
Characterizing the Relationship between Steady State
and Response Using Analytical Expressions for the
Steady States of Mass Action Models
Paul Michael Loriaux1,2,3, Glenn Tesler4, Alexander Hoffmann1,3*

1 Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America, 2 Graduate

Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America, 3 The San Diego Center for Systems

Biology, La Jolla, California, United States of America, 4 Department of Mathematics, University of California San Diego, La Jolla, California, United States of America

Abstract

The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to
therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically
characterize the relationship between steady state and response. Mathematical models are established tools for studying
cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical,
expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires
that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason
we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass
action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression,
and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the
anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical
expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL
required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not
the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process.
Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the
time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for
identifying steady state determinants of the cellular response to perturbation. All code is available at http://
signalingsystems.ucsd.edu/models-and-code/ or as supplementary material accompanying this paper.
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Introduction
Transient activation of signaling molecules is a hallmark of the

cellular response to perturbation. Far from acting as a simple relay,

however, the dynamics of signaling molecules can encode

information about the instigating stimulus [1–3]. Interestingly,

these dynamics are affected by the steady state prior to

perturbation [4,5]. Non-genetic variation in the proteome, for

example, is sufficient to explain variability in the sensitivity of

HeLa cells to the pro-apoptotic ligand TRAIL [6]. Like other

TNF superfamily members, TRAIL is a promising anti-cancer

therapeutic [7]. Recombinant human TRAIL, or dulanermin, as

well as antibodies raised against the TRAIL receptors DR4 and

DR5, are currently in clinical trials [8]. To improve the efficacy of

these and other drugs, understanding how sensitivity is affected by

the cellular resting state is of great importance [9].

Mathematical models are powerful tools for characterizing the

behavior of signaling systems in response to perturbation [10–13].

Assuming conservation of mass, these models equate the change in

concentration of a molecular species with the sum of reaction

velocities that produce the species, minus the sum of those that

consume it. The reactions themselves are often modeled by the

Law of Mass Action. This law assumes that the velocity of a reaction

is proportional to the product of the concentrations of its reactants.

Since many signaling reactions are bimolecular, the resulting mass

balance equations are non-linear in the concentrations. A system is

at steady state if no species is consumed faster than it is produced,

nor produced faster than it is consumed. By this formalism, the

steady state of a signaling system is equivalent to the root of a non-

linear system of equations. Because of this, no universal method

has been developed to identify the steady states of mass action

models, despite their importance to basic and clinical research. As

a result, even with the help of mathematical models, investigating

the relationship between steady state and stimulus-responsiveness

remains cumbersome.

Of course with any model, simulating the response to

perturbation often requires the system to be at steady state prior

to perturbation. To achieve this, one of several techniques is

currently used. The most common technique is to assume a
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‘‘trivial’’ steady state where every reaction velocity is zero [2,14].

While straightforward, this approach may not reflect biological

reality, where tonic signaling is common [15,16] and can strongly

influence the response to perturbation [17–19]. A second

technique is to approach the steady state asymptotically via

numerical integration of the mass balance equations [1,13,20].

While this approach can yield non-trivial steady states, the number

of integration steps required to reach the steady state may

dominate the number of steps required to simulate the perturba-

tion. Also, identifying the parameter values that result in a desired

steady state is an inverse problem that requires non-linear

optimization. For these reasons, numerical derivation of the

steady state is impractical when characterizing its effect on the

response to perturbation, and an analytical expression is required

instead.

The best-known method for deriving analytical expressions for

the steady states of mass action models was developed by King

and Altman in 1956 [21]. This method assumes that all molecular

species can be divided into enzymes and substrates, that no

enzyme is itself a substrate, and that all substrates remain

constant over the time-scale of steady state formation [22]. A

number of improvements have been made to the King-Altman

method over the years [23–25]. Many of these are now

implemented in the Matlab application, KAPattern [26]. The

King-Altman methodology was also recently formalized using

concepts from algebraic geometry [22,27], and extended to

layered signaling cascades [28] and post-translational modifica-

tion networks [29]. Despite these improvements, however, these

methods do not extend to mass action models with arbitrary

reaction structure, as is common in contemporary models of

signaling systems. Furthermore, only the King-Altman method

has been reduced to practice.

