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Abstract: Daqu provides functional microbiota and various nutrients for artificial pit mud (APM) cul-
tivation. However, little is known about whether its attributes affect the microbiome and metabolome
of APM. Here, two types of APM were manufactured by adding fortified Daqu (FD) and conventional
Daqu (CD); they were comprehensively compared by polyphasic detection methods after being used
for two years. The results showed that FD altered the prokaryotic communities rather than the fungal
ones, resulting in increased archaea and Clostridium_sensu_stricto_12 and decreased eubacteria and
Lactobacillus. Correlation analysis suggested that these variations in community structure promoted
the formation of hexanoic acid, butyric acid, and the corresponding ethyl esters, whereas they inhib-
ited that of lactic acid and ethyl lactate and thus improved the flavor quality of the APM. Notably,
pH was the main driving factor for the bacterial community variation, and the total acid mediated
the balance between the stochastic and the deterministic processes. Furthermore, the results of the
network analysis and PICRUSt2 indicated that FD also enhanced the modularity and robustness of
the co-occurrence network and the abundance of enzymes related to hexanoic acid and butyric acid
production. Our study highlights the importance of Daqu attributes in APM cultivation, which are of
great significance for the production of high-quality strong-flavor Baijiu.

Keywords: artificial pit mud; fortified Daqu; community assembly; co-occurrence network;
metabolic function

1. Introduction

Baijiu not only has a long history but also has attributes of the traditional Chinese
culture [1]. Among the 12 main categories, strong-flavor Baijiu (SFB) is the most popular
and occupies about 70% of the Baijiu market in China [2]. One of the unique characteristics
of SFB production is the solid-state fermentation process carried out anaerobically in an
underground mud pit, which is a rectangular pit (approximately: 2 m × 3 m × 2 m) lined
by the special fermented clay called pit mud (PM) [3]. PM is an important sustained-
release source of the functional microbial consortia for SFB fermentation and plays an
essential role in the synthesis of hexanoic acid and butyric acid [4,5]. These two acids
can be esterified with ethanol to further produce ethyl hexanoate and ethyl butyrate, the
feature flavor compounds of SFB, resulting in an improved flavor quality of the fermented
grains (referred to as Zaopei) and fresh Baijiu [6,7]. However, the natural evolution of PM
microbiota is very slow during the brewing process and might need more than 20 years of
domestication uninterruptedly to produce high-quality SFB [8]. Therefore, it has become
one of the focuses of the development of the artificial PM (APM) manufacturing technology
since the 1960s [3].

APM manufacturing is a directional evolution process of functional consortia un-
der anaerobic conditions; yellow and black clays and peats are the main raw materials,
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while high-quality PM, functional strain, Huangshui and Daqu are the primary microbial
sources [9–11]. Traditionally, the main focus of APM improvement studies has been on the
different formulas, the functional strains, and the cultivation patterns and times due to the
scarcity of high-quality PM resources and the frequent degradation of aged PM [10–12].
However, the effects of Daqu on APM quality have received little attention, despite the
fact that it can provide the functional microorganisms, enzymes, and nutrients for APM
cultivation [10,11,13]. Notably, more than 30% of the bacterial communities, composed of
massive aerobes/facultative-aerobes and a few anaerobes in Daqu shared in both Zaopei
and the PM [5], and enormous fungi from Daqu also helped to maintain the fungal diversity
in the PM for promoting community development [14]. In addition, the interphase mass
transfer in the SFB brewing micro-ecosystem affects not only material metabolism but
also interspecies interactions [15,16] and was closely related to the Daqu attributes. For
example, the contents of hexanoic acid and ethyl hexanoate in Zaopei and fresh Baijiu were
increased by regulating the interactions among the functional consortia when the fortified
Daqu (FD) inoculated with Bacillus was used [17,18]. Meanwhile, it was also conducive
to enhancing the abundance of hexanoic acid-producing bacteria and methanogenic ar-
chaea in PM after continuous use in multiple batches [19,20]. This might be related to
the antagonism between Bacillus and Lactobacillus frequently observed in Baijiu brewing
micro-ecosystems [21–23]. Bacillus was symbiotic with several members of Clostridia in PM
and contributed to the synthesis of hexanoic acid [9,24], while the high abundance of Lacto-
bacillus inhibited the growth of methanogens and consequently their interspecies hydrogen
transfer with Clostridium [25,26]. Therefore, we speculated that FD may also be conducive
to the promotion of the directional evolution of the APM microbial consortia, revealing that
its underlying mechanism is of great significance for the production of high-quality SFB.

