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Abstract

While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response,
less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the
receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter
hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-
40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C.
elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s).
Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient
across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to
couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other
neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM
complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We
conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This
modulation of secretion likely represents an additional level of control over DAF-28/insulin function.

Citation: Billing O, Kao G, Naredi P (2011) Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans. PLoS ONE 6(1): e14507. doi:10.1371/
journal.pone.0014507

Editor: Catherine A. Wolkow, National Institute on Aging, United States of America

Received June 11, 2010; Accepted December 6, 2010; Published January 17, 2011

Copyright: � 2011 Billing et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Swedish Research Council (K2008-68X-20803-01-3), the Swedish Cancer Society (CAN2007/901), the Cancer Research
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Introduction

All metazoans need to be able to adapt to changing food levels in

the environment. Absence or presence of food needs to be sensed

and conveyed to elicit appropriate behavioral and developmental

responses. Failure to do so results in an inability to adapt to changes

in nutritional status and ultimately in an evolutionary disadvantage.

Through the development of insulin signaling, metazoans have

adapted to a life with changing food supplies. In insulin-secreting

cells, increasing levels of energy are converted into various

stimulatory signals that trigger fusion of insulin-containing vesicles

to the plasma membrane, consequently releasing insulin. The

binding of insulin to its receptor activates a kinase cascade, which in

the end prevents a FOXO-type transcription factor from entering

the nucleus. When less insulin is secreted, the transcription factor is

unphosphorylated and free to enter the nucleus, where it activates

starvation-specific genes. This rationale of insulin signaling is

conserved from nematodes to humans.

In Caenorhabditis elegans, the insulin signaling pathway plays an

important role in regulating larval and dauer diapause. In the

presence of food, worms progress through four larval stages (L1–

L4) to reach adulthood. In absence of food, worms can enter

hibernation at three distinct stages during their development. If

worms hatch in the absence of food they arrest growth reversibly

as mid-stage L1 larvae [1,2]. Towards the end of this stage a

second decision is made, whether or not to become dauers instead

of L3 larvae. Aside from food levels, this decision also depends on

temperature and population density [3]. There is also a

reproductive diapause at the adult stage, in which hermaphrodites

in the absence of food arrest embryogenesis in their gonads and

form no more than two embryos [4]. The L1 and dauer diapause

stages can be entered inappropriately in various mutants that are

compromised for insulin signaling. For instance, a severe mutation

in the DAF-2/insulin receptor causes an L1 arrest, similar to that

of wild type animals that hatch in the absence of food. Less severe

perturbations to the insulin pathway can cause increased entry into

the dauer stage or into the adult diapause. Conversely, ‘‘over

activation’’ of the insulin pathway by mutations in daf-16/FOXO

results in an inability to enter diapause when food is limiting [3].

The C. elegans genome encodes forty insulin-like peptides (ILPs)

[5,6]. One of them, DAF-28, has some hallmarks of a mammalian-

type insulin, regulating metabolic homeostasis. daf-28 responds to

changes in food levels and plays an important role in coordinating

overall metabolic and anatomical responses to changes in

nutritional status [7]. High levels of DAF-28 protein promote

reproductive growth and prevent hibernation in the dauer stage

during nutritionally replete conditions. Its level of transcription is

high when food levels are high [7]. At the level of secretion, DAF-28

can be studied using a DAF-28::GFP reporter in intact worms. The

use of this reporter has shown that its secretion is sensitive to

nutritional status, so that less DAF-28::GFP is secreted in worms

that are starved [8], which indicates function as a metabolic insulin.
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Insulin secretion has been most extensively studied in mammals,

where it has been shown to be influenced by mitochondria in several

ways. The major stimulatory influence is via mitochondrial

production of ATP from ADP. An increased ATP/ADP ratio

results in closure of ATP-gated K+ channels, which is a key step in

insulin secretion. Mitochondria are also thought to stimulate insulin

secretion by means of secretion-stimulatory intermediates that are

generated by its intermediary metabolism. These include pyruvate,

glutamate and malonyl-CoA [9]. In addition, mitochondria-derived

reactive oxygen species were recently shown to be obligatory signals

for glucose stimulated insulin secretion in perfused rat islets [10]. At

a pathological level, mitochondrial failure, by means of mutations in

mitochondrial DNA, can cause mitochondrial diabetes in humans

and mice [11,12]. The importance of mitochondria in insulin

secretion has been further highlighted in several studies, showing

that glucose-stimulated insulin secretion is reduced or abolished

when mitochondria are dysfunctional [12,13].

Although separated from the cytosol, mitochondria are largely

dependent on communication with the nucleus. The mitochon-

drial genome encodes only a minority of the approximately 800–

1500 proteins, depending on species that function in the organelle.

The vast majority of the mitochondrial proteins are encoded by

the nuclear genome and are synthesized in the cytosol. Thus, they

need to be imported from the cytosol across the mitochondrial

membrane(s). All preproteins that are destined to enter the

mitochondrion must first pass through the gated protein pore of

the TOM complex (translocase of the outer mitochondrial

membrane). The TOM40 protein constitutes the actual hydro-

philic pore through which all preproteins are imported [14,15].

Some subunits of the complex, such as TOM20 and TOM22, are

receptors that recognize different subgroups of mitochondria-

destined preproteins, while smaller subunits like TOM7 contribute

to the stability of the complex [16]. In C. elegans, there are few

reports describing functions of putative TOM-complex subunit

homologues. RNAi against tomm-7 was shown to affect mitochon-

drial morphology, TOMM-20 has been shown to localize to

mitochondrial membranes [17] and tomm-40 was identified in an

RNAi screen for genes affecting mitochondrial morphology [18].

To find new regulators of C. elegans insulin signaling, we

performed an RNAi screen for genes which, when inactivated,

caused larval arrest. RNAi against tomm-40 caused a larval growth

arrest, with reduced signaling through the insulin pathway in spite

of normal ability to feed. We show that a reduced level of TOMM-

40 resulted in a defect in mitochondrial protein import, and

consequently in severe mitochondrial dysfunction. These func-

tionally compromised mitochondria failed to promote secretion of

DAF-28/insulin. This was also seen upon RNAi against two other

members of the TOMM complex. However, the secretion defect

was not general in nature, since two other dense core vesicle

residing proteins, ANF::GFP and INS-22::VENUS were secreted

normally. TOMM-40 likely acted in neurons to influence insulin

signaling and overexpression of DAF-28/insulin rescued the

insulin signaling defect caused by depletion of TOMM-40. Since

DAF-28/insulin secretion in this way is sensitive to TOMM

complex dysfunction, we conclude that mitochondria in general

and the TOMM complex in particular are required to couple food

signals to secretion of DAF-28/insulin.

