−4, PDGFRα, RET, and KIT. Pembrolizumab,
an anti-PD-1 antibody, is approved for the first-line
treatment of patients with advanced melanoma, with
objective response rates (ORR) of 21–34% [1,2]. Pre-
clinical studies indicate that lenvatinib decreases the
population of tumorassociated macrophages, increases
CD8+ T cell infiltration, and augments the activity of
PD-1 inhibitors; therefore, lenvatinib is a rational
combination partner for pembrolizumab [3,4]. We re-
port interim results of an ongoing phase 1b/2 trial
evaluating lenvatinib in combination with pembrolizu-
mab in patients with solid tumors, focusing on the
advanced melanoma cohort.

Methods
In this multicenter, open-label study (NCT02501096),
patients with measurable, confirmed, metastatic melan-
oma and ECOG performance status ≤1 received lenvati-
nib (20 mg/day orally) + pembrolizumab (200 mg
Q3W, IV). Patients were not preselected based on
PDL1 status. Tumor assessments were performed by
study investigators using immune-related RECIST
(irRECIST). The phase 2 primary end point was ORR at
24 weeks (ORRWK24). Secondary end points included
ORR, progression-free survival (PFS), and duration of
response (DOR).

Results
At the data cutoff of March 1, 2018, 21 patients were en-
rolled: 14 (67%) patients were PD-L1(+), 4 (19%) were
PD-L1(-), 3 (14%) were not tested; and 38% of patients
had ≥1 prior anticancer therapy. The primary end point
of ORRWK24 was 47.6% (95% CI, 25.7–70.2). Additional
efficacy outcomes are summarized in the table (Table 1).
All patients experienced ≥1 treatment-related adverse
event (TRAE). Grade 3 and 4 TRAEs occurred in 13
(62%) and 1 (5%; adrenal insufficiency) patients respect-
ively. There were no fatal TRAEs. The most common
any-grade TRAEs were fatigue (52%), decreased appetite
(48%), diarrhea (48%), hypertension (48%), dysphonia
(43%), and nausea (43%). Dose reduction and interrup-
tion due to TRAEs occurred in 13 (62%) and 10 (48%)
patients, respectively.

Conclusions
The lenvatinib and pembrolizumab combination regi-
men was welltolerated and demonstrated encouraging
clinical activity. The combination may potentially

improve upon the antitumor activity of antiPD-1 mono-
therapies, supporting further evaluation of this regimen
in patients with advanced melanoma.

Trial Registration
NCT02501096
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Background
Lenvatinib is a multikinase inhibitor of VEGFR 1−3,
FGFR 1−4, PDGFRα, RET, and KIT. Pembrolizumab, an
anti-PD-1 antibody, is approved as a monotherapy for
previously treated patients with metastatic PD-L1–
positive (tumor proportion score [TPS] ≥1%) non-small
cell lung cancer (NSCLC), with an objective response rate
(ORR) of 18% [1]. We report interim results of an on-
going phase 1b/2 trial evaluating lenvatinib in com-
bination with pembrolizumab in patient with solid
tumors, focusing on the metastatic NSCLC cohort.

Methods
In this multicenter, open-label study (NCT02501096),
patients with measurable, confirmed metastatic NSCLC
and ECOG performance status ≤1 received lenvatinib
(20 mg/day orally) and pembrolizumab (200 mg Q3W,
IV). In the phase 2 portion, patients must have had ≤2
prior lines of systemic therapy; there was no limit for
phase 1b. Patients were not preselected based on
PD-L1 status. Tumor assessments were performed by
study investigators using immune-related RECIST
(irRECIST). The phase 2 primary end point was ORR
at 24 weeks (ORRWK24). Secondary end points
included ORR, progressionfree survival (PFS), and
duration of response (DOR).

Results
At the data cutoff of March 1, 2018, 21 patients were en-
rolled. 9 (43%) Patients were PD-L1(+) (TPS ≥1%); 5
(24%) were PD-L1(-); 7 (33%) were not tested. 3 (14%)
Patients were treatment-naïve; 7 (33%), 10 (48%), and 1
(5%) patients had 1, 2, and ≥3 prior lines of systemic
therapy, respectively. The primary end point of
ORRWK24 was 33.3% (95% CI, 14.6–57.0). Additional
efficacy outcomes are summarized in the table (Table 1).
Grade 3 and 4 treatment-related adverse events (TRAEs)
occurred in 10 (48%) and 1 (5%; increased aspartate ami-
notransferase) patients, respectively. There was 1 fatal
TRAE (exsanguination; deemed “possibly related” to
study treatment). The most common grade 3 TRAEs
were hypertension (24%), fatigue (14%), diarrhea (14%),
proteinuria (10%), and arthralgia (10%).