In the present work, two types of APMs were manufactured and investigated through
an in situ experiment to explore the impact of FD on the community evolution of the APM.
After being used for SFB fermentation for two years, we compared the core microbes and
community structures via fluorescence in situ hybridization (FISH) and high-throughput
sequencing. Meanwhile, the metabolic profiles, the physicochemical properties, and their
correlation with the microbial communities were analyzed. Furthermore, the differences in
community assembly pattern, co-occurrence network, and metabolic function were also
evaluated to deepen our knowledge regarding the potential mechanism of FD improving
the quality of APM. This study promotes the understanding of the directional evolution
of microbial consortia and provides new insights for improving the quality and metabolic
activity of APM.

2. Materials and Methods
2.1. The Manufacture of Fortified Daqu

The manufacture of FD was carried out in Luzhou Lao Jiao Co., Ltd. (Luzhou, Sichuan,
China) according to our prior work [27]. Briefly, B. velezensis with a high yield of tetram-
ethylpyrazine and B. subtilis with a high yield of 4-ethylguaiacol were inoculated into
the water as the starter at the ratio of 1:1 after being cultured (37 ◦C, 24 h), and the final
concentration of the starter was 2.3 × 106 CFU/mL. Then, the starter was mixed with
crushed wheat to shape the Daqu brick (30 cm × 20 cm × 7 cm), which had a moisture
content of 34%~36%. The CD was produced in the same batch without inoculating the
starter. The FD and CD were collected after storage for three months, and the differences
in the enzymatic activity, microbial community, and volatile compounds between them
were examined [27].

2.2. The Artificial Pit Mud Manufacturing and Sample Collection

The APM manufacturing process is described in our previous study [11], with slight
modifications. Briefly, dried and smashed yellow clays were mixed with black clays and
peats at a ratio of 10:3:1 (w/w/w) to form the solid matrix. Then, the PM culture liquid was
mixed with tap water, tail liquor, and Huangshui (a by-product of SFB fermentation) at a
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ratio of 1:10:5:1.5 (v/v/v/v) to form the liquid matrix. After the Daqu was added at 5% by
weight of the solid matrix, the solid and liquid matrixes were evenly mixed at 1: 2 (w/v).
Finally, the mixture was piled outside, covered with polyester films and incubated at an
ambient temperature for 60 days. The PM culture liquid was obtained by inoculating 1% of
the aged PM (>50 years) into the semisynthetic medium and anaerobic fermentation for
20 days. The medium was composed of 5 g/L NaHCO3, 1 g/L yeast extract, 1 g/L peptone,
3 g/L glucose, 0.2 g/L cysteine hydrochloride, 170 mL/L salt solution A (3 g/L KH2PO4,
6 g/L NaCl, 3 g/L (NH4)2SO4, 0.3 g/L CaCl2, 0.3 g/L MgSO4), 170 mL/L salt solution B
(3 g/L K2HPO4), and 150 mL/L Huangshui.

The fortified APM (FPM) and conventional APM (CPM) were manufactured by adding the
FD and CD, respectively, and were further used to construct pits in Luzhou Lao Jiao Co., Ltd.
(Luzhou, Sichuan, China). Then, these pits were used for SFB fermentation with the
identified process parameter, raw material, and starter in the same workshop. After two
years, five pits lined with FPM and CPM, respectively, were randomly selected and a five-
point sampling method was used to take 100 g PM from the center and four corners of the
bottom surface (depth: 2 cm). After that, these five subsamples from each pit were mixed
uniformly as one biological sample, and a total of 10 biological samples (5 CPM + 5 FPM)
were obtained in this study. Each biological sample was divided into two parts. One was
stored at −80 ◦C for the analysis of the microbial communities, and another was stored at
4 ◦C for the detection of the physicochemical properties and metabolites.

2.3. Analysis of Microbial Community
2.3.1. Fluorescence In Situ Hybridization (FISH)

The 1.00 g APM and 25 mL sterilized PBS buffer (10 mmol/L, pH 7.2) were accurately
added into a 50 mL sterilized centrifuge tube and vortex mixed for 5 min. Then, the pooled
supernatant was obtained after centrifugation (800 r/min, 4 ◦C, 10 min) thrice and further
centrifuged (12,000 r/min, 4 ◦C, 10 min) to collect the precipitate, which was stored at
−20 ◦C after being washed thrice with the PBS buffer. According to the conditions and
procedures described by our previous study [17], FISH was used to detect the composition
of the core microbes through several targeted probes. All probes were synthesized with the
dye Cy3 at the 5′ end by Sangon (Shanghai, China), and the detailed information is shown
in Table S1.