Results

TOMM-40 is a broadly expressed protein that localizes to
mitochondria

Based on sequence similarity to TOM40 homologues in Homo

sapiens, Drosophila melanogaster and Saccharomyces cerevisiae, C. elegans

TOMM-40 is predicted to be a mitochondrial translocase subunit

[Figure 1A, B and [19]]. It shares 49% and 42% protein sequence

identity with D. melanogaster and H. sapiens TOM40 respectively.

The C. elegans tomm-40 gene (cosmid name: C18E9.6) contains

seven exons, encoding a 301 amino acid protein. The cDNA was

completely sequenced and shown to possess the predicted splicing

pattern.

tomm-40 was expressed at high levels in pharyngeal muscles, the

nerve ring, the intestine, gonadal sheath and in tail hypodermis

(Figure 2A–D), as visualized by GFP expression from the

transcriptional fusion construct Ptomm-40::gfp (Figure 1C). To study

its subcellular localization, we made a full-length C-terminal fusion

of GFP to the tomm-40 cDNA under its own promoter. The

TOMM-40::GFP fusion protein was also expressed in a ubiquitous

pattern, similar to that seen with the transcriptional gfp reporter.

At a sub-cellular level TOMM-40::GFP localized to mitochondrial

membranes, as shown by localization around red MitoTracker

staining, which accumulates in the mitochondrial matrix

(Figure 2E, Figure S1). No localization of the protein was seen

outside mitochondria. This type of localization pattern has been

reported for other worm mitochondrial membrane proteins

including another member of the TOMM complex [17,20] and

it was consistent with the expected role of TOMM-40.

TOMM-40 is a positive regulator of growth
Reducing TOMM-40 levels, by exposing 4th stage larvae to

feeding RNAi, causes a growth retardation in their progeny with

most animals arresting as embryos or between the 1st and the 3rd

larval stages (Figure 3A). As an index of the growth defect, the

number of larvae in the 1st larval stage (L1) was counted 24 hours

after removing their mothers in a feeding RNAi assay. While only

0.4% (n = 223) of animals fed with emv(RNAi) bacteria were in

stage L1, 60% (n = 194) of tomm-40(RNAi) animals were in this

stage. Later, most of the larvae appeared to arrest permanently at

the L2 or L3 stage although many still remained in the L1 stage.

Using high power microscopy, we could not detect any

catastrophic developmental defects that might cause the larval

arrest.

Since tomm-40 was ubiquitously expressed, we asked if the

observed growth defect was due to any pharyngeal or intestinal

defects, which would cause feeding defects. We did so in three

ways. First, the rate of food ingestion was assessed by measuring

pharyngeal pumping rates. We compared animals arrested as L1s

by tomm-40(RNAi) to wild type age-matched larvae. Pharyngeal

pumping rates in tomm-40(RNAi) larvae were not significantly

different from wild type larvae (Figure 3B). Second, we found that

the feeding motor program was normal in arrested animals, since

the ability to ingest bacterium-sized beads into the gut lumen was

unaffected (Figure 3C). Third, we examined endocytosis of FM4-

64, a dye that is taken up by endocytic vesicles in the intestine.

tomm-40(RNAi) arrested animals appeared similar to emv(RNAi)

controls in their ability to form FM4-64-containing endocytic

vesicles in intestinal cells (Figure 3D). Taken together, the feeding

analyses showed no significant difference between tomm-40(RNAi)

and emv(RNAi) animals. Therefore we conclude that the primary

cause of the severe growth arrest was not due to a defect in their

ability to feed.

TOMM-40 levels were reduced to a lesser extent by a weaker

form of feeding RNAi termed ‘‘postembryonic RNAi’’ (peRNAi).

This procedure allowed TOMM-40 to function normally during

germline and embryonic development and reduced protein levels

later, during larval and adult stages. peRNAi against tomm-40

allowed worms to develop to adulthood instead of causing

larval arrest, although most of them were sterile. 34 of the 38

Insulin Secretion in Worms
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tomm-40(peRNAi) adults produced no progeny while the rest

produced less then 15 progeny each, which is 5% of a wild type

brood size. Some of these sterile animals produced oocytes and

sperm but lacked fertilized embryos (Figure 3E). The more

severely affected worms displayed abnormal gonad migration and

lacked oocytes, but were otherwise wild type in appearance.

A deletion mutation in the gene, tomm-40(tm4574), was obtained

from Dr. Shohei Mitani and the National Bioresource Project,

Tokyo. The mutation deletes several exons (Figure 1C) and is a

likely to be a null mutation. We examined the mutant to test

whether the larval arrest phenotype seen in tomm-40(RNAi) animals

was also seen in tm4574 mutants. The strain was outcrossed five

times and maintained as a heterozygote over a balancer

chromosome since tomm-40(tm4574) homozygotes arrested as

larvae. Using the number of somatic gonadal cells as a criterion

for age, 77% of the arrested larvae were found to be L2 larvae,

16% were L3 larvae and 7% were L1 larvae (n = 43) (Figure 3F).

All the progeny from tomm-40(tm4574)/balancer mothers that grew

to adulthood, and were not balancer/balancer homozygotes, were

heterozygous for tm4574 (n = 106). No embryonic lethality was

detected among the progeny of the heterozygous strain and the

number of arrested larvae segregating from a heterozygote was

equal to the number of balancer homozygotes. All arrested larvae

that were genotyped by PCR were homozygous for the deletion

allele. Taking these observations together, we conclude that tomm-

40(tm4574) homozygotes display a strict larval arrest. This

observation is consistent with the larval arrest phenotype seen in

tomm-40(RNAi) animals. Examination of the mutant larvae by high

Figure 1. TOMM-40 is the C. elegans homologue of TOM40. (A) Amino acid sequence comparison of TOMM-40 homologues from C. elegans, H.
sapiens, D. melanogaster and S. cerevisiae. Dark gray corresponds to 100% interspecies conservation, medium gray to 75% and light gray to 50%. (B)
Phylogenetic tree analysis of TOMM-40 homologues. The scale indicates sequence difference, where 0.5 is 50% difference in residues. The tree was
constructed using the neighbor-joining algorithm. (C) (From top to bottom) Scale bar, followed by the intron/exon structure of tomm-40. Boxes
represent exons. The first methionine is indicated by an arrow. (Below) The tm4574 mutation deletes exon two, three and four and part of exon five
and instead inserts 28 base pairs in the open reading frame of tomm-40 are indicated with a black bar. (Below) The Ptomm-40::gfp (pVB488OB) and the
Ptomm-40::tomm-40::gfp (pVB518OB) constructs used in this study are shown.
doi:10.1371/journal.pone.0014507.g001
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power microscopy showed no visible morphological abnormalities,

except for a pale appearance. They but had normal locomotion for

up to 7 days after which most of them died.

In summary, TOMM-40 was required continuously for growth

during embryogenesis and during all postembryonic stages.

TOMM-40 was also needed for germline and somatic gonad

development.

