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ABSTRACT

In this digital era, artificial intelligence (AI) is
establishing a strong foothold in commercial
industry and the field of technology. These
effects are trickling into the healthcare industry,
especially in the clinical arena of cardiology.
Machine learning (ML) algorithms are making
substantial progress in various subspecialties of
cardiology. This will have a positive impact on
patient care and move the field towards preci-
sion medicine. In this review article, we explore
the progress of ML in cardiovascular imaging,
electrophysiology, heart failure, and interven-
tional cardiology.

Keywords: Artificial intelligence; Machine
learning; Cardiovascular Imaging;
Electrophysiology; Heart failure; Interventional
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Key Summary Points

Machine learning is a branch of artificial
intelligence which can achieve several
tasks through supervised learning,
unsupervised learning, semi-supervised
learning. Deep Learning has tremendous
potential and is gaining prominence in
the field of cardiology.

Machine learning facilitates automation,
risk stratification, prediction,
quantification, and precision
phenotyping. It can be integrated with
radiomics.

There is a strong potential for false
discovery and biases. Primary investigator
and medical team must play an active role
during the algorithm training and
development.
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INTRODUCTION

With high-dimensional data emanating from a
variety of platforms which include miniaturized
devices and third-party apps, commercial
industries have been significantly transformed
in this current digital era [1, 2]. Artificial intel-
ligence (AI) has proven to be a valuable tool in
navigating these new frontiers of information
technology [3]. The presence of AI is palpable in
day-to-day interaction with devices from voice
recognition software such as Siri or Alexa to self-
driving automobiles [4]. Similarly, these waves
of technological changes have trickled down
into the arena of healthcare [5]. For example,
certain US Food and Drug Administration
(FDA)-approved AI algorithms can read chest
radiographs. AI will tremendously expand the
boundaries of medicine and will ultimately
elevate the quality of patient care.

Machine learning (ML), a subset of AI, can
extract and decipher various patterns present in
large data reserves [6]. ML and AI have made
substantial leaps and bounds in the field of
cardiology where there is high-dimensional
data. AI can connect information from a mul-
titude of sources and automate calculations or
various processes [7]. These changes have been
seen in cardiovascular imaging, electrophysiol-
ogy, heart failure, and interventional cardiol-
ogy. In this review article, we will discuss the
impact of AI and ML in various facets of clinical
cardiology. This article is based on previously
conducted studies and does not contain any
new studies with human participants or animals
performed by any of the authors.

GROWTH AND TYPES OF MACHINE
LEARNING

In recent times, the size and complexity of data
arising from various modalities have increased
substantially [8]. The sheer size can exceed the
capacity of current statistical software. How-
ever, this contrasts with ML as the findings of
ML algorithms become more precise as data
becomes larger [9]. This massive data influx has
propelled the growth of ML. In addition, ML

algorithms are more dynamic and data-driven
[10].

ML is a broad term that refers to a wide
variety of algorithms. ML can be classified into
supervised learning, unsupervised learning,
semi-supervised learning, reinforcement, and
deep learning [11]. Supervised learning utilizes
labeled parameters or domains within a dataset
to orchestrate actions [12]. Unsupervised learn-
ing can be considered more agnostic or sover-
eign—like operating independently to discover
patterns within databases [13]. Within unsu-
pervised learning, clustering approaches are
proving to be valuable. They can detect new
subtypes or variants within complex heteroge-
neous entities such as heart failure or aortic
stenosis. By identifying these variants, we can
have more specific treatment options directed
towards particular subtypes in these conditions
[11]. Semi-supervised learning has attributes of
both supervised and unsupervised learning
fields [14]. Reinforcement learning is less fre-
quently utilized in comparison to the other
algorithms. This ML framework utilizes certain
reward criteria to execute appropriate actions
[14].