2.3.2. High-Throughput Sequencing

The total DNA of the APM sample was extracted using the Fast DNA SPIN extraction
kit (MP Biomedicals, Santa Ana, CA, USA), according to the manufacturer’s protocols.
The quality and quantity of DNA were assessed by 0.8% (w/v) agarose gel electrophoresis
and NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). In
accordance with our previous study [19], 338F/806R and ITS5F/ITS1R primers were used
for the PCR amplification of the bacterial 16S rRNA V3-V4 region and the fungal ITS1
region, respectively, and then, high-throughput sequencing (PE, 2 × 250 bp) of the PCR
products was performed at Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China).

The raw sequencing data were processed by QIIME2 (2019.4). After removing the
primers from the raw sequences, the remaining sequences were used to generate an ampli-
con sequence variant (ASV) table by DADA2, which includes quality filtering, denoising,
merging, and chimera removing [28]. Subsequently, all the ASVs were assigned using the
naive Bayes taxonomy classifier in the feature-classifier plugin against the Silva (v 132) and
UNITE (v 8.0) databases. All the raw sequences were deposited in the NCBI Sequence Read
Archive under accession number PRJNA835955.

2.4. Analysis of Metabolites
2.4.1. Analysis of Organic Acids

An Agilent 1260 HPLC system equipped with an Alltech OA-1000 organic acid column
(300 × 7.8 mm, Agilent, SC, USA) was used to analyze the organic acids [17]. Briefly,
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5.00 g APM was mixed with 20 mL mobile phase and the mixture was extracted by
ultrasonic treatment for 60 min; then, the supernatant was collected after centrifugation
at 12,000 r/min at 4 ◦C for 10 min. The supernatant was purified by an activated SPE
C18 column and then filtered by a 0.22 µm filter membrane. The HPLC conditions were
as follows: injection volume, 20 µL; mobile phase, 9 mmol/L H2SO4 solution; flow rate,
0.6 mL/min; column temperature, 75 ◦C; detection wavelength, 210 nm. All the samples
were measured in triplicate.

2.4.2. Analysis of Volatile Compounds

Trace 1300-TSQ 9000 GC-MS (Thermo Scientific, Waltham, MA, USA) equipped with
a VF-WAX-MS capillary column (30.0 m × 0.25 mm × 0.25 µm, Agilent, Santa Clara, CA,
USA) was applied to detect the volatile flavors of the PM [20]. Briefly, 1.00 g APM and
20 µL methyl octanoate (internal standard, 0.0079 g/100 mL) were accurately added to a
20 mL headspace bottle, and a 50/30 µm DVB/CAR/PDMS fiber (2 cm, Supelco, Bellefonte,
PA, USA) was used to extract volatile flavors at 60 ◦C for 50 min, and then, the extraction
head was removed and inserted into the inlet and desorbed for 5 min. The GC conditions
were as follows: inlet temperature, 270 ◦C; carrier gas, high-purity helium (>99.999%);
flow rate, 1 mL/min; spitless. The temperature of the column was as follows: 40 ◦C for
5 min, 4 ◦C/min to 100 ◦C, and 6 ◦C/min to 230 ◦C for 10 min. The MS conditions were as
follows: ion source temperature, 250 ◦C; transmission line temperature, 300 ◦C; ionization
mode, EI (70 eV); scan range, 35–400 amu. After comparing with the NIST 2017 library,
only compounds with similarity (SI) >800 remained for further analysis (the highest value
is 1000). All the samples were measured in triplicate.

2.5. Detection of Physicochemical Properties

The moisture content was detected by drying the samples at 105 ◦C for 4 h. The fresh
PM was mixed with deionized water at a ratio of 1:5 (W/V), and the pH was determined
using a pH meter (pHS-3C, INESA, Shanghai, China) after standing for 30 min [8]. Based on
standard NaOH (0.1 mol/L) solution, the contents of total acid (TA) and total ester (TE) were
determined using the acid-base titration and the titrimetric method after saponification,
respectively. The content of ammoniacal nitrogen (NH4

+-N) and the available phosphorus
(AP) were measured by the Nessler’s reagent colorimetric and ammonium molybdate
methods, respectively [16]. All the samples were measured in triplicate.