Conclusions
The combination of lenvatinib and pembrolizumab showed
promising clinical activity with a manageable safety profile in
previously treated patients with metastatic NSCLC who were
not preselected for PD-L1 status. Further study is warranted.

Trial Registration
NCT02501096
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Background
Pembrolizumab, an anti-PD-1 antibody, is approved in the
secondline setting for patients (objective response rate
[ORR] 21%) with advanced/metastatic urothelial cancer
and in the first-line setting for patients who are ineligible
for cisplatin with combined positive score ≥10 or ineligible
for platinum-based chemotherapy, with ORR (overall ORR
29%) [1–3]. However, there is still an unmet need for effect-
ive therapeutic options for advanced urothelial cancer. Len-
vatinib is a multikinase inhibitor of VEGFR 1-3, FGFR 1-3,
PDGFRα, RET and KIT. Tyrosine kinase inhibitors, such as
lenvatinib, have demonstrated activity in urothelial cancer
and may reverse the immunosuppressive environment that
leads to immuno-oncology (IO) therapy failure. Here we
present a phase 1b/2 trial to determine the safety and effi-
cacy of lenvatinib in combination with pembrolizumab in
patients with advanced urothelial cancer.

Methods
In this multicenter, open-label study (NCT02501096), pa-
tients with confirmed metastatic urothelial cancer and an
ECOG PS of 0 or 1 received lenvatinib 20 mg orally
once daily and 200 mg pembrolizumab intravenously
every 3 weeks. Patients were not preselected based on
PD-L1 status. The phase 2 primary end point was
ORR at week 24 (ORRwk24), as assessed by study in-
vestigators using immune-related RECIST (irRECIST).
Secondary end points included ORR, duration of re-
sponse (DOR), and progression-free survival (PFS).

Results
At the time of data cutoff (March 1, 2018), 20 patients
were enrolled. 9 (45%) Patients were PD-L1(+); 5 (25%)
were PD-L1(-); 6 (30%) were not tested. 4 Patients (20%)
were treatment-naïve, whereas 11 (55%) and 5 (25%) pa-
tients had had 1 and 2 lines of prior anticancer therapies,
respectively. No patient had received prior IO therapy.
The primary end point of ORRwk24 was 25% (95% CI:
8.7–49.1). Additional efficacy outcomes are summarized
in the table (Table 1). 18 (90%)
Patients experienced treatment-related adverse events (TRAEs).
Grade 3 and 4 TRAEs occurred in 5 (25%) and 5 (25%)
patients, respectively. There was 1 fatal TRAE (gastro-
intestinal hemorrhage). The most common any-grade
TRAEs were proteinuria (45%), diarrhea (40%), fatigue
(30%), hypertension (30%), and hypothyroidism (30%).

Conclusions
The tyrosine kinase inhibitor (lenvatinib) and immuno-
therapy (pembrolizumab) regimen demonstrated activity

in this study, which included patients receiving later-line
treatment. The combination of lenvatinib and pembroli-
zumab deserves further investigation in patients with
metastatic urothelial cancer.

Trial Registration
NCT02501096
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Background
The anti-cancer effect of bacteria has a long history. Ac-
cording to Bierman et al., spontaneous remission of cancer
has been observed in patients with severe bacteremia [1].
The reason was not revealed at that time, but we studied
that in breast cancer. There are four main ways in which
microbiota affects cancer: probiotics, prebiotics, drugs that
target microbial enzymes and microbial products that have
anticancer properties [2]. Among them, bacterial extracellu-
lar vesicles(EVs) are one of microbial products. In this
study, we investigated the effects of bacterial EVs on the
growth of breast cancer cells and tamoxifen efficacy.

Methods
Here, we analized microbiota of urine samples by NGS to
select the target EVs that were expected to affect the growth
of breast cancer cells. A total of 347 female urine samples –
from 127 breast cancer patients (cancer group) and 220
normal individuals (control group) – were collected and an-
alyzed by NGS using a universal bacterial primer of 16S
rDNA. Human breast cancer cells were cultured, and the
cells were treated with EVs of S. aureus and K.pneumoniae
for 72 h. Real-time polymerase chain reaction (PCR) and
Western blotting for signalling molecule analysis were per-
formed after treatment of EVs in each breast cancer cell.