Mitochondrial function is diminished in animals with
reduced levels of TOMM-40

Studies in S. cerevisiae and Neurospora crassa show that TOM40

acts as a translocase subunit [21,22]. To analyze tomm-40-

dependent protein translocation in vivo in C. elegans, we made use

of an nnt-1::gfp reporter construct [23]. NNT-1 (nicotineamide

nucleotide transhydrogenase) is a nucleus-encoded protein that is

predicted to be targeted to mitochondria (99.2% confidence) by

the MitoProt program [24]. The nnt-1::gfp construct spans the

promoter region of nnt-1 and the first one and a half exons of its

open reading frame, including the predicted mitochondrial

targeting sequence. We found that NNT-1::GFP co-localized

completely with red MitoTracker dye in intestinal and body wall

muscle cells (Figure 4A, Figure S2). Treatment with tomm-40(RNAi)

largely abolished the mitochondrial uptake of NNT-1::GFP in

intestinal cells and shifted its localization to the cytosol. Thus a

mitochondrially-targeted protein does not reach the mitochondri-

on when tomm-40 is depleted. This is consistent with the observed

role for its homolog in S. cerevisiae [15].

Perturbations affecting mitochondrial protein environment, like

stochiometry changes or reduced mitochondrial chaperone

function, induce a mitochondrial unfolded protein response. In C.

elegans this response involves the chaperones mtHSP70/HSP-6 and

HSP-60. The transcriptional reporters Phsp-6::gfp and Phsp-60::gfp are

specifically upregulated in response to perturbations that affect

mitochondrial protein handling [25]. Both reporters were

distinctly upregulated by tomm-40(RNAi), but not in ‘‘empty

vector’’ emv(RNAi) controls (Figure 4B). Consistent with the RNAi

Figure 2. TOMM-40 is a broadly expressed mitochondrial
membrane protein. (A-D) Fluorescence images showing GFP
expression from the Ptomm-40::gfp construct and (A’-D’) the correspond-
ing Nomarski images. GFP expression is indicated in: (A) The nerve ring
(arrow) and pharyngeal muscle (arrowhead), (B) gonadal sheath, (C) the
intestine, (D) tail hypodermis. (E) Confocal imaging of a body wall
muscle cell expressing TOMM-40:GFP and stained with mitotracker dye.
TOMM-40::GFP expressed from pVB518OB localized in rings that
enclosed mitochondrial matrix associated red MitoTracker dye. Arrow-
heads indicate TOMM-40::GFP localized to mitochondrial membranes.
The scale bar is 10 mm.
doi:10.1371/journal.pone.0014507.g002

Figure 3. TOMM-40 promotes growth. (A) Animals fed with
bacteria containing empty vector (emv), were adults 72 hours after
hatching while tomm-40(RNAi) caused growth arrests, at various stages,
in the same time period. Scale bars are 1 mm. (B–D) Feeding analysis of
worms arrested as L1s either by tomm-40(RNAi) or by hatching in the
absence of food. Control animals were fed with emv-containing
bacteria 20 minutes prior to analysis. (B) Pharyngeal pumping rates.
Circles denote data from individual worms, horizontal lines represent
mean values, and bars show a confidence interval of 95%. (C)
Micrographs of arrested worms incubated on lawns of bacterium-sized
fluorescent beads. Arrows indicate beads localized in the intestinal
lumen. (D) FM4-64 stainings. Arrows denote endocytic vesicles
containing the dye. (E) Nomarski pictures of the gonad and the uterus
in a fertile adult treated with emv post embryonic RNAi [emv(peRNAi)]
and a sterile tomm-40(peRNAi) treated adult. In the left panel, the
arrowhead indicates an oocyte undergoing ovulation. In the right panel
the arrowhead indicates the absence of fertilized embryos in the uterus.
Arrows indicate a mis- migrated gonad arm Scale bars are 25 mm. (F) A
tomm-40(tm4574) animal arrested permanently as an L2 larva. The
dashed line outlines the gonad. Scale bars are 100 mm (white) and
25 mm (black).
doi:10.1371/journal.pone.0014507.g003
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results, the Phsp-6::gfp transgene was also greatly upregulated in

tomm-40(tm4574) deletion mutants (Figure S3). This suggests that

the mitochondrial protein milieu was disrupted when the level of

functional TOMM-40 was reduced.

When mitochondria function normally they generate an

electrochemical potential (DY) across the inner membrane of the

organelle. DY is then used as the driving force for ATP synthesis

from ADP+Pi. DY can be measured in vivo by the level of uptake of

the dye tetramethylrhodamine ethyl ester (TMRE). Levels of

TMRE uptake allow a distinction to be made between respiring

and non-respiring mitochondria. There was markedly less TMRE

staining in tomm-40(peRNAi) animals as compared to emv(peRNAi)

controls, indicating a DY collapse across the inner mitochondrial

membrane (Figure 4B).

Taken together, these results show that mitochondria are

dysfunctional in animals with reduced levels of TOMM-40.

Protein import was reduced, the protein milieu inside mitochon-

dria was altered and DY had collapsed.

tomm-40(RNAi) reduces insulin pathway activity
Signaling through the insulin receptor pathway is high when

food is abundant and other general conditions favor reproductive

growth [3]. High levels of signaling act to keep the downstream

transcription factor DAF-16/FOXO in the cytoplasm of all cells.

Conversely, low levels of signaling allow it to translocate to nuclei.

This is detected in vivo with the use of functional daf-16::gfp

transgenes [26,27,28]. In tomm-40(RNAi) animals raised on

abundant food, DAF-16::GFP translocated to nuclei in 45% of

the animals (n = 20), while it was always cytoplasmic in controls

(Figure 5A), indicating lowered signaling through the insulin

pathway.

In regulating entry into the dauer stage, the insulin pathway acts

in parallel to the DAF-7/TGFb pathway. The temperature

sensitive daf-7(e1372) mutants rarely form dauers at 20uC but

have a fully penetrant dauer-constitutive phenotype at 25uC.

However, they form dauers at 20uC if insulin signaling is also

weakly compromised at some level [29]. As a second test for the

strength of insulin signaling, we therefore reduced TOMM-40

levels in daf-7(e1372) mutants. 42% (n = 124) of the daf-7(e1372);

tomm-40(RNAi) animals entered a semi-dauer state at 20uC, while

none of the daf-7(e1372); emv(RNAi) treated controls did so (n = 74)

(Figure 5B). These semi-dauer animals had some of the dauer

characteristics, while lacking others. In contrast to normal,

starvation-induced dauers they were paler and they lacked oral

plugs. On the other hand, these semi dauers displayed the dauer-

specific nictitation behavior, had dauer alae (Figure 5B) and were

SDS-resistant, as determined by the ability to survive exposure to

1% SDS for 20 minutes. 88% (n = 19) of the daf-7(e1372); tomm-

40(RNAi) animals were SDS resistant, while none (n = 20) of the

age-matched (L3) daf-7(e1372); emv(RNAi) controls were resistant.