2.6. Statistical Analysis

All the data in this study were presented as mean± standard deviation, and all statisti-
cal analyses were conducted in R software (v 4.1.3) unless otherwise stated. The significant
differences between each physicochemical property, metabolite, and dominant genus were
determined by the t-test in the “stats” package. The α- and β-diversity were calculated by
the “vegan” package and visualized by boxplot and principal coordinate analysis (PCoA).
The “metagenomeSeq” package was further applied to determine the difference in bacterial
community and visualized by the Manhattan plot. The principal component analysis (PCA)
and the cluster heatmap analysis of the volatile flavors were performed by Simca 14.0 and
the “pheatmap” package, respectively. The Spearman’s rank correlations between the domi-
nant microbial genera and volatile compounds were conducted using the “Hmisc” package
and visualized in Cytoscape (v. 3.60) based on |ρ| > 0.7 and p < 0.05. Mantel tests between
the overall communities and the physicochemical properties were performed by the “ggcor”
package to determine the driving factors of the community variation. The redundancy
analysis (RDA) between the dominant bacteria and the physicochemical properties was
conducted using the “vegan” package, and the relative contribution of the independent
factors to the total variance was evaluated based on the “rdacca.hp” package [29]. To
assess the relative importance of the deterministic and stochastic processes in the bacterial
community assembly, the “picante” package was used to calculate the beta nearest taxon
index (βNTI) and the Bray–Curtis-based Raup–Crick index (RCbray) [30]. In addition, linear
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regression analysis was performed using the “ggplot2” package to reveal the impact of the
driving factors on the diversity and the βNTI of the bacterial community. The bacterial
co-occurrence network was constructed based on a Spearman correlation matrix using the
“ggClusterNet” package [31], and Gephi (v. 0.92) was used to visualize networks (|ρ| > 0.7
and p < 0.05) and calculate the global topological properties. Network vulnerability was
calculated by the R script provided by a prior work [32]. The correlation between the
network modules and the four organic acids was determined by the Mantel test using
the “vegan” package. PICRUSt2 was used to reveal the functional composition of the
bacterial communities [33].

3. Results and Discussion
3.1. Effects of Daqu Attributes on Core Microbes of APM

The total number of microbes in the two APMs was similar, while the archaea number
in the FPM was significantly higher than that in the CPM, and the eubacteria number
was the opposite (Figure 1 and Table S2). The abundance and diversity of archaea can be
used to evaluate the quality and age of the PM as few archaea usually inhabit the new
PM [3,8,20]. Acetotrophic Methanosarcinales was the predominant archaea in both the APMs
and was more abundant in FPM. Methanosarcina has been considered the vital indicator
of pit age and has a high potential for flavor production, including hexanoic acid and
ethyl hexanoate [34,35]. Moreover, hydrogenotrophic methanogen (Methanomicrobiales and
Methanobacteriales) and the functional bacteria (Clostridium and C. kluyveri) in the FPM
were also higher than that in the CPM (Figure 1 and Table S2). The interspecies hydrogen
transfer between them contributed to the relieving of the inhibition effect of the hydrogen
partial pressure on the latter, thereby promoting the formation of hexanoic acid and butyric
acid [26]. These results indicated that the FD promoted the enrichment of core microbes in
the APM.
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3.2. Effects of Daqu Attributes on the Microbial Community of APM

A total of 79,418–124,416 and 84,529–113,345 effective reads were sequenced for the
bacteria and fungi from all the samples, and the average number and ratio of high-quality
sequences were 113,471 and 82.16%, and 86,050 and 85.12% (Table S3). The rarefaction
curve of each sample demonstrated that the sequencing data were enough for subsequent
analysis (Figure S1A,B). The results of the α-diversity showed that the richness (Chao1)
and diversity (Shannon) of the bacteria and the diversity of the fungi in the FPM were
significantly higher than in the CPM (Figure S1C,D). The Shannon index of the FPM ranged
from 4.5 to 8.9 and was similar to the aged and high-quality PMs, suggesting a greater
metabolic activity [25]. In addition, the explained rate of PCoA for the bacterial community
(62.0%) was higher than that for the fungal community (39.4%), and the PREMANOVA test
also showed that the bacterial β-diversity differed significantly (R2 = 0.438, p = 0.004) among
the two kinds of APMs, while the fungal β-diversity was similar (R2 = 0.118, p = 0.241)
(Figure S1E,F).

The bacterial communities of the two kinds of APMs were composed of 37 phyla, in
which Firmicutes and Proteobacteria accounted for 69.49% to 98.47% of the total relative
abundance (RA) (Figure S2A). The RA of Firmicutes in the CPM was remarkably higher
than that in the FPM, while that of the Proteobacteria was the opposite. A total of 823 taxa
were identified at the genus level, and 12 genera with an average RA >1.0% were defined as
dominant (Figure 2A). Among them, a significantly higher abundance of Lactobacillus was
observed in the CPM, while Halomonas and Clostridium_sensu_stricto_12 were remarkably
enriched in the FPM (t-test, p < 0.05). The co-existence of Clostridium_sensu_stricto_12
and Lactobacillus has been observed in PM with different pit age [20,36], while Halomonas
was not detected, and its contribution to SFB fermentation needs further study. For the
fungi, 168 genera belonged to nine phyla, and Ascomycota was dominant in almost all
the samples except CPM3, which was featured by Basidiomycota (Figure S2B). Corre-
spondingly, CPM3 was governed by Naganishia at the genus level, while the other samples
were represented by Aspergillus, Pichia, and Echria (Figure 2B). Aspergillus and Pichia were
prevalent in the PM [15,17], whereas Naganishia and Echria have never been reported as
the dominant genera, suggesting that PM may be a seed bank containing a large number
of unknown microorganisms [34]. Additionally, there was also no significant difference
in these dominant fungi in the two kinds of APMs (t-test, p > 0.05). In fact, the limited
oxygen environment of PM was not suitable for the propagation of most fungi, resulting in
a lower proportion and biomass [34,35]. However, the enormous fungal richness in Daqu
may migrate into the PM during fermentation and accumulate gradually in the prolonged
production process periodically [15]. Therefore, the fungal communities in PM might be
mainly correlated with the pit age [20].