For these reasons we developed py-substitution, a simple,

algebraic method for deriving steady state expressions for mass

action models with arbitrary structure. Our method can be

explained using concepts from linear algebra, and full code has

been provided for all examples in this manuscript, implemented in

either Matlab or Maple. A particular benefit of py-substitution is

that it affords considerable flexibility when selecting independent

quantities for the steady state expression. Often, this permits

explicit derivation of kinetic rate constants from steady state

concentration measurements. More generally, it allows indepen-

dent quantities to be chosen that maximize incorporation of

known or measured parameter values. This not only simplifies

model fitting, but typically reduces the total number of parameters

required as well. We compare py-substitution to the King-Altman

method and show that, where King-Altman is applicable, the two

methods yield equivalent results. Computationally, however, we

find that our method is more efficient, and, because py-substitution

does not require a particular reaction structure, more general than

King-Altman.

Finally, we use py-substitution to derive a steady state

expression for a recent model of apoptosis induced by the

death-receptor ligand TRAIL [14]. We find that incorporation

of a non-trivial steady state changes the qualitative behavior of

the model. Specifically, tonic signaling desensitizes the system

to low doses of TRAIL, while high doses of TRAIL still result

in the ‘‘snap-action’’ signaling dynamics indicative of cell

death. We then systematically alter the steady state and show

that changes in steady state affect the threshold at which

TRAIL results in death. We find that the threshold is highly

sensitive to the steady state abundances of procaspase 8 and its

negative regulator, Bar, but not the other procaspase

molecules. This suggests that the activation of caspase 8 is a

critical point in the cell death decision. Finally, without

recourse to a model that is tolerant to low doses of TRAIL, a

common practice is to approximate the sensitivity to TRAIL

by the time at which death occurs. Using our tonic signaling

model, we show that these two metrics are not universally

equivalent. Caution should therefore be taken when equating

the dynamics of cell death with the probability that death

occurs.

Materials and Methods

In this section we describe the process for deriving analytical

expressions for the steady states of mass action models using py-

substitution. First we describe the class of models to which py-

substitution can be applied. Next, we review existing methods

for deriving analytical expressions for the steady states of these

models. Finally, we describe py-substitution using some formal

concepts from algebra. In the results section we provide several

examples, beginning with a version of the classical Michaelis-

Menten model of enzyme action. All code for these examples,

as well as detailed instructions for use and full transcripts of the

output, are provided in Protocol S1 and on our website,

http://signalingsystems.ucsd.edu/models-and-code/.

Preliminaries
Let N0 be the set of non-negative natural numbers and R0 be

the set of non-negative real numbers. LetA~fa1,a2, . . . ,adxg be a

set of dx species and R~fr1,r2, . . . ,rdkg be a set of dk reactions.

Each reaction rj[R follows the normal definition,

rj :s
in
1,ja1zsin2,ja2z � � �zsindx,jadx ?

vj
sout1,j a1zsout2,j a2z � � � soutdx,jadx

where sini,j[N0 is the stoichiometric coefficient of the ith reactant

and souti,j [N0 is the stoichiometric coefficient of the ith product

[30]. We define xi[R0 to be the concentration of species ai and

vj[R0 to be the velocity at which rj converts reactants into

products. By the Law of Mass Action,

Author Summary

Diagnostic markers are derived from steady state mea-
surements, but are used to predict the cellular response to
therapy. To develop new and better diagnostics, we would
like to systematically characterize the relationship between
steady state and the response to a given therapeutic.
Mathematical models have powerfully complemented
empirical studies in this regard, but it remains challenging
to employ these models to characterize the effects of
steady state. To do so requires a mathematical expression
for the steady state, for which no universal method has
been developed. Here, we present a method for deriving a
mathematical expression for the steady state of a common
class of models, those that obey the Law of Mass Action.
We show that our method is easy to use and scales well to
large models. We then use our method to characterize the
relationship between steady state and the sensitivity to
the anti-cancer drug candidate, dulanermin. We find that
sensitivity to the drug is strongly affected by the
concentration of the signaling molecule, procaspase 8,
and its inhibitor, Bar. Our work thus demonstrates the
utility of analytical studies of the steady state and its
relationship to drug sensitivity.