Semi-dauer animals were also seen in daf-7(+); tomm-40(RNAi)

animals, but to a lesser extent.

Further, we performed tomm-40(RNAi) in daf-2/insulin receptor

mutants. In contrast to the findings in the daf-7(e1372) back-

ground, tomm-40(RNAi) did not enhance dauer formation in daf-2

mutants at 15uC. This suggests that mitochondrial dysfunction

affects processes in the daf-2/insulin receptor pathway and in parallel

to the TGFb pathway. This also suggests that mitochondrial

dysfunction can lead to a sensitized insulin signaling state, in which

further perturbations can be easily assessed.

Taken together these three tests show that insulin signaling is

weaker when TOMM-40 levels are reduced. Since high levels of

insulin signaling are needed for reproductive (non-hibernating)

growth, the larval arrest seen in tomm-40(RNAi) animals might be

due in part to a defect in insulin signaling.

Investigation of other stress responses in tomm-40
depleted animals

In addition to changes in insulin signaling strength, the nuclear

localization of DAF-16::GFP can be due to elevated levels of

different kinds of stress such as oxidative stress, heat shock and ER

stress. To investigate whether these factors may have contributed

to the nuclear localization of DAF-16 in tomm-40(RNAi) animals,

we used specific gene expression reporters and biochemical assays

to address this issue.

Perturbations of mitochondrial functions can give rise to

increased levels of oxidative damage to cells and trigger oxidative

stress responses [30,31,32]. To test if oxidative stress levels were

elevated by tomm-40(RNAi), we first made use of the the Pgst-4::gfp

Figure 5. TOMM-40 is a positive regulator of insulin signaling.
(A) Micrographs of RNAi treated worms, carrying an integrated daf-
16::gfp transgene. Arrows indicate the absence of DAF-16::GFP in nuclei
of intestinal cells in an empty vector RNAi [emv(RNAi)] fed animal.
Arrowheads indicate nuclear DAF-16::GFP localization in a tomm-
40(RNAi) animal. (B) Dauer-specific alae in a starvation-induced dauer
larva and in a tomm-40(RNAi) semi-dauer larva. Arrowheads outline the
alae. Both animals are homozygous for the daf-7(e1372) mutation. (C) A
starvation-induced daf-7(e1372) dauer animal, a tomm-40(RNAi)-induced
daf-7(e1372) semi-dauer animal and a well fed daf-7(e1372) adult. All
experiments were performed at 20uC. Scale bars are 100 mm.
doi:10.1371/journal.pone.0014507.g005

Figure 4. RNAi against TOMM-40 decreases mitochondrial function and protein import. (A) Confocal images of intestinal cells in RNAi
treated animals expressing the truncated NNT-1::GFP protein and counterstained with MitoTracker red. Arrows indicate mitochondrial tubules labeled
by both NNT-1::GFP and MitoTracker red. Scale bars are 20 mm. (B) Fluorescence optics imaging of RNAi-treated animals expressing Phsp-6::gfp (100
milliseconds); Phsp-60::gfp (1.01 seconds); Phsp-4::gfp (1.17 seconds); Phsp 16.2::gfp (100 milliseconds); Pgst-4::gfp (300 milliseconds), or RNAi-treated animals
stained with TMRE dye (300 milliseconds). (C) Image of a western blot showing the oxidized protein contents in whole worm protein extracts of
tomm-40(RNAi) and emv(RNAi) larvae of similar ages, using the oxyblot assay. An equal amount of protein was loaded into each well. The gel shown is
a representative of three individual experiments.
doi:10.1371/journal.pone.0014507.g004
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transgene which is known to be upregulated by increased levels of

intracellular oxidative stress [33]. Using this transgene, we were

unable to detect any increase of the GFP signal upon tomm-

40(RNAi) compared to emv(RNAi). Instead we noted a slight

decrease in Pgst-4::gfp expression in the intestine and in the nerve

ring in tomm-40(RNAi) animals (Figure 4B).

As a test for oxidative damage, we measured total levels of

oxidized proteins using a commercially available oxyblot kit. We

measured the relative amount of carbonylated proteins which

result from protein oxidation in emv(RNAi)-treated and tomm-

40(RNAi)-treated larvae of similar ages (Figure 4C). The levels of

carbonylated proteins in worms is an indirect measure of its

redox status, since proteins that are oxidized become irrevers-

ibly carbonylated [34] and since the carbonylation status in

worms is not reset until embryogenesis [35]. Using this assay we

could detect no significant difference between lysates from

emv(RNAi) and tomm-40(RNAi) animal. Taken together, the Pgst-

4::gfp transgene and the oxyblot results indicate that tomm-

40(RNAi) does not induce oxidative stress or oxidative damage

significantly.

We next assayed for endoplasmic reticulum stress and cytosolic

stress using specific reporters. Neither the endoplasmic reticulum

(ER) stress reporter Phsp-4/BiP::gfp, nor the cytosolic stress reporter

Phsp-16.2::gfp was upregulated in tomm-40(RNAi) animals

(Figure 4B). Thus we conclude that oxidative stress, ER stress

and general cytosolic stress are not greatly induced in tomm-

40(RNAi) animals and that these forms of stress conditions are not

likely to play a significant role in promoting nuclear localization

of DAF-16::GFP.

tomm-40(peRNAi) reduces DAF-28 secretion
The insulin/IGF type ligand DAF-28 is required to promote

non-dauer development and in its absence worms enter the dauer

stage inappropriately. In svIs69 worms, harboring an integrated

daf-28::gfp array [8], DAF-28::GFP is expressed in sensory neurons

and is secreted into the pseudocoelom. There it is taken up by the

coelomocytes, which are cells specialized to take up material from

the pseudocoelomic fluid. Since DAF-28 is not expressed in

coelomocytes, any DAF-28::GFP accumulating in these cells is due

to uptake of the secreted protein [8]. Under growth-promoting

conditions, adults accumulate enough DAF-28::GFP in their

coelomocytes to give a distinct GFP-pattern, which is seen in

100% of wild type animals [8]. The kinetics of secretion are such

that very little DAF-28::GFP is detectable in coelomocytes in

svIs69 bearing larvae. As a result, the secretion assay was carried

out in adults using the weaker peRNAi treatment to bypass the

larval arrest.

Since signaling through the insulin receptor was low in tomm-

40(RNAi) animals, we investigated whether this might be caused by

defective DAF-28 secretion. In daf-28::gfp; tomm-40(peRNAi)

animals there was a substantial decrease in the number of animals

with GFP-labeled coelomocytes (Figure 6A). The defect was not

due to decreased transcription of daf-28, since we could not detect

any down regulation of the transcriptional reporter Pdaf-28::gfp in

tomm-40(peRNAi) animals (n = 18) (Figure 6B). Further, we never

observed any reduced expression in neurons from the functional

svIs69 transgene upon tomm-40(peRNAi). We next wished to

investigate whether the DAF-28 secretion defect was due to

secondary effects of the mitochondrial inactivation, or due to a

neuron specific effect, since neurons are refractory to feeding

RNAi against some genes [36]. Expression of hairpin RNAi from

transgenes is in such cases an effective strategy for silencing

neuronal gene message [36]. To silence tomm-40 expression in

neurons, we therefore expressed tomm-40 hairpin RNAi under the

promoter of osm-6, which is specifically expressed in ciliated

neurons [37]. Like tomm-40(peRNAi), Posm-6::tomm-40(hairpin RNAi)

rendered animals unable to secrete DAF-28::GFP normally

(Figure 6a).