Among all ML frameworks, deep learning is
more advanced and adept in processing infor-
mation [15]. Other algorithms require extensive
experience with training sets before executing
any given action. Deep learning differs
tremendously in this aspect as it needs less
training time and performs extremely well with
large datasets [16]. To simplify, the structure of
deep learning is like that of a neuron. It is
arranged in a series of layers [16]. Once infor-
mation is extracted, it is processed between
ascending and descending layers. Owing to the
availability of increased computational copacity
of computer processing units (CPU), deep
learning has proven to be extremely effective in
image classification, speech recognition, and
genomics [17]. Recurrent neural networks and
functional neural networks are frequently used
in cardiology [7].
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APPLICATION OF ML
IN CARDIOVASCULAR IMAGING

The field of cardiovascular imaging has seen
significant adoption of ML for the analysis of
images in diagnosis and prognostication
(Fig. 1). Cardiovascular imaging broadly
encompasses various imaging modalities such
as echocardiography, computed tomography
(CT), nuclear cardiology, and magnetic reso-
nance imaging (MRI). As technology continues
to evolve and grow, new parameters are being
added to existing modalities [9]. AI and ML can
automate calculations and connect the infor-
mation in a meaningful manner [9].

Numerous studies have assessed the impact
of ML in the field of echocardiography
(Table 1). Samad et al. utilized ML to predict all-
cause mortality in 171,510 patients by using
multiple echocardiographic parameters and
information from electronic medical records.
The mean area under the curve (AUC) was used
to evaluate models and scoring systems over
multiple cross-validations. The ML model
showed superior accuracy (all AUC[ 0.82,
p\0.001) compared with logistic regression
models [18] and common clinical risk scores
(AUC = 0.69 to 0.79) over 10 survival durations
from 6 to 60 months. A unique aspect of the
study was utilizing a broad initial hypothesis
rather than a focused hypothesis which can
help address gaps in knowledge. The original
inquiry can be revised or lead to brand new
questions which can be investigated. Pandey
et al. explored a deep learning model which
integrated multidimensional echocardiographic

data to distinguish novel subtypes of patients
with heart failure with preserved ejection frac-
tion (HFpEF) [19]. The authors identified high-
and low-risk phenotypes, and the performance
of the model was assessed in two external
cohorts. In addition, relationships between
these phenotypes were further assessed with
adverse clinical outcomes in the TOPCAT clin-
ical trial data. The deep learning model
demonstrated a greater area under the receiver
operating curve (ROC) than the 2016 American
Society of Echocardiography (ASE) guidelines
for predicting elevated left ventricular filling
pressures in patients with HFpEF (0.88 vs 0.67;
p = 0.01). In the TOPCAT cohort, the high-risk
phenotype revealed higher rates of hospitaliza-
tion/cardiac death (HR = 1.92, p = 0.01) and
higher event-free survival with spironolactone
therapy (HR = 0.65, p = 0.01). Current guideli-
nes for classifying HFpEF are vague, but ML
models can further stratify these patients and
identify treatment approaches with a higher
likelihood of a positive response in certain
subtypes. Sengupta et al. utilized a supervised
ML model to augment echocardiographic strat-
ification of aortic stenosis (AS) severity. They
showed high-severity and low-severity AS phe-
notypes which were compared to markers of
disease severity in CT and cardiac magnetic
resonance (CMR) imaging and major clinical
outcomes such as aortic valve replacement
(AVR) and mortality [20]. Close to 70% of the
1964 patients were classified as having non-
severe or discordant AS, but the ML model
showed 1117 (57%) patients having high-
severity AS and 847 (43%) patients having low-
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Fig. 1 ML improves diagnosis and prognosis
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severity AS. High-severity groups had a higher
incidence of elevated calcium scores and left
ventricular fibrosis. In relation to current clas-
sification approaches, ML-derived classification
had enhanced discrimination (integrated dis-
crimination improvement 0.17, CI 0.02–0.12)
and reclassification (net reclassification
improvement 0.17, CI 0.11–0.23) for aortic
valve replacement (AVR) outcomes at 5 years
[20]. Current recommendations for evaluating
AS are hindered by diagnostic ambiguity as
many complications in AS arise secondary to
valvular obstruction and ventricular decom-
pensation [21]. ML-derived frameworks can
help better stratify AS severity and possibly
improve the timing of interventional approa-
ches for these patients.