MetagenomeSeq analysis was performed to further explore the differences in the
bacterial communities among the APMs. The results showed that the ASVs involving nine
genera in the FPM were significantly up-regulated compared with the CPM (Figure 2C).
Bacillus was the most remarkably increased genus except for Clostridium_sensu_stricto_12
and Halomonas, which could be attributed to the use of FD [27]. It has been reported
that Bacillus was a contributor to various flavor compounds, such as hexanoic acid in
the PM, and its RA was increased with the pit age significantly [9,22]. Kroppenstedtia
might also originate from Daqu and could adapt to the anaerobic environment of the
APM [9,37]. Sedimentibacter and Prevotella were common functional bacteria responsible
for converting the macromolecular substance into organic acids in the PM; in particular,
the former was positively correlated with pit age [25,38]. These results indicated that FD
drives the directional evolution of the bacterial community, which may subsequently affect
the material metabolism of the APM.
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3.3. Effects of Daqu Attributes on Metabolic Profile of APM

The differences in the major organic acids of the APM are shown in Figure 3A; the
content of lactic acid and isovaleric acid in the CPM was significantly higher than that in
the FPM, whereas that of the hexanoic acid and butyric acid was the opposite. Consistent
with the previous reports, lactic acid was the most abundant organic acid, and its content
was negatively correlated with the PM quality and pit age [8,25]. Conversely, hexanoic acid
and butyric acid were the feature metabolites of the PM consortia and usually increased
with pit age [4,35]. In addition, the acetic acid content was high in the FPM, which might
explain the enrichment of Methanosarcinales.

A total of 85 volatile compounds were detected from these APMs, including esters,
alcohols, acids, phenols, and others (Table S4). The concentrations of all the compounds,
except the phenols, in the FPM were higher than those in the CPM, especially the esters
(p < 0.05) (Figure 3B). The results of the PCA and PERMANOVA tests further suggested that
the difference in volatile profile between the CPM and the FPM was significant (R2 = 0.535,
p = 0.009), which primarily resulted in 32 compounds (Figure 3C,D). Similarly to a previous
study [35], esters were the most abundant and important flavor compounds in the PM,
ranging from 65.27% to 79.74% of the total content. Here, the contents of the 23 esters were
significantly different between the two APMs. Among them, 13 esters, including ethyl
hexanoate and ethyl butyrate, were higher in the FPM, while 10 esters, such as ethyl lactate,
were abundant in the CPM (Figure 3D). In general, ethyl hexanoate, ethyl butyrate, ethyl
lactate, and ethyl acetate are important aroma contributors of SFB, and the ratio of ethyl
hexanoate and ethyl lactate significantly affects its quality and characteristics [2,36]. Ethyl
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hexanoate gave a fruity, floral, and sweet flavor to the fresh SFB, while the contribution
of ethyl lactate showed the greenness and the mushroom [39,40]. However, an excessive
amount of the latter in SFB will lead to an irritating odor, acerbity, and bitterness. Therefore,
an important strategy to elevate the quality of SFB is the achieving of “ethyl hexanoate-
increasing” and “ethyl lactate-decreasing” by the bioturbation effect [19]. In addition, hexyl
hexanoate and ethyl butyrate enriched in the FPM were conducive to the fruitiness of Baijiu,
whereas ethyl palmitate and ethyl linoleate enriched in the CPM contributed little to the
aroma characteristics due to their high odor threshold [40].
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Acids accounted for 17.91% to 31.98% of the total content and were dominated by hex-
anoate. Consistent with the results obtained from HPLC (Figure 3A), GC-MS also showed
that the concentrations of hexanoic acid, butyric acid, acetic acid, and pentanoic acid were
higher in the FPM, while that of propionic acid was higher in the CPM (Figure 3D). These
acids have been identified as the aroma-activity compounds of the SFB and contribute
to the coordination of flavor and taste [2]. Alcohols with a relatively higher odor thresh-
old accounted for 1.37% to 4.62% of the total content and were dominated by ethanol.