Given the broad range of TOMM-40 expression, it was possible

that coelomocyte function could be affected in tomm-40(peRNAi)

animals. In that case, the effect seen with DAF-28::GFP would

reflect a defect in the uptake of secreted proteins by coelomocytes

rather than a secretion defect. To test this we investigated whether

coelomocytes in tomm-40(peRNAi) animals were competent to take

up and sequester a secreted form of GFP (ssGFP). A Pmyo-3::ssgfp-

bearing transgene (arIs37) is expressed in body wall muscles, from

where the ssGFP is secreted into the pseudocoelom. It is then

taken up and sequestered by coelomocytes, leaving very little

ssGFP in the pseudocoelum [38]. Mutants with defective

endocytosis in coelomocytes accumulate large amounts of ssGFP

in the pseudocoelum [Figure 6B and [39]]. Using these transgenic

worms we found no differences in uptake of ss::GFP by

coelomocytes between tomm-40(peRNAi) (n = 31) and emv(peRNAi)

(n = 30) animals (Figure 6B). We conclude that the reduced levels

of DAF-28::GFP in coelomocytes in tomm-40(peRNAi) was not due

to a coelomocyte endocytosis defect.

DAF-28 overexpression rescues the insulin signaling
defect in tomm-40 depleted animals

To investigate whether the diminished insulin signaling

downstream of the DAF-2 receptor was due to defective DAF-

28 secretion or to other secondary effects, we over expressed

Pdaf-28::daf-28 on an extrachromosomal array in animals

expressing daf-16::gfp. Since extrachromosomal arrays are

unstable during meiosis, the progeny of a transgenic mother

will have transgenic (daf-28 overexpressing) and non-transgenic

(wild-type daf-28 levels) siblings on the same culture plate. By

analyzing siblings that were subjected to tomm-40(RNAi) on the

same plate, we observed that 70.6% of the animals that did not

overexpress daf-28 (n = 17) had nuclear localization of DAF-

16::GFP. Of the animals that overexpressed daf-28, only 14.8%

had nuclear DAF-16::GFP (n = 27). Thus increased levels of

DAF-28 can bypass the insulin signaling defect in animals with

defective mitochondria.

Defective DAF-28 secretion is a general feature of worms
depleted of TOMM complex function

Based on the studies of TOMM complex functions in other

organisms [22,40], C. elegans TOMM-40 is likely to be part of a

complex, where it acts along with other components, such as

Tom20 and Tom22, to import proteins into the mitochondria. We

performed RNAi against their worm homologues, tomm-20 (cosmid

name: F23H12.2) and tomm-22 (cosmid name: W10D9.5), to test

whether the phenotypes elicited by their inactivation would

resemble that of tomm-40(RNAi) animals. We found that RNAi

against these genes did not produce the highly penetrant larval

arrest phenotype seen in tomm-40(RNAi) worms. However, RNAi

against either tomm-20 or tomm-22 induced the mitochondrial

unfolded protein response, indicating a perturbed mitochondrial

protein handling (Figure 6C). Further, inactivation of tomm-20 or

tomm-22 caused a defect in DAF-28 secretion (Figure 6A), although

to a less extent than in tomm-40(peRNAi). As with tomm-40(peRNAi),

coelomocytes in tomm-20(RNAi) (n = 19) and tomm-22(RNAi)

(n = 24) animals were competent for endocytosis (Figure 6B). In

summary these results demonstrate that the process under study is

not a unique property of TOMM-40, but rather the result of

defect in the TOMM complex.
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Mitochondrial dysfunction does not affect the secretion
of ANF and INS-22 neuropeptides

We next asked whether the secretion defect in TOMM-deficient

animals was specific to DAF-28 or if it could also affect secretion of

another insulin-type neuropeptide or a non-insulin neuropeptide.

An established model of non-insulin neuropeptide secretion makes

use of a heterologous fusion protein, ANF:GFP, under control of

the pan-neural aex-3 promoter. The fusion protein localizes to

dense core vesicles in neuronal cells, from where it is secreted into

the pseudocoelom [41]. Like DAF-28::GFP, ANF::GFP is also

taken up by coelomocytes. Since we detected no obvious

differences in coelomocyte GFP contents, we instead used pixel

intensity measurements for increased sensitivity. Secretion and

uptake of ANF::GFP was unaffected in tomm-40(peRNAi) animals as

well as in tomm-20(RNAi) and tomm-22(RNAi) (Figure 6E). Similar

to ANF, the insulin-type neuropeptide INS-22 is secreted from

dense core vesicles into the body cavity, where it is taken up by

coelomocytes [42]. Using pixel intensity measurements in

coelomocytes we were unable to detect a difference between

emv(peRNAi) and tomm-40(peRNAi) animals in secretion and

coelomocyte uptake of INS-22::VENUS (Figure 6F, Figure S4).

Thus we were able to discriminate between the secretion

patterns of different dense core vesicle requiring neuropeptides

based on their sensitivity to perturbations of the TOMM complex.

The effect of mitochondrial dysfunction on DAF-28::GFP

secretion is therefore not due to a general neuropeptide secretion

defect or to a defect in the dense core vesicle secretion machinery.