The use of CT is ubiquitous in current car-
diology practice for diagnosing coronary artery
disease (CAD) and procedure planning for
structural heart interventions [22, 23]. It plays a
seminal role in the evaluation of patients with
chest pain. Several studies have applied ML
algorithms in CT (Table 2). Hwang et al. applied
topological data analysis (TDA) to characterize
different patient groups based on coronary pla-
que features from computed tomography
angiography (CTA) and clinical parameters to
evaluate their relationship with various out-
comes [24]. Group A had the lowest amount of
coronary plaque, group B had a moderate
amount of coronary plaque enriched with
fibrofatty or necrotic core, and group C had the

largest amount of plaque with dense calcium
components. Among the three groups estab-
lished by TDA, group B had a higher incidence
of acute coronary incidence (0.3% vs 2.6% vs
0.6%; p\ 0.001) while groups B and C revealed
elevated rate of revascularization (3.1% vs
15.5% vs 17.8%; p\0.001). TDA can efficiently
characterize patients on the basis of plaque
properties or dynamics and assess their rela-
tionship with different outcomes. Numerous
advances in computing power have enabled us
to analyze tomographic images (e.g., CT or
CMR) in significant detail and these features can
be extracted and turned into numbers. Each
image can have hundreds of features that can be
analyzed or quantified. The overall process is
collectively known as radiomics [25]. This can
be broadly classified into intensity, structure,
texture or gradient, and gradient [26]. Kay et al.
utilized the ML framework in conjunction with
radiomics in CT with coronary calcium score
(CAC) to identify phenotypic properties of
high-risk left ventricular hypertrophy (LVH) in
1982 patients. Interestingly, these ML models
were quite accurate in LVH detection [27]. Kay
et al. showed the possibility of an ML radiomic
pipeline capable of identifying high-risk with
patients LVH solely on the basis of CT with CAC
without requiring other diagnostic imaging.
This approach also has the additional benefit of
reduced radiation exposure for patients. Al’Aref
et al. demonstrated that an ML model incor-
porating clinical factors and calcium scores

Table 1 Machine learning in echocardiography

Study Number of
patients

ML
approach

Description

Samad et al.

[18]

171,510 Supervised

learning

Survival prediction utilizing echo and clinical data and compared with other

risk scores and logistic regression models

Pandey et al.

[19]

1242 DL Deep learning model stratified patients into high- and low-risk phenotypes.

These models were assessed with clinical outcomes in TOPCAT clinical

trial data

Sengupta

et al. [20]

1964 Supervised

learning

Supervised learning was used to classify patients into high- risk and low-risk

groups based on echocardiographic parameters and to optimize the timing of

aortic valve replacement

DL deep learning, ML machine learning
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from CT angiography (CTA) can effectively
predict coronary artery disease (CAD) in the
CONFIRM registry [28]. The AUC for ML and
CAC showed a higher AUC (0.881) than ML
alone (0.773), coronary calcium (0.886), and
updated Diamond–Forrester score (0.682) in
35,281 patients with CTA. Many of the current
risk score paradigms systematize risk assessment
based on clinical factors, e.g., as the updated
Diamond–Forrester score. The updated Dia-
mond–Forrester score is a pre-test probability
score that can help select patients for additional
testing [29]. Previous studies have shown these
systems have low to moderate performance
when assessing chest pain in the general popu-
lation [30, 31]. By integrating ML with CAC, we
can significantly improve risk stratification and
help improve medical management.

Single-photon emission computed tomogra-
phy (SPECT) myocardial perfusion imaging
(MPI) is the diagnostic imaging pillar of nuclear
cardiology and plays a seminal role in the
evaluation of myocardial ischemia [6]. ML
algorithms can help augment the diagnostic
performance of SPECT and improve the quality
of clinical care; this has been observed in several
studies (Table 3). Otaki et al. assessed a deep
learning model for the prediction of obstructive
CAD from SPECT MPI in 3578 patients. The
deep learning model was compared to auto-
mated total perfusion deficit (TPD) and expert
reader diagnosis. The deep learning model had a