Relating Steady State to Signal Response
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vj~kj P
dx

i~1
x
hi,j
i : ð1Þ

The quantity hi,j[R0 is often, but not necessarily, equal to

sini,j. The coefficient kj[R0 is called the rate constant. Assuming

conservation of mass, the concentration xi changes according

to

_xxi~
Xdk
j~1

(souti,j {sini,j)vj, ð2Þ

where _xxi is the first derivative of xi with respect to time. Any

collection fA,Rg where the concentration xi of ai[A obeys

Equation 2 and the velocity vj of rj[R obeys Equation 1 is

called a mass action model. In what follows, we assume i, i1, and

i2 are indices over the interval 1, . . . ,dx and j is an index over

1, . . . ,dk. When v1, . . . ,vdk are such that all

_xxi~0, ð3Þ

the model is said to be at steady state. If all vj~0 we call the

steady state trivial. In this manuscript we are concerned with

symbolic, non-trivial solutions to Equation 3. A solution is

symbolic if all kj and xi are left as uninterpreted variables,

rather than being assigned numerical values. For a complete

list of symbols and their meanings, see Table S1.

Prior work
Let x[Rdx

0 and v[Rdk
0 be the vectors with elements (x)i =xi, and

(v)j~vj. Throughout this manuscript, we use (b)i to denote the ith

element of vector b and (A)ij to denote the element at row i,

column j of matrix A. Let S be the stoichiometric matrix, i.e., the

matrix whose elements are (S)ij~souti,j {sini,j. Using this notation,

Equation 2 becomes

_xx~Sv, ð4Þ

and the steady state equation becomes

Sv~0: ð5Þ

By convention we use the overline to denote vectors that

satisfy steady state. Equation 5 often takes this form in flux

balance analysis [31–34]. Here v is a real-valued vector and is

calculated numerically. However, prior work has shown that

Equation 5 can also be used to calculate a vector of rate

constants from a vector of steady state concentrations [35]. Let

k[Rdk
0 be the vector with elements (k)j~kj. Let Pk be the

diagonal matrix with elements (Pk)j,j~(Lvj=Lkj). The vector v

can then be expressed as

v~Pkk: ð6Þ

Substituting Equation 6 into Equation 5 and solving for k yields

the k-cone [35] — equivalently, the left null space of the matrix

product SPk. Given a basis for this null space and a vector of

steady state concentrations, a vector of rate constants can be

calculated that satisfies Equation 5. While this approach is useful

for deriving kinetic parameters from metabolomic measurements,

it is less well suited to signaling systems where transient and low-

abundance species confound accurate measurement of the

concentrations.

If the velocity of every rj[R is homogeneous of degree 1 in

x1, . . . ,xdx , then an analogous approach allows v to be expressed

in terms of x. We call models that satisfy this condition linear models.

An alternative, stoichiometric definition for a linear model is given

by the following,

Vrj[R,
Xdk
i1~1

sini1,j~
Xdk
i2~1

souti2,j~1: ð7Þ

Equation 7 requires that every reaction defines a transition from

exactly one time-varying species to another. Let Px be the matrix

with elements (P)i,j~(Lvi=Lxj). If v is a vector of linear reaction

velocities, it can likewise be expressed as

v~Pxx: ð8Þ

Substituting Equation 8 into Equation 5 results in the matrix

product SPx, also called the Jacobian matrix [36]. Given a basis for

the null space of the Jacobian, a vector of steady state

concentrations can be calculated from a vector rate constants.