Discussion

This work demonstrates that TOMM-40 is essential for

mitochondrial function in C. elegans. Its absence severely reduces

mitochondrial function, and causes a larval growth arrest. Using

sensitized genetic backgrounds and specific reporters we find that

insulin signaling is compromised upon depletion of tomm-40 and

Figure 6. TOMM-40 promotes insulin secretion. (A) Adults, carrying an integrated daf-28::gfp transgene (svIs69), were analyzed for coelomocyte
GFP content. Absent or severely reduced GFP content (a maximum of two faintly fluorescing coelomocytes) was scored as secretion defective. (B)
Neuronal expression of GFP from the transcriptional reporter transgene Pdaf-28::gfp in tomm-40(peRNAi) and emv(peRNAi) treated animals, imaged with
fluorescence optics. (C) Fluorescence optics of peRNAi treated animals of the arIs37 strain, carrying a Pmyo-3::ssgfp transgene that expresses ssGFP in
body wall muscle, from where it is secreted into the pseudocoelom. Coelomocyte sequestration of GFP indicates functional coelomocyte endocytosis.
rme-1(b1045) is a previously characterized endocytosis defective mutant [39]. Arrows indicate GFP labeled coelomocytes. (D) Fluorescence
micrographs of emv, tomm-20 and tomm-22(RNAi)-treated animals carrying the Phsp-6::gfp reporter. (E–F) Relative pixel intensity plots of coelomocyte
GFP contents in peRNAi or RNAi treated adults carrying (E) an Anf::gfp transgene or (F) an ins-22::venus transgene. The strongest fluorescing
coelomocyte in the posterior most pair was scored. The mean value of the pixel intensity in emv was set to 1 in each experiment. Error bars represent
+/2 mean standard deviations from three independent experiments. (G) Micrographs of RNAi treated sibling animals, carrying either the integrated
daf-16::gfp transgene only, or both the integrated daf-16::gfp transgene and an extra chromosomal Pdaf-28::daf-28 transgene for DAF-28
overexpression. Presence of the Pdaf-28::daf-28 transgene is indicated by a coelomocyte RFP co-injection marker (red arrows). White arrowheads
indicate nuclear DAF-16::GFP localization in a tomm-40(RNAi) animal. White arrows indicate the absence of DAF-16::GFP in nuclei of intestinal cells in a
tomm-40(RNAi); daf-28(++) animal. Scale bars are 25 mm.
doi:10.1371/journal.pone.0014507.g006
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that this is due to a decrease in DAF-28 secretion. The secretion

defect is not general in nature because these animals are able to

secrete ANF::GFP and INS-22::VENUS, two other dense core

vesicle residing neuropeptides, normally.

The mitochondrial defects inflicted upon inactivation of tomm-

40 are likely caused by a decreased protein import capacity of

mitochondria, which we observed with the NNT-1::GFP fusion. A

defective import of cytosolic proteins into mitochondria presum-

ably causes stochiometric changes. Changes in the stochiometry of

mitochondrial proteins are known to evoke expression of the

mitochondrial unfolded protein response, as are elevations in

mitochondrial ROS levels and misfolding of mitochondrial

proteins [25].

Worms very rarely became adults in the stronger form of RNAi

against tomm-40. Instead they arrested as larvae, mostly between

the 1st and 3rd larval stage, which is consistent with the elevated

energy demand at the L3/L4 transition [43]. The increase in

biosynthetic activity at this transition invokes a substantial energy

demand, which is reflected by a sharp increase in the number of

mitochondria at this stage [44]. It is possible that cytosolic

glycolysis can supply sufficient energy for completion of embryo-

genesis and for progression through the first three larval stages in

tomm-40-depleted animals, but fails to do so in the energy-

demanding L3/L4 transition. The L1 arrest phenotype is also seen

in other situations when insulin signaling is compromised. Worms

that hatch in the absence of food arrest as L1s, as do daf-2/insulin

receptor mutants [45] and asna-1 mutants [8].

In contrast to the developmental defects in tomm-40, we did not

observe any growth defects or sterility when tomm-20 or tomm-22

were inactivated. This was not due to RNAi-insensitivity since the

mitochondrial stress response was strongly evoked. tomm-20 and

tomm-22-depleted animals also showed insulin secretion defects,

but to a lesser extent than in tomm-40(peRNAi). The only phenotype

that was at equal levels in all three cases was the induction of

mitochondrial stress. Since we did not find a correlation between

the extent of mitochondrial stress and the extent of the DAF-28

secretion defect, the stress response appears to be uncoupled from

DAF-28 secretion.

The differences in phenotypes between tomm-40 and the other

two tomm genes is not unexpected and is in keeping with work in S.

cerevisiae and mammalian cells showing that TOMM-40 is the

central element of the translocase [14] and that other TOMM

proteins like TOMM-20 and TOMM-22 play subsidiary roles, in

recognizing preproteins destined for import and in stabilizing the

complex [16]. It therefore appears that tomm-40 is the one gene

which when inactivated will cause a loss-of-organelle function by

preventing import of nucleus-encoded structural proteins and

proteins needed for transcription and translation of the mitochon-

drial genome. This is consistent with the finding that inactivation

of only the mitochondrial genome by ethidium bromide treatment

causes the milder phenotypes of slow growth and reduced brood

size [25]. Inactivation of tomm-40 therefore enabled us to evaluate

the contribution of mitochondria to insulin secretion and signaling

unambiguously.

Two findings suggest to us that insulin signaling is weaker in

tomm-40 depleted animals. First, DAF-16::GFP was in nuclei in

tomm-40(RNAi) animals (Figure 5A). Second, tomm-40(RNAi)

enhanced the dauer defect of daf-7/TGFb mutants, but not of

daf-2/insulin receptor mutants (Figure 5B,C). It is very likely that the

primary defect that caused a lowered insulin signaling level in

tomm-40(RNAi) animals was a decrease in DAF-28 secretion

because overexpression of DAF-28 in daf-16::gfp; tomm-40(RNAi)

animals rescued the nuclear localization of daf-16::gfp (Figure 6G).

We speculate that there can be a basal level of DAF-28 secretion

that is mitochondria-independent and that this level may be

greatly increased upon overexpression of DAF-28. One other

reason for the rescue could be an increased loading of DAF-28

into dense core vesicles, so that any one vesicle that is secreted

contains more DAF-28. The effect of tomm-40 depletion on DAF-

28 secretion is likely to be in the neurons because expression of a

tomm-40 hairpin RNAi construct in ciliated head neurons (a subset

of which express daf-28) also reduces DAF-28::GFP secretion

(Figure 6A).

While DAF-16::GFP can be driven into nuclei because of

various stresses such as oxidative stress, pathogen load and heat

shock, we do not think that these are the reasons for the nuclear

localization of DAF-16::GFP in tomm-40(RNAi) animals. Using

specific stress reporters, we could not detect an increase in

oxidative stress, ER stress or general cytosolic stress (Figure 4B). A

direct estimation of the levels of oxidized proteins in tomm-

40(RNAi) animals also indicated that there was no increase in

oxidative stress (Figure 4C).

DAF-28 secretion was compromised and the insulin pathway

activity downstream of daf-2/insulin receptor was lowered in

tomm-40(peRNAi) animals. Notably, the DAF-28::GFP fluorescence

in coelomocytes is rarely detected before the adult stage,

presumably because the rate of secretion is sufficient only in

adults. As a result, a weaker form of RNAi against tomm-40 had to

be performed to bypass the larval arrest. Therefore the DAF-

28::GFP secretion defect observed in tomm-40(peRNAi) is most

likely an underestimate of the true magnitude of the defect since

much tomm-40 activity is likely to persist. By contrast this type of

treatment had no discernable effect on the secretion of two other

dense core vesicle-associated neuropeptides, ANF::GFP and INS-

22::VENUS.