superior AUC (AUC 0.83; 95% CI 0.82–0.85)
than TPD (AUC 0.78; 95% CI 0.77–0.80) or
expert reader diagnosis (AUC 0.71; 95% CI
0.69–0.72; P\0.0001 for both) [32] for
obstructive CAD detection. This study shows
the potential and superiority of deep learning: it
can be easily integrated with standard clinical
software for CAD detection following MPI.
Betancur et al. explored the role of supervised
learning in assessing the predictive value of
SPECT MPI with integrated patient information
[33] clinical variables for major adverse cardio-
vascular event (MACE) prediction in 2619
patients. The cohort was monitored for MACE
while undergoing exercise or pharmacological
SPECT MPI and 239 patients had MACE events
at 3-year follow-up. Interestingly, ML combined
with patient information had higher MACE
prediction than ML imaging (AUC = 0.81 vs
0.78, p\ 0.01). The ML model had superior
MACE predictive capacity when compared to
expert readers, TPD, and automated ischemic
perfusion deficit (AUC 0.81 vs 0.65 vs 0.73 vs
0.71, p\0.01 for all) [33]. Hu et al. utilized ML
to predict per-vessel prediction of early coro-
nary revascularization following SPECT MPI
after 90 days in 1980 patients. Hu et al. reported
an ML model (0.79 vs 0.71 vs 0.72, P\ 0.001)
having a greater AUC for predicting the possi-
bility of early coronary revascularization
90 days following SPECT MPI than regional or
ischemic TPD [34]. Similarly, the ML algorithm

Table 2 Machine learning in computed tomography

Study Number of
patients

ML approach Description

Hwang

et al.

[24]

1264 Unsupervised

learning

Various groups were created on the basis of plaque properties and assessed

with outcome. Group B had higher incidence of CAD while groups B and

C had a higher rate of revascularization

Kay et al.

[27]

1982 ML algorithm LVH information was used to identify phenotypic information by utilizing

radiomics

Al’Aref

et al.

[28]

35,281 Multiple ML

algorithms

ML with CAC had a higher prediction of CAD than ML alone or other

pretest risk scores

CAC coronary calcium score, CAD coronary artery disease, DL deep learning, LVH left ventricular hypertrophy, ML
machine learning
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outperformed TPD or expert cardiologist inter-
pretation for the prediction of early coronary
revascularization.

Cardiovascular magnetic resonance (CMR)
imaging has quickly ascended as a pivotal
diagnostic modality in cardiology that enables
tissue characterization and facilitates medical
management [35]. ML algorithms can propel
and augment the capabilities of CMR to
enhance cardiovascular risk stratification and
diagnosis [35]. CMR is frequently used in the
diagnosis of hypertrophic cardiomyopathy
(HCM) but safety issues regarding gadolinium
have been reported. Mancio et al. presented an
ML model incorporating radiomic features
which were capable of detecting HCM in 1099
patients without gadolinium administration.
The ML-derived radiomic algorithm successfully
detect HCM in patients without fibrosis
(AUC = 0.83; 95% CI 0.77–0.89; sensitivity of
91%) [36] (Table 4). By integrating radiomics
with ML, we can reduce safety concerns associ-
ated with gadolinium in patients. Ruijsink et al.

examined the role of deep learning for auto-
mated left ventricular assessment; the results
were compared with manual analysis in 100
patients undergoing CMR [37]. The ML algo-
rithm closely correlated with manual analysis of
left and right ventricular volumes (all r[ 0.95)
and strain (circumferential r = 0.89, longitudi-
nal r[0.89). The study showcases the potential
of deep learning for automated ventricular
assessment which could minimize physician
oversight and divert more time towards patient
care in the future.

APPLICATION OF ML
IN ELECTROPHYSIOLOGY

ML algorithms demonstrate tremendous pro-
mise in opening new frontiers in electrophysi-
ology [38]. ML can transform electrophysiology
by expanding our understanding of new phe-
notypes in multiple conditions and improving
the risk stratification [38]. Several studies have

Table 3 Machine learning in nuclear cardiology

Study Number of
patients

ML approach Description

Otaki et al.

[61]

3578 DL Deep learning prediction of CAD was superior to TPD or expert reader

diagnosis

Betancur

et al. [33]

2619 Unsupervised

learning

ML model integrating patient information had better MACE prediction

than ML alone, expert reader, and TPD

Hu et al.