Foods 2022, 11, 2922 9 of 16

Phenethyl alcohol and 1-butanol were enriched in the CPM and the FPM, respectively
(Figure 3D), and the latter had the highest OAV among the alcohols in the SFB [40]. More-
over, 4-ethylguaiacol was more abundant in the CPM, while dimethyl trisulfide was only
detected in the FPM. These results indicated that the flavor quality of the FPM was much
better and uncovered the contribution of FD to the flavor characteristics of APM.

3.4. Correlation Analysis between Dominant Microbes and Metabolites

The correlation network between the dominant bacteria, as well as the fungi (RA > 1.0%),
and the metabolites was constructed based on the Spearman method (Figure 4). The re-
sults showed that Halomonas, the predominant bacteria, was only positively correlated
with propyl valerate, suggesting a weak ability for flavor producing. Conversely, Clostrid-
ium_sensu_stricto_12 with a relatively lower RA contributed greatly to the flavor quality of
the APM, which promoted the formation of 16 compounds, such as hexanoic acid, butyric
acid, and the corresponding ethyl esters (Figure 4A), which was consistent with prior
works [20,36]. The flavor profile of the APM was also affected by Lactobacillus, which
was positively associated with 11 compounds, such as lactic acid and ethyl lactate, but
negatively with 7 compounds, such as hexanoic acid and ethyl butyrate (Figure 4A). This
is different from the weak correlation between Lactobacillus and the volatile compounds
observed in the aged PM, probably because of the decreased Lactobacillus and the increased
flavor-producing microbes, such as Caproiciproducens and Methanosarcina [35].

Foods 2022, 11, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 4. The correlation analysis between dominant microorganisms and metabolites in artificial 
pit mud. All links represent the significant correlation based on Spearman’s correlation coefficient 
(|ρ| > 0.7 and p < 0.05). The size of each microorganism node is proportional to its degree of connec-
tion with the volatiles; (A) bacteria; (B) fungi. 

By contrast, the contribution of the fungal community to the flavor quality was weak 
(Figure 4B), which was consistent with the previous study [41]. Aspergillus and Pichia were 
the common functional fungi in the PM and were related to the formation of esters and 
alcohols, respectively [13,14], which was supported by the present study (Figure 4B). 
However, there are no reports on the metabolic function of Echria and Naganishia in Baijiu 
fermentation. Here, the former showed a stronger metabolic activity as it was positively 
associated with butyl hexanoate, isobutyl hexanoate, isopentyl hexanoate, and furfuryl 
hexanoate, while the latter was negatively correlated with hexyl hexanoate (Figure 4B). In 
addition, Trichoderma also promoted the production of four esters, which might be at-
tributed to its extensive enzyme activities, including cellulase, xylanase, and chitinase 
[42]. 

3.5. Driving Factors for Variation and Assembly of Bacterial Community 
The differences in physicochemical properties between the two kinds of APMs are 

shown in Figure S3. The FPM had a significantly higher pH and NH4+-N content and a 
lower TA content compared with the CPM (p < 0.05), while the contents of AP, TE, and 
moisture were similar. It was reported that pH and TA were the important properties to 
evaluate the quality and age of PM, and high-quality or aged PM usually had a natural 
pH and a low TA [25,35]. The NH4+-N content was also positively correlated with pit age 
and played an important role in the growth and reproduction of the PM microbial con-
sortia [8,22]. 

Mantel tests between the overall communities and the physicochemical properties 
were conducted to determine the driving factors of the community variation (Figure 5A). 
The results suggested that pH, TA, and NH4+-N significantly influenced the bacterial com-
munity but not the fungal community. In addition, the α- and β-diversity of the bacterial 
communities were also positively correlated with pH and NH4+-N but negatively with TA 
(Figure S4). RDA was used to further reveal the correlation between the dominant bacte-
rial genera and the physicochemical properties (Figure 5B). A high explanation rate 
(61.57%) of the total variation and a low p-value (0.022) of the whole-model permutation 
test demonstrated the reliability of the RDA model. Lactobacillus was positively associated 
with TA, and most of the other genera, such as Clostridium_sensu_stricto_12, were posi-
tively correlated with pH and NH4+-N. Notably, the hierarchical partitioning analysis 
showed that 41.82% of the total variation can be independently explained by pH (p = 
0.001), which was consistent with Tao et al. [8], who reported that pH was the major 

Figure 4. The correlation analysis between dominant microorganisms and metabolites in artificial
pit mud. All links represent the significant correlation based on Spearman’s correlation coefficient
(|ρ| > 0.7 and p < 0.05). The size of each microorganism node is proportional to its degree of
connection with the volatiles; (A) bacteria; (B) fungi.