For linear models, an alternative, graphical method for deriving

expressions for the steady state species concentrations was

introduced by King and Altman in 1956 [21]. Notice that

Equation 7 permits a two-dimensional indexing of the rate

constants,

k
0
i1,i2

~
kj if A rj[R : sini1,j~souti2,j~1

0 otherwise:

(
ð9Þ

We call k
0
i1,i2

a transition rate constant since the product k
0
i1,i2

xi1
defines the rate of transition from species xi1 to xi2 . Substituting

Equation 9 into Equations 1 and 2 gives

dxi1
dt

~
Xdx
i2~1

k
0
i2,i1

xi2{xi1

Xdx
i2~1

k
0
i1,i2

: ð10Þ

By defining the matrix K with elements

(K)i1,i2
~

k
0
i2,i1

if i1=i2,P
m=i1

{k
0
i1,m if i1~i2,

8<
: ð11Þ

the steady state equation becomes

Kx~0: ð12Þ

Note that K is simply the Jacobian matrix for a linear model,

K~SPx. The general solution to Equation 12 was found in [21] to

be the vector x with elements

Relating Steady State to Signal Response
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(x)i~
MiPdx

i2~1 Mi2

, ð13Þ

where Mi is the ith minor of K, formed by removing its ith row

and column and computing its determinant. For sufficiently small

systems, Equation 13 can be solved directly using modern

mathematical computing software [37]. Prior to the advent of

modern computers, King and Altman realized that the minors can

also be derived by graph theoretic means. Note that for a linear

model, A and R imply a directed graph,

G~ A,Rð Þ, ð14Þ

where each ai[A defines a vertex and each rj[R defines an edge

between vertices ai1 and ai2 (provided i1 and i2 are such that

sini1,j~souti2,j~1). The King-Altman method enumerates for each

species ai[A the set Si of simple connected subgraphs

Si~fG
0
~(X ,R0 ) : R05R, DR0 D~dx{1g

where vertex ai has out-degree 0 and all other vertices have out-

degree 1 [23,24]. These are the directed spanning trees of G, with

all edges directed towards root ai. A subgraph G0 is called a King-

Altman pattern. The minor Mi can then be expressed as

Mi~
X
G0 [Si

P
rj[R

0
kj, ð15Þ

where kj~k
0
i1,i2

is the transition rate constant between species ai1
and ai2 . For a more thorough derivation of the King-Altman

method, see [38].

Of course, many biochemical reactions are bimolecular. By

Equation 1, the velocity of a bimolecular reaction is degree 2 in

x1, . . . ,xdx . To preserve linearity, one can assume the concen-

tration of one reactant is so high as to be effectively constant. This

concentration is incorporated into the kinetic rate constant, and

the techniques described above can still be used to solve Equation

3. If this assumption fails, then Equation 2 describes a polynomial

in x1, . . . ,xdx with coefficients in Q½k1, . . . ,kdk �. In this case the

solutions to Equation 3 form an algebraic variety. Deriving an

expression for the steady state of a non-linear model thus requires

finding a parameterization of the variety [39]. One way to

achieve this is to calculate a Gröbner basis for the ideal generated

by _xx1, . . . , _xxdk and eliminate variables [40,41]. Alternatively, if the

model displays certain structural properties, variables can be

eliminated by identifying conservation relationships. The best-

known example of this is when fA,Rg defines a cascade of post-

translational modifications. In this case, enzyme-substrate inter-

mediates can be eliminated and the variety can be parameterized

by rational functions of the free enzyme concentrations with

coefficients in Q(k1, . . . ,kdk ) [22,28]. Although these methods do

not require linearity, calculating a Gröbner basis can be

computationally intractable, while identifying conservation rela-

tionships can be difficult for models of arbitrary reaction

structure.

py-substitution
Py-substitution allows mass action models — a particular class of

non-linear model — to be solved using simple linear algebra. We

make use of the following observations: (a) _xxi is always

homogeneous of degree 1 in k1, . . . ,kdk , and (b) _xxi is often no

greater than degree 2 in x1, . . . ,xdx . If a subset of elements in

K|X can be found on which every _xxi has only linear

dependence, then Equation 5 can be solved using linear methods.

To begin, we define sets of symbolic variables P~fp1, . . . ,pdpg
and Y~fy1, . . . ,ydyg such that dpzdy~dkzdx and dy§rank S.

We then relabel, or map, every element in K|X to a unique

element in P|Y so that every _xxi is linear in Y. By Equations 1

and 2 this requires that all vj are linear in Y. Variables that we

want to remain independent, as well as variables on which _xxi has

non-linear dependence, should be mapped to P. As we shall see,

there is considerable flexibility in choosing this map.