[62]

1980 ML algorithm ML model was superior to TPD or expert diagnosis for early vessel

revascularization

CAD coronary artery disease, DL deep learning, MACE major adverse cardiovascular events, ML machine learning, TPD
total perfusion deficit

Table 4 Machine learning in cardiac magnetic resonance imaging

Study Number of
patients

ML
approach

Description

Mancio

et al. [36]

1099 Supervised

learning

ML algorithm integrating radiomics was able to successfully detect HCM

without gadolinium administration

Ruijsink

et al. [37]

100 DL Deep learning enables automated ventricular function assessment, findings

closely correlated with manual analysis

DL deep learning, HCM hypertrophic cardiomyopathy, ML machine learning
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shown increased clinical utility and the poten-
tial of ML in electrophysiology.

The electrocardiogram (ECG) is the most
fundamental test in the field of cardiology. ML
frameworks can extract information from a
variety of rhythms to result in augmented ECG
interpretation. Mjahad et al. compared multiple
ML algorithms in ECG to detect ventricular
tachycardia (VT) and ventricular fibrillation
(VF) [39] (Table 5). The deep learning algorithm
had more than 98% accuracy for identifying VT
and VF, and it performed better than other ML
algorithms. Many patients with asymptomatic
left ventricular dysfunction remain unrecog-
nized in the general population. Attia et al.
explored the role of deep learning in identifying
left ventricular dysfunction in the ECG [40].
The ML algorithm was trained from ECG and
echocardiogram data from 44,959 patients.
After ML training, the ML algorithm was tested
on a separate patient population consisting of
52,870 patients. It was extremely effective in
detecting left ventricular dysfunction (AUC for
sensitivity = 0.93, specificity = 86.3%, speci-
ficity = 85.7%) by solely examining ECG. This
could serve as a potential screening tool for
detecting left ventricular dysfunction. Attia

et al. developed a deep learning model capable
of identifying the electrographic signature of AF
during normal sinus rhythm by using ECG
strips [41]. The ML model was trained using
180,922 patients with normal sinus rhythm and
atrial fibrillation ECGs. After training, the deep
learning model was very successful in identify-
ing AF in a separate cohort consisting of 36,280
patients (AUC for sensitivity = 0.87, speci-
ficity = 0.79, overall accuracy = 0.79). Atrial
fibrillation (AF) is frequently asymptomatic and
can lead to various complications like stroke or
heart failure. ML-derived analysis of normal
sinus rhythm facilitates rapid identification of
AF at the point of care for patients, and this can
facilitate earlier management for appropriate
patients.

Cardiac implantable electronic devices con-
tain large reserves of information that can be
tapped by ML algorithms to be applied in the
prediction of response to cardiac resynchro-
nization and prediction of sudden cardiac
death, and this can help determine which
patient will benefit from an implantable car-
dioverter-defibrillator (ICD) implantation. Car-
diac resynchronization therapy (CRT) is
frequently restricted to certain candidates

Table 5 Machine learning in electrophysiology

Study Number of
patients

ML approach Description

Mjahad

et al. [39]

– Multiple ML

algorithms

Deep learning algorithm had superior VF and VT detection on ECG when

compared to other ML algorithms

Attia et al.

[40]

52,870 DL Deep learning algorithm was capable of detecting asymptomatic left

ventricular dysfunction in large patient population

Attia et al.

[41]

36,280 DL Deep learning model enables identification of atrial fibrillation in patients

with normal sinus rhythm

Kalscheur

et al. [42]

595 Multiple ML

algorithms

Supervised ML model can effectively predict outcomes following CRT

Feeny et al.