By contrast, the contribution of the fungal community to the flavor quality was weak
(Figure 4B), which was consistent with the previous study [41]. Aspergillus and Pichia
were the common functional fungi in the PM and were related to the formation of esters
and alcohols, respectively [13,14], which was supported by the present study (Figure 4B).
However, there are no reports on the metabolic function of Echria and Naganishia in Baijiu
fermentation. Here, the former showed a stronger metabolic activity as it was positively
associated with butyl hexanoate, isobutyl hexanoate, isopentyl hexanoate, and furfuryl
hexanoate, while the latter was negatively correlated with hexyl hexanoate (Figure 4B). In
addition, Trichoderma also promoted the production of four esters, which might be attributed
to its extensive enzyme activities, including cellulase, xylanase, and chitinase [42].

3.5. Driving Factors for Variation and Assembly of Bacterial Community

The differences in physicochemical properties between the two kinds of APMs are
shown in Figure S3. The FPM had a significantly higher pH and NH4

+-N content and a
lower TA content compared with the CPM (p < 0.05), while the contents of AP, TE, and mois-
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ture were similar. It was reported that pH and TA were the important properties to evaluate
the quality and age of PM, and high-quality or aged PM usually had a natural pH and a
low TA [25,35]. The NH4

+-N content was also positively correlated with pit age and played
an important role in the growth and reproduction of the PM microbial consortia [8,22].

Mantel tests between the overall communities and the physicochemical properties
were conducted to determine the driving factors of the community variation (Figure 5A).
The results suggested that pH, TA, and NH4

+-N significantly influenced the bacterial
community but not the fungal community. In addition, the α- and β-diversity of the
bacterial communities were also positively correlated with pH and NH4

+-N but negatively
with TA (Figure S4). RDA was used to further reveal the correlation between the dominant
bacterial genera and the physicochemical properties (Figure 5B). A high explanation rate
(61.57%) of the total variation and a low p-value (0.022) of the whole-model permutation
test demonstrated the reliability of the RDA model. Lactobacillus was positively associated
with TA, and most of the other genera, such as Clostridium_sensu_stricto_12, were positively
correlated with pH and NH4

+-N. Notably, the hierarchical partitioning analysis showed that
41.82% of the total variation can be independently explained by pH (p = 0.001), which was
consistent with Tao et al. [8], who reported that pH was the major variable for explaining
the variance in the prokaryotic community structure, indicating the pivotal role of pH in
regulating the bacterial community in APM.
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To explore the effect of FD on the bacterial community assembly of APM, βNTI and
RCbray were calculated to quantify the determinism and stochasticity [30]. The results of
βNTI showed that both the determinism (|βNTI| > 2) and the stochasticity processes
(−2 < βNTI < 2) governed the community assembly of the CPM, whereas the latter con-
trolled that of the FPM (Figure 5C). Furthermore, the distribution of RCbray values sug-
gested that undominated (|RCbray| < 0.95) was the primary stochasticity process in the two
kinds of APMs (Figure 5D), accounting for 40% and 60% of the CPM and FPM, respectively
(Figure 5E). Both the stochastic and the deterministic processes will affect the community as-
sembly of the ecosystem, but the former was more important as the availability of resources
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increased [43], which was in line with the NH4
+-N content of the two APMs (Figure S3).

Similarly, the stochastic process was more dominant for the bacterial community assembly
in soil aggregates with a higher soil organic carbon and total nitrogen level [44]. In addition,
the increase in the stochastic process in the FPM may imply that adapted lineages of bacte-
ria accumulate, resulting in weaker niche-based exclusion and higher biodiversity [43,45],
which explains the significantly higher α-diversity in the FPM (Figure S1). Conversely, the
contribution of heterogeneous selection for the community assembly in the CPM was higher
than in the FPM (Figure 5E). According to the previous study, heterogeneous selection
usually occurs when the changing of environmental pressures across space or time leads to
a narrower niche breadth [46]. For example, only species that can resist high acid stress
and oligotrophic conditions can survive in the surface water of an acid mine drainage lake
due to the strong heterogeneous selection [47]. Notably, our results also indicated that the
relative importance of heterogeneous selection increased with the TA content (Figure 5F).
Therefore, the high proportion of heterogeneous selection in CPM might be closely related
to its extreme environmental conditions, especially the high TA content, which inhibited
the growth and metabolism of most acid-intolerant microorganisms, such as Clostridium
and methanogen [48].