Let K and X be partitioned into disjoint (but possibly empty)

subsets K~Kp|K lin and X~Xp|X lin. We define yp to be a

bijective map (with a restriction given below)

yp :
Kp|Xp?P
K lin|X lin?Y,

�

and extend it homomorphically over Q½K�½X�. Our linearity

restriction is to consider maps of this form such that

yp(vj)~yn P
dp

m~1
p
h
0
j,m
m ð16Þ

for some yn[Y. For pm~yp(xi), the exponent is h
0
j,m~hi,j. For

pm~yp(kj), the exponent h
0
j,m~1. In words, yp defines a

change of variables such that yp(vj) is homogeneous of degree

1 in y1, . . . ,ydy . By Equation 2, yp( _xxi) becomes a homogeneous

polynomial of degree 1 in y1, . . . ,ydy with coefficients in

Q½p1, . . . ,pdp �. We can now write

yp(v)~Py, ð17Þ

where P is the dk|dy Jacobian matrix with elements

(P)ij~(Lvi=Lyj). Here and elsewhere we use the notation

y(v)~w to mean that w is the vector formed by applying the

function y element-wise to v. Note that the trivial partition

K lin~K and X p~X recovers the k-cone procedure described

above. For the remainder of this section, we treat j as an index

over 1, . . . ,dy. Substituting Equation 17 into Equation 5 gives

Cy~0 ð18Þ

where C~SP is called the coefficient matrix. The solution to

Equation 18 is precisely the null space of C. Let N be a matrix

whose columns form a basis for this null space. Let dq be the

number of columns in N. By the rank-nullity theorem, we have

dq~ncols C{rank C, ð19Þ

where ncols C~dy is the number of columns in C. Further-

more, because yp(v) is linear in y and y{1
p exists, the matrix P

must be full rank. By the properties of the rank, we can write

Relating Steady State to Signal Response
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rank C~rank SP~rank S: ð20Þ

Together, Equations 19 and 20 give

dq~dy{rank S, ð21Þ

thus calling for the constraint dy§rankS. This, in conjunction

with Equation 16, are the only constraints on yp. If we now let y

be some linear combination of the basis vectors,

y~Nq, ð22Þ

then y satisfies Equation 18 and steady state is achieved. In

general, Equation 22 is underdetermined. Equation 22 therefore

implies a partition of Y into independent variables (denoted Yq )
and dependent variables (denoted Ycq ). We will now describe this

partition by a second mapping function, yy.

Recall that a basis for the null space of C can be constructed

from Crref , the reduced row echelon form of C. Let cj be the jth

column of Crref . If cj contains a pivot position, then yj is a

dependent variable. If cj does not contain a pivot, then yj is free,

or independent. Let

Yq~fyj[Y : column cj does not contain a pivotg

Ycq~fyj[Y : column cj contains a pivotg:
ð23Þ

Let dq be the cardinality of Yq. Enumerate these variables as

Yq~fyj1
,yj2

, . . . ,yjdq g, with j1v . . . vjdq . For every cj not

containing a pivot, there is a basis vector nk (related by j~jk)

whose jth element equals 1 and whose elements in positions wj
are 0. By Equation 22, this gives an independent parameter,

yj~(q)k~qk. Equation 22 thus defines a function yy : yj.qk. Let

Q~fq1,q2, . . . ,qdqg be the set of independent parameters. If

column cj does contain a pivot, then yj depends on variables in

P|Q, giving yy : yj.fj(P,Q)[ spanQ(P) (Q) where fj(P,Q) is

the specific function resulting from the row operations used to

reduce C to Crref . Equation 22 can now be described in its entirety

by the mapping function yy,

yy :

P?P (identity)

Yq?Q
Ycq?span

Q(P)
(Q):

8><
>: ð24Þ

The notation y : P?P(identity) indicates that y(p)~p for

every p[P. Note that we define spanF (Q) as the set of all linear

combinations a1q1za2q2z � � �, where a1,a2, . . . [F and q1,q2, . . .
are distinct elements of Q. Q½P� is the set of all polynomials in

variables P with rational numbers as coefficients. Q(P) is the field

of fractions of Q½P�: any f[Q½P� can be expressed as f~g1=g2,

where g1, g2[Q½P�.
As with yp, there is some flexibility in choosing how Y is

partitioned into free variables, Yq, and dependent variables, Ycq. A

different indexing of the variables in Y simultaneously permutes

the vector y and the columns of C. This leads to different reduced

row echelon forms, with different partitions into free and

dependent variables. The null space basis obtained by reducing

C to Crref greedily classifies low-numbered columns as dependent

columns when possible, or free columns when not possible.