[43]

455 Multiple ML

algorithms

ML model afforded better prediction response than guidelines and event-

free survival

Shakibfar

et al. [45]

19,935 Supervised

learning

Supervised learning models were better than logistic regression models for

predicting electrical storms

CRT cardiac resynchronization therapy, DL deep learning, ECG electrocardiogram, HCM hypertrophic cardiomyopathy,
ML machine learning, VF ventricular fibrillation, VT ventricular tachycardia
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meeting the criteria, and certain studies have
shown that ML can expand the application of
CRT. Kalscheur et al. applied multiple ML
algorithms analyzing the COMPANION trial
data to create a model predicting outcomes after
CRT which included all-cause mortality or heart
failure hospitalization [42]. The random forest
model or supervised ML algorithm was found to
be superior for predicting CRT outcomes when
compared to the other algorithms (AUC =
0.74). Similarly, Feeny et al. explored the
potential of multiple ML algorithms for pre-
dicting survival-free response from a composite
outcome consisting of end of death, heart
transplant, or placement of left ventricular
device following CRT. In 455 patients, the ML
algorithm showed a better prediction response
than guidelines (AUC = 0.70, p = 0.012) and
better event-free survival (p\ 0.001) [43].
Although CRT can reduce mortality and mor-
bidity in patients, individual outcomes can vary
substantially. The ML algorithm can be applied
before the device is implanted to help predict
outcomes, and this can improve decision-mak-
ing for each patient. Patients can experience
multiple occurrences of ventricular arrhythmias
during an electrical storm, and this is associated
with significant mortality and morbidity [44].
Shakibfar et al. constructed an ML model which
could predict electrical storms on the basis of
ICD monitoring summaries [45]. In 19,935
patients, the ML model was quite efficacious

(AUC = 0.80) for anticipating the probability of
electrical storm [45]. As models or systems have
not been developed for predicting electrical
storms, ML can open new possibilities for pre-
dicting the occurrence of an electrical storm.

APPLICATION OF ML IN HEART
FAILURE

Heart failure (HF) is a common clinical entity
seen worldwide which is frequently linked to
hospitalizations, poor quality of life, and
shortened life expectancy [46]. Though much is
known, our understanding can be further
strengthened by ML algorithms [46]. Several
studies have assessed the impact of ML algo-
rithms on HF (Table 6).

Angraal et al. explored the potential of
multiple ML models for predicting mortality
and hospitalization in patients with HFpEF with
the TOPCAT trial data [47]. The supervised ML
was superior to other ML models and had a
mean C-statistic of 0.72 for predicting mortality
(Brier score 0.17) and 0.76 for HF hospitaliza-
tion (Bier score 0.19). Wang et al. evaluated the
role of multiple ML models for predicting hos-
pitalization and readmission in patients with
HF with reduced ejection fraction (HFrEF) [48].
The deep learning outperformed other ML
models for predicting 30- and 90-day readmis-
sion rates for patients with HFrEF (AUC = 0.977

Table 6 Machine learning in heart failure

Study Number of
patients

ML approach Description

Angraal et al.

[47]

1767 Supervised

learning

Supervised (random forest) ML model had the best performance for

predicting mortality and HF hospitalization

Wang et al. [48] 47,498 Multiple ML

models

Deep learning outperformed other ML models for heart failure

readmission

Lancaster et al.

[49]

866 Unsupervised

learning

Clustering ML algorithm was used to identify high-risk phenotypes in

patients with heart failure

Sanchez-

Martinez et al.

[50]

156 Unsupervised

learning

Unsupervised ML was utilized to examine differences between HFpEF

and healthy patients

HF heart failure,HFpEF heart failure with preserved ejection fraction, ML machine learning
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and 0.972). Lancaster et al. constructed a clus-
tering ML framework to evaluate left ventricular
function in high-risk phenotypes for patients
with HF. MACE, mortality, and hospitalizations
were compared between cluster and conven-
tional classifications. The clustering ML frame-
work identified diastolic dysfunction in 559 of
866 patients, and the results coincided with
conventional classification (j = 0.41, p\ 0.001)
[49]. Sanchez-Martinez et al. assessed left ven-
tricular function at rest and exercise to evaluate
differences between HFpEF and healthy patients
[50]. The ML algorithm was able to aggregate
patients according to similarity, which facili-
tated the evaluation of velocity patterns. The
ML-proposed groups correlated well with cur-
rent clinical criteria (j = 72.6%; 95% CI
58.1–87.0) [50]. ML algorithms may provide
additional insight into underlying pathology or
mechanism in patients with HFpEF.