3.6. Co-Occurrence Network and Metabolic Functional of Bacterial Community

Co-occurrence networks for CPM and FPM were constructed based on the ASV level
to reveal the effect of FD on the interaction of the bacterial community. As shown in
Figure 6A, the CPM and FPM networks differed significantly and contained four and six
modules, respectively. The global topological properties indicated that the CPM network
showed higher complexity according to its edge number, average degree, and density,
while the FPM network became less vulnerable and more modular, as measured by the
vulnerability and modularity values (Table 1). In addition, the proportion of negative edges
in the FPM network was significantly higher than that in the CPM network, suggesting that
the former had stronger robustness [32,49]. The microbial composition of the main modules
was also remarkably different between the two networks (Figure 6B). M0 and M2 in the
CPM network were dominated by Bacilli, whereas M2, M0, and M4 in the FPM network
were governed by Clostridia. Meanwhile, Bacteroidia was also prevalent in all the modules
(except M1) of the FPM network. According to Hu et al. [25], some hub microorganisms in
normal or high-quality PMs were affiliated with Clostridia and Bacteroidia, while the RA of
Bacilli was significantly higher than those of other taxa in degraded PMs. Therefore, the
enhanced stability of the FPM network may be caused by the co-occurrence of Clostridia
and Bacteroidia with high abundance in the main modules.

Table 1. The global topological properties of co-occurrence networks.

Network Properties 1 FPM CPM

Node number 150 150
Edge number 602 1493

Proportion of positive edge 64.12% 91.06%
Proportion of negative edge 35.88% 8.91%

Average degree 8.027 19.907
Average path length 3.553 2.945

Average clustering coefficient 0.236 0.135
Diameter 8.164 8.152
Density 0.054 0.134

Modularity 0.626 0.340
Modules number 21 13

Vulnerability 0.011 0.009
1 All properties were measured using the interactive platform Gephi, except vulnerability, which was calculated
by the R code provided by a prior work [32].
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** p < 0.01. (D) Mantel test between primary modules and important organic acids; correlations with
p > 0.01 are marked in grey.

The primary biological function of the PM microbial consortia in the SFB brewing
micro-ecosystem is to synthesize hexanoic acid and butyric acid from lactic acid, ethanol,
and other electron donors through the chain elongation process [4,26,50]. Therefore, the
abundances of enzymes related to substrate utilization and product formation were pre-
dicted based on PICRUSt2 (Table S5). The results showed that the CPM could better
utilize lactic acid, glucose, and ethanol, while FPM had higher potential in the synthesis
of hexanoic acid, butyric acid, and acetic acid (Figure 6C), which was consistent with the
contents of the corresponding organic acids (Figure 3A). In general, the PM microbiota pre-
ferred to metabolize lactic acid to hexanoic acid [35,51], but the lactic acid-driven hexanoic
acid production requires a special consideration of the product selectivity. For instance,
(i) different community compositions favor disparate fermentation pathways and yield
various acid production efficiencies [52]; (ii) the efficiency of hexanoic acid synthesis will
be negatively affected by the lower pH because most hexanoic acid-producing bacteria
exhibit greater yields under neutral conditions [53]; (iii) lactic acid can also be converted to
propionic acid, which will cause carbon diversion from hexanoic acid to produce propionic
acid [54]. In the present study, abundant Clostridium and methanogens were observed in
the FPM, while lower pH and higher propionic acid content were detected in the CPM,
which might be the reason for the higher content of hexanoic acid and butyric acid in the
former. Moreover, the Mantel test showed that all the modules (except M4) in the FPM
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network were significantly correlated with the hexanoic acid and/or butyric acid content,
while only M0 and M1 in the CPM network were remarkably associated with the butyric
acid content (Figure 6D), which further explained the higher content of hexanoic acid and
butyric acid in the FPM. In particular, the correlations between M2 and M5 of the FPM
network and hexanoic acid content might be related to a higher RA of Negativicutes, because
some members of Negativicutes can also convert lactic acid into hexanoic acid [53].

4. Conclusions

This study provided a comprehensive insight into the importance of Daqu attributes on
the APM quality by polyphasic detection methods. The results showed that FD promoted
the directional evolution of the prokaryotic community by changing the physicochemical
properties of the APM, especially the pH and TA content. Clostridium_sensu_stricto_12
exhibited greater potential in the formation of flavor substances and increased its abundance
in the PM, which may represent a way to achieve “ethyl hexanoate-increasing” and “ethyl
lactate-decreasing”. Furthermore, FD induced a co-occurrence of Clostridia and Bacteroidia
with a high abundance and, thereby, enhanced the community stability and metabolic
function. Our findings may contribute to the optimizing of the APM manufacturing
technology and to the further production of high-quality SFB.
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the phylum level. (A) bacteria; (B) fungi, Figure S3: variations in physicochemical parameters between
FPM and CPM. Significant values based on t-test are shown as: * p < 0.05, ** p < 0.01, Figure S4: linear
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detected in CPM and FPM, Table S5: the abundance of functional genes encoding for key enzymes
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