Of the many insulins expressed in C. elegans, DAF-28 has some

features of an insulin neuropeptide that plays a role in regulating

metabolic homeostasis. DAF-28 acts as an agonist to the DAF-2/

insulin receptor, thereby promoting reproductive growth and

preventing dauer stage entry in nutritionally replete conditions

[7,46]. While its regulation is complex and incompletely

understood, it is notable that, like human insulin, its expression

is high when food levels are high and low when food levels are low.

daf-28 is regulated transcriptionally by the dauer pheromone,

during ageing [7] and by daf-11/guanylyl cyclase [7,47]. However, it

has been noted that the magnitude of transcriptional control does

not appear sufficient to modulate dauer formation. This work

demonstrates that DAF-28 secretion is sensitive to mitochondrial

function and that failure to secrete DAF-28 is associated with

inappropriate entry into the dauer diapause. In that way, our

findings indicate that mitochondrial activity seems to represent an

additional level of control over DAF-28 function.

RNAi treatment often does not affect neuronally expressed

genes in C. elegans. However, this does not seem to be the case for

tomm-40, because tomm-40(peRNAi) affected the secretion of

neuronally expressed DAF-28. It is therefore very likely that

tomm-40(peRNAi) also affects neurons that express ANF::GFP

(Figure 6E) and INS-22::VENUS (Figure 6F). We conclude that a

severe effect of tomm-40(peRNAi) on DAF-28::GFP reflects a

greater dependence of DAF-28 on mitochondrial activity, which

is consistent with the case for human insulin. The secretion of

DAF-28 also mimics that of mammalian insulins in that it is

dependent on the ATPase asna-1 [8] and the dense core vesicle

component unc-31/CAPS [48]. We have demonstrated one more

level of similarity. Just as in the case of human insulin, DAF-28

secretion is sensitive to mitochondrial function. Hence, several

factors controlling DAF-28 secretion in C. elegans are similar to

those controlling insulin secretion in mammals. More knowledge
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of the mechanisms underlying DAF-28 secretion is therefore of

interest to the field of insulin secretion research in a larger context.

Materials and Methods

Plasmids
pVB463OB: The full length tomm-40 cDNA from ATG to the

stop codon was inserted as a BamHI/XhoI fragment into the

feeding RNAi vector L4440. This was used for feeding RNAi.

pVB488OB: A region spanning from 1.8 kb of the promoter

region and 16 bp of the first exon of tomm-40 was inserted as a

HindIII/PstI fragment into the GFP vector pPD95.77 plasmid to

make a transcriptional GFP reporter.

pVB518OB: Using an oligo dT primed first strand cDNA

reaction from total C.elegans RNA, the full length tomm-40 cDNA

was amplified using primers with flanking AgeI sites. The

amplified cDNA, which was designed to lack the stop codon,

was inserted between the tomm-40 promoter and the gfp coding

region in pVB488OB at the AgeI site to yield pVB518OB which

contains a full length tomm-40::gfp fusion construct. The cDNA was

sequenced and found to contain no PCR-generated errors and to

be in frame with gfp.

pVB299GK: A 2.5 kb fragment containing the promoter region

of osm-6 was inserted as a SphI/XbaI fragment into the pPD49.26

plasmid.

pVB559MA: tomm-40 genomic DNA was amplified using

primers with flanking NheI sites corresponding to the start and

to the stop of the gene, but lacking the start and stop codons. This

fragment was inserted as an NheI/NheI fragment into the

pVB299GK plasmid to generate Posm-6::tomm-40, where tomm-40

was inserted in a 59to 39orientation. The orientation was

confirmed by sequencing.

pVB560MA: We used the same method as with pVB559MA,

but instead selelected a clone where tomm-40 was inserted in a 39to

59orientation. The orientation was confirmed by sequencing.

Strains
The following C. elegans mutants and transgenes used in this

study are described in WormBase (www.wormbase.org, release

WS211): Wild type Bristol strain (N2), daf-16::gfp(zIs356), daf-

7(e1372), daf-2(e1370), anf::gfp(oxIs180), Phsp-4::gfp(zcIs4), Phsp-

6::gfp(zcIs13), Phsp-60::gfp(zcIs9), Phsp-16.2::gfp(dvIs70), Pgst-4::gfp(zcIs19)

and P
unc-129

::ins-22::venus(nuIs196). Other strains were: daf-

28::gfp(svIs69) [8], Pdaf-28::gfp(svEx436) [8], Pmyo-3::ssgfp(arIs37) [38]

nnt-1::gfp(svEx127) [23]. arIs37; rme-1(b1045) was generated by

standard crossing techniques. The Ptomm-40::gfp and Ptomm-40::tomm-

40::gfp-bearing strains were generated by injection of pVB488OB

and pVB518OB at 50 ng/mL respectively. For both plasmids,

transgenic lines were generated by co-injecting of each plasmid

with the rol-6(d) plasmid at a concentration of 50 ng/mL. The daf-

16::gfp; daf-28(++) strain was generated by injecting the

pVB288GK plasmid [8] into the daf-16::gfp(zIs356) strain. The

pVB288GK plasmid, which contains wild type daf-28 under

3.4 kb of its own promoter, was co-injected with a Punc-122::RFP

(coelomocyte::RFP) marker [49] (Addgene plasmid 8938). Both

plasmids were injected at a concentration of 50 ng/ml. The daf-

28::gfp(svIs69); Posm-6::tomm-40(hairpin RNAi) strain was generated

by co-injecting pVB559MA and pVB560MA at a concentration of

1 ng/mL each together with the co-injection marker plasmid rol-

6(d) at a concentration of 50 ng/mL.

Analysis of tomm-40(tm4574)
The tomm-40(tm4574) mutant was outcrossed five times and

balanced with the mnC1(dpy-10 unc-52) balancer chromosome [50].

The primers ATACACCACCAACAGTCCTG and GTGCTGC

GAATAAACCCTTC that were recommended by the NBP,

Tokyo were used in single worm PCR to genotype the mutants.

These primers allowed us to distinguish among wild-type,

heterozygotes and homozygous mutants. tomm-40(tm4574) mutants

segregating from tomm-40/mnC1 mothers were identified on plates

by allowing 6 mothers to lay eggs for 2–3 hours and then killing all

the L4 larvae that emerged after incubation for 40 hours. Motile

L2 larvae were picked to a second plate and incubated for a

further 24 hours to confirm that these were growth arrested. They

were then used for microscopy or single worm PCR. Phsp-

6::gfp(zcIs13); tomm-40(tm4574)/mnC1 animals were handled in

the same way to identify tomm-40 mutants bearing the Phsp-6::gfp

transgene.

RNAi
Embryonic RNAi: The bacterial strain HT115 was transformed to

carbenicillin resistance with pVB463OB for RNAi against tomm-

40. The tomm-20 and tomm-22 RNAi clones were from the

Ahringer lab library of clones [51]. HT115 bacteria bearing the

L4440 plasmid served as the empty vector (emv) control [52].