Results
There was a significant difference in the distribution of bac-
terial EVs between the urine samples from breast cancer
patients and from normal controls. Especially, S.aureus EVs
were predominant in the normal group, and K.pneumoniae
was abundant in the breast cancer group. Therefore, we
selected these two bacterial EVs that may have an effect on
breast cancer cell growth. We found that S.aureus and
K.pneumoniae EVs down-regulated cell growth in
MDA-MB-231 cells. We also found that S.aureus or
K.pneumoniae EVs had a synergic effect on growth inhib-
ition of while co-treated with tamoxifen. S.aureus EVs
down-regulated mRNA expression of cyclin E2 and up-
regulated that of TNF-alpha which was related ERK path-
way while co-treated with tamoxifen.

Conclusions
The anti-cancer effect of S.aureus and K.pneumoniae was
initiated by its bacterial EVs and consequently inhibited the
growth of breast cancer cells in triple negative breast cancer
cells and improved the efficacy of tamoxifen in ER-positive
cells. In the near future, we plan to conduct animal studies
which are expected to further clarify the effect of bacterial
EV on breast cancer.

Ethics Approval
The study was approved by Ewha Womans University
Medical Center‘s Ethics Board.

Consent
Written informed consent was obtained from the patient
for publication of this abstract and any accompanying
images. A copy of the written consent is available for re-
view by the Editor of this journal.
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Background
FAZ053 and spartalizumab are humanized immuno-
globulin G4 monoclonal antibodies (mAbs) that bind
anti-programmed death ligand-1 (PD-L1) and pro-
grammed death-1 (PD-1), respectively. We report the
dose-escalation results from an ongoing Phase I study
of FAZ053 ± spartalizumab in patients with advanced
malignancies, enriched for patients with chordoma, a
rare subtype of sarcoma.
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Methods
Patients received escalating doses of single-agent (SA)
FAZ053 intravenously once every 3 weeks (Q3W) or 6
weeks (Q6W), or FAZ053 + spartalizumab Q3W. The
primary objective was to assess the safety and tolerability
of FAZ053 ± spartalizumab, and determine recom-
mended doses for expansion (RDEs). Dose escalation
was guided by an adaptive Bayesian logistic regression
model following the escalation with overdose control
principle.

Results
As of the data cutoff of March 30, 2018, 61 patients re-
ceived SA FAZ053 at doses 80–1600 mg Q3W or 800–
1600 mg Q6W. Most patients (n=54; 89%) received prior
treatment; 1 (2%) received prior anti-PD-1. FAZ053 ex-
posure was generally dose proportional, with terminal
half-life of ~16–18 days. A dose-limiting toxicity oc-
curred in 1 patient (Grade 4 renal failure; FAZ053 1600
mg Q6W). RDE was determined to be 1200 mg Q3W or
1600 mg Q4W. Adverse events (AEs) of all grades
assessed as possibly related to treatment were reported
for 33 patients (54%); most commonly (≥10%) fatigue
(n=11;18%) and pruritus (n=8; 13%); 4 patients (7%) had
Grade 3/4 treatment-related AEs, including elevated
amylase (3%), renal failure, elevated lipase, elevated AST,
and elevated blood CPK (each 2%). For these patients
treated with SA FAZ053, partial responses (PRs) were
demonstrated in 4 patients (7%) with chordoma, alveolar
soft part sarcoma (ASPS), poorly differentiated carcin-
oma of scalp, and penile squamous cell carcinoma (dur-
ation of treatment 5.5–12.5 months; all with treatment
ongoing). Among 5 patients with chordoma treated with
SA FAZ053, 1 patient has a PR, treatment ongoing >12
months, and 4 patients have stable disease ongoing (+4%
to –29%). Data for 57 patients treated with combination
FAZ053 (20–1200 mg) + spartalizumab 300 mg Q3W
are preliminary. Updated results and biomarker data for
patients receiving SA and combination treatment,
including additional patients with chordoma, will be
presented.

Conclusions
SA FAZ053 was well tolerated and the RDE was deter-
mined to be 1200 mg Q3W. Clinical activity was ob-
served in a range of indications including chordoma, a
rare tumor without standard therapy options.

Trial Registration
www.clinicaltrials.gov; NCT02936102
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This study was approved by an independent ethics committee or
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