APPLICATION OF ML
IN INTERVENTIONAL CARDIOLOGY

Though AI and ML have made significant leaps
and bounds in other subspecialties in cardiol-
ogy, it is still in the nascent stages of interven-
tional cardiology (IC) [51]. AI has the capability
of pushing IC into new frontiers with concur-
rent growth in robotic and new technology

fields [51]. Few studies have assessed the capa-
bilities of AI in percutaneous coronary inter-
vention (PCI) and transcatheter aortic valve
replacement (TAVR) (Table 7).

Physiological measurements acquired during
coronary pressure wire enable myocardial
ischemia detection [52]. A coronary pressure
wire can be utilized to generate an instanta-
neous wave-free ratio (iFR) pressure wire pull
backtrace which measures pressure loss across
the length of a coronary artery. The iFR can be
used to predict outcomes following PCI [53].
Cook et al. explored the interpretation of iFR
pressure wire during coronary revascularization
with AI and an expert interventional team [54].
The AI algorithm had a higher agreement with
the heart team response than the expert team
for hemodynamic appropriateness (89.4% vs
89.3%, p\ 0.01 for non-inferiority). Azzalini
applied an ML algorithm in 2648 patients to
assess which contrast agent contributed to acute
kidney injury (AKI) after PCI; they did not find
any type to be significantly linked to AKI [55].
Abdul Ghffar et al. developed a semi-supervised
ML model in 344 patients with TAVR to isolate
phenotyping groups and assess their relation-
ships with clinical outcomes [56]. The ML
algorithm isolated five phenotype groups that
had significant differences in comorbidities and
clinical outcomes. Group 5 was associated with
higher rates of in-hospital cardiovascular

Table 7 Machine learning in interventional cardiology

Study Number of
patients

ML approach Description

Cook et al. [54] 1008 Supervised

learning

ML algorithm was compared with expert team for iFR interpretation

Azzalini et al.

[55]

2648 ML algorithm Predicting contrast-induced AKI following PCI

Abdul Ghffar

et al. [56]

344 Unsupervised

learning

A semi-supervised ML approach was utilized in patients with patients

TAVR to produce 5 phenotype groups and outcomes were assessed

Hernandez-

Suarez et al.

[57]

10,833 Multiple ML

algorithms

Multiple ML models were assessed to predict in-hospital mortality

AKI acute kidney injury, iFR instantaneous flow ratio, ML machine learning, PCI percutaneous coronary intervention,
TAVR transcatheter aortic valve replacement
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mortality (OR = 9, p = 0.001) and 30-day car-
diovascular mortality (OR = 18, p = 0.02).
Interestingly for 30-day mortality, the pheno-
type grouping had better mortality prediction
than the Society of Thoracic Surgeons scoring
(AUC 0.96 vs AUC 0.8, p = 0.02). Hernandez-
Suarez et al. assessed multiple ML models for
predicting in-hospital mortality in 10,833
patients with TAVR from the national inpatient
sample [57]. Many of the ML models were cap-
able of predicting in-hospital mortality
(AUC[0.80) following TAVR.

EVOLVING BELIEFS
AND PERCEPTIONS ON ML

Traditional research moves in a sequential
pathway from a hypothesis to a conclusion.
This linear structure is deeply embedded in our
research dogma and is fundamental to most
analyses. However, ML algorithms can cause a
paradigm shift in this ideology by giving para-
mount importance to data-driven analytics [10].
Initial evaluation of data should be performed
by the ML algorithm, and objectives of the
projects can be modified or altered on the basis
of a machine-provided insight. This non-linear
approach may appear unconventional but is
reflective of daily life [58]. Life never moves
from point A to B but moves dynamically or
haphazardly. Greater integration of ML could
be instrumental to clinical trials [23]. Many
randomized clinical trials fail to reach comple-
tion because of poorly defined objectives,
inadequate planning, poor execution, and
inadequately powered endpoints [23]. Prelimi-
nary analysis by these algorithms can offer
valuable information to clinical investigators,
and clinical trials can be managed more effec-
tively [17]. ML can help in the effective utiliza-
tion of resources and manpower to help in the
successful completion of clinical trials.