Feeding RNAi was done as described elsewhere [53]. In each

experiment, the progeny from three hermaphrodites were scored

for phenotypes elicited by RNAi. Postembryonic RNAi: Gravid

hermaphrodites were treated with sodium hypochlorite solution to

release embryos. After washing three times in M9, 50–200

embryos were put on each RNAi plate, seeded with either

pVB463OB or emv expressing bacteria and examined for

phenotypes after hatching and larval growth.

Feeding behavior
The number of pharyngeal pumps/minute in arrested animals

was counted using a Leica MZFLIII dissecting microscope at 406
magnification. Wild type worms, which were arrested as L1s

through hatching in the absence of food served as the positive

control. They were fed with emv-containing bacteria 30 minutes

before analysis to start feeding and were then compared with

worms fed with pVB463OB containing bacteria.

The ability to ingest food was measured using fluoresbrites

0.2 mM fluorescent microspheres (Polyscience, Inc., Warrington,

PA, USA). Beads were mixed with RNAi bacteria suspensions at

1:50 dilution and seeded onto RNAi plates, followed by IPTG

induction over night. Worms were first treated with feeding RNAi

as before, and then incubated for 30 minutes on the lawn of

bacteria mixed with fluorescent beads. Ingestion of these bacteria-

sized beads was visualized at 636 magnification under a Leica

DMRB fluorescence microscope. Control animals were arrested as

before and then allowed to start feeding on a lawn of emv bacteria

30 minutes before incubation on the corresponding bacterial lawn

with fluorescent beads.

Insulin signaling and neuropeptide secretion
DAF-16::GFP: Worms carrying an integrated daf-16::gfp

transgene array [28] were treated with feeding RNAi as above.

Micrographs were taken at 636 or 1006 magnification using a

Leica DMRB fluorescence microscope. tomm-40 and emv(RNAi)

treated daf-16::gfp animals were kept on microscope slides for no

more than 10 minutes to avoid artifacts due to stressful conditions.

DAF-28::GFP uptake by coelomocytes was scored in adult

worms, carrying the integrated daf-28::gfp array svIs69 [8]. The

animals were scored as defective in DAF-28::GFP secretion if they

had no GFP-labeled coelomocytes or if the coelomocytes had very

faint GFP fluorescence. They were scored as secretion competent

if they possessed one or more brightly fluorescing coelomocyte [8].
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The ANF::GFP content in coelomocytes was measured in

peRNAi treated animals as described previously [41]. Briefly,

fluorescence images of the posterior most coelomocytes (either

ccDL or ccDR) were captured using a fixed exposure time of 360

milliseconds. Images were converted to grayscale using Photoshop

software and the pixel intensity was then measured with the aid of

the NIH ImageJ software.

Mitochondrial imaging and physiology
To assess the strength of the electrochemical gradient of

mitochondria, tomm-40(peRNAi) treated animals were grown at

20uC on plates containing 30 mM tetramethylrhodamine ethyl ester

(TMRE) (Invitrogen, Carlsbad, CA, USA) for 16 hours as described

previously [40]. Animals were washed in M9 buffer and anesthetized

in 0.5 mM levamisole. Micrographs were captured at 206
magnification using a Leica DMRB fluorescence microscope.

MitoTracker counterstainings of mitochondria were done as

described elsewhere [20], by growing worms on plates containing

1.25 mM MitoTracker red CMXRos (Invitrogen, Carlsbad, CA,

USA). Confocal images were captured using a Nikon Eclipse C1

microscope with excitation/emission wavelengths at 488/515 nm

for GFP and at 543/605 nm for MitoTracker. Fluorescence images

were captured using a Leica DMRB fluorescence microscope.

Assay for oxidized proteins
Mothers were treated from the L4 stage and onwards with

feeding RNAi against tomm-40 or the L4440 plasmid (emv) as a

control. The mothers were allowed to lay eggs for 24 hours, and

were then removed. The larval offspring was washed carefully in

M9 buffer to remove bacteria, and then lysed with a bullet blender

(Next Advance, Averill Park, NY, USA) in Nonidet P40 buffer

(150 mM sodium chloride, 1.0% NP-40, 50 mM Tris pH 8.0, 16
protease inhibitor cocktail). Worm debris was removed by

centrifugation and protein levels in the remaining worm lysates

were measured using the Bio-Rad DC protein assay (Bio-Rad,

Hercules, CA, USA). Samples from each experiment were then

normalized to protein levels and treated according to the

manufacturers instructions for the Oxyblot kit (Millipore, Billerica,

MA, USA).

Supporting Information

Figure S1 TOMM-40::GFP localizes to mitochondria. Fluores-

cence imaging of a body wall muscle cell in an animal transgenic

for the tomm-40::gfp (pVB518OB) plasmid. (A) TOMM-40::GFP

localized in stripy patterns corresponding to red MitoTracker dye

in (B) and (C). The dashed squares indicate the areas enlarged in

(A’-C’), where arrows indicate TOMM-40::GFP localized around

a red MitoTracker foci, corresponding to the matrix of a

mitochondion.

Found at: doi:10.1371/journal.pone.0014507.s001 (1.71 MB TIF)

Figure S2 TOMM-40 is required for NNT-1::GFP to accumu-

late in mitochondria. Whole body confocal images of RNAi

treated animals, transgenic for a truncated nnt-1::gfp construct and

counterstained with MitoTracker. Dashed squares represent the

portions that are enlarged in Figure 4A. Scale bars are 20 mm.

Found at: doi:10.1371/journal.pone.0014507.s002 (2.84 MB TIF)

Figure S3 The mitochondrial stress response is evoked in tomm-

40(tm4574) mutants. Fluorescence optics imaging of Phsp-6::gfp and

Phsp-6::gfp; tomm-40(tm4574) animals. Images were captured at 1.01

seconds exposure time for Phsp-6::gfp animals and at 0.1 seconds for

Phsp-6::gfp; tomm-40(tm4574) animals.

Found at: doi:10.1371/journal.pone.0014507.s003 (0.20 MB TIF)

Figure S4 Accumulation of DAF-28::GFP and INS-22::Venus

in coelomocytes. (A) Animals of the daf-28::gfp(svIs69) strain,

treated with tomm-40(peRNAi) or emv(RNAi). Top panels are DIC

representations of the fluorescence images below. (Left) An

emv(peRNAi) animal, with vibrantly GFP-labeled coelomocytes.

This animal was scored as secretion competent. (Right) A tomm-

40(peRNAi) animal, with absence of any GFP-labeled coelomocyte.

This animal was scored as secretion defective. Arrows indicate

coelomocytes. The scale bar is 25 mm. (B) Picture representation of

the coelomocytes that were measured for pixel intensity in

Figure 6F. (Top) A panel showing 33 coelomocytes, from

individual emv(peRNAi) worms, containing INS-22::VENUS and

(below) 34 coelomocytes, from individual tomm-40(peRNAi) worms,

containing INS-22::VENUS.

Found at: doi:10.1371/journal.pone.0014507.s004 (0.67 MB TIF)
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