Numerous studies have shown significant
progress of ML in cardiovascular imaging and
electrophysiology [1, 2]. Though this indicates a
positive direction of ML in most aspects of car-
diology, IC is lagging behind [1]. AI and ML can
offer significant opportunities in the catheteri-
zation laboratory by providing insight into

intravascular imaging and procedural guidance
during PCI or TAVR [51]. It can streamline sev-
eral processes in the catheterization lab. As
robotic technology is becoming more advanced
and increasingly integrated into the future of
IC, it will allow procedures to be more preci-
sion-efficient [51]. However robotic technology
may not fully comprehend coronary anatomy
or perceive the intention of the operator. ML
can bridge this gulf between man and machine,
and it can help expedite the growth of robotic
technology in the IC [59].

Although AI and ML may offer significant
opportunities in various subspecialties of cardi-
ology, many people in the medical community
may have a foreboding feeling regarding this
technology [5]. A common misconception is
that ML may replace the occupations of practi-
tioners and medical staff [5]. It is quite the
contrary. In reality, it will substantially help
reduce the workload. Multiple new parameters
are constantly being added to various diagnostic
modalities in cardiovascular imaging and elec-
trophysiology [9]. This influx of information
can lead to cognitive overload and be counter-
productive. ML algorithms can automate cal-
culations, image classification, and
quantification of manners in a user-friendly
manner [2]. In interventional cardiology, many
young operators may lack experience in the
early years. Information arising from national
and international registries can be utilized to
help guide the decision-making [59]. AI can be
integrated with virtual planning to create digi-
tal twins, and various interventional treatment
procedures can be tested on the twin before the
actual intervention [1]. Instead of disrupting
workflow, ML can be a trustworthy companion
which can streamline several processes [23].
Furthermore, it can allow more time for physi-
cians to interact with their patients for mean-
ingful interactions.

LIMITATIONS

Although the fruits of AI can be enticing, AI is
still far from perfect [7]. Several issues need to be
addressed before successful implementation can
be possible [60]. One of the key issues is the
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absence of standardization across institutions
and interoperability [6]. Each center has its own
protocols for labeling and storing information.
Numerous imaging systems reside in each
institution which encompasses picture archive
and communication systems (PACS) or digital
imaging and communications in medicine
(DICOM) [6]. Information from the 12-lead
EKG, Holter, and telemetry should be collected
in a uniform and accessible manner within an
institution. Cardiologists and researchers
should have access to this information without
difficulty. These data repositories should be
shared easily among institutions or made pub-
licly available [7]. This will greatly expedite the
growth of ML algorithms.

The potential for false discovery is a common
issue with ML algorithms [12, 15]. The optimal
performance of ML algorithms requires expo-
sure to large databases to help train the algo-
rithm [12]. A few biases may unintentionally
occur within a model. This is related to the
‘‘Black box’’ concept of ML algorithms [7, 35].
Moral conscience is not prebuilt within these
algorithms. Before initiating a project, the
principal investigator and engineer must review
the purpose of the project and design the model
accordingly [4]. They must be involved at every
step of the way. This will enhance the perfor-
mance of the algorithm and yield promising
results. As these algorithms continue to grow,
medical curriculums must incorporate the fun-
damentals of ML in medical and residency
training to help train future investigators [1].

FUTURE POSSIBILITIES OF MACHINE
LEARNING

With smartphones and mobile apps becoming
part of our daily lifestyle, the concept of a
‘‘smart clinic’’ is no longer a distant concept
[11]. These clinics would employ a variety of
miniaturized devices which can include pocket
ultrasound, mobile ECG readers, and a variety
of smartphone applications [11]. These devices
would be linked to ML algorithms which can
analyze information immediately and provide
precision medicine at the point of care services
[3]. Smart clinics could serve an important role

in underserved areas where access to medical
care is a challenge.

CONCLUSION

AI and ML will have a phenomenal impact on
cardiology which will lead to a range of possi-
bilities and opportunities. As with any innova-
tion, we may encounter various hurdles and
difficulties. It is without a doubt that ML will be
strongly linked to the future of cardiology in
years to come.
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