Quantities in Y for which good numerical estimates exist should

therefore be assigned to higher indices. These quantities are

favored, but not guaranteed, to be mapped to independent

parameters. Quantities for which good numerical estimates do not

exist should be assigned to low indices in Y.

Finer control over the partition of Y into dependent and

independent parameters is possible by working directly with Crref

or N. Let Y0q~fyj1
, . . . ,yjdq g be the set of dq elements in Y that we

want mapped to Q. Let N
0

be the square matrix formed by rows

j1, . . . ,jdq of N. To map Y0q to Q requires that we find a vector q
0

such that

N
0
q
0
~q,

where q is the vector with elements (q)k~qk. Solving for q
0

gives

q
0
~(N

0
){1q: ð25Þ

Thus, for a given map yp, not all partitions of Y into Yq and Ycq
are possible, but only those for which det(N

0
)=0. An example of

this can be seen in the file ‘‘fum2.m’’ in Supporting Protocol S1,

discussed below.

Next let Kq~fk[K : ypy(k)[Qg, and Ky~K lin\Kq. Let X q
and X y be defined analogously. The composition ypy~(yy0yp)

captures the entire process of linearizing v with the function yp,

solving the linear system Syp(v)~0, and taking an arbitrary

combination of solution space basis vectors:

ypy :

Kp|X p?P
Kq|X q?Q
Ky|Xy?spanQ(P)(Q):

8><
>:

Applying ypy to the sets K and X results in a parametric

description of the steady state that is typically the most useful:

every element in K or X is mapped to an element in P or Q, or a

function in spanQ(P) (Q). Assigning numerical values to elements

in P and Q results in elements in spanQ(P) (Q) taking values that

satisfy the steady state equation. In some cases we may wish to

reverse the substitution so that functions of variables P|Q are

mapped back to functions of K|X . To do so, let Kpq~Kp|Kq
and Xpq~Xp|X q. Let y{1

q be the inverse of yy restricted to the

independent parameters, P|Q.

y{1
q :

P?P (identity)

Q?Yq:

�

The composition of y{1
p and y{1

q now defines a map from the

set of independent parameters to their counterparts in K and X ,

y{1
pq ~(y{1

p 0y{1
q ) :

P?Kp|Xp
Q?Kq|X q:

�

Relating Steady State to Signal Response
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If we extend y{1
pq to f[ spanQ(Kp ,Xp) (Kq,X q) homomorphically,

we can compose y{1
pq with ypy,

yss~(y{1
pq 0ypy) :

Kpq?Kpq (identity)

X pq?Xpq (identity)

Ky|Xy?spanQ(Kp,Xp)(Kq,X q)

8><
>:

The function yss then defines a map for which

Syss(v)~Sv~0,

where steady state velocities in v are in terms of elements in K and

X . A visual overview of the py-substitution method is given in

Figure 1.

Figure 1. Overview of the py-substitution method. Quantities in a mass action model can be separated into kinetic rate constants (set K, red)
and species abundances or concentrations (set X , blue). From K|X a subset Klin|X lin is selected on which all reaction velocities have only linear
dependence. A function yp maps these to elements in Y and the remaining Kp|Xp to elements in P. A second function yy imposes the relations

yp( _xx)~0 by expressing dependent variables in Y in terms of independent parameters P|Q. A third function, y{1
q , is the inverse of yy restricted to

the independent parameters. The composition of y{1
p with y{1

q results in variables in Ky|X y being expressed in terms of variables in Kpq|Xpq ,

such that steady state is achieved. In the diagram, solid arrows are isomorphisms while dashed arrows are homomorphisms that replace dependent
variables by equivalent expressions in independent parameters. See Table S1 for a complete listing of symbols and their meanings.
doi:10.1371/journal.pcbi.1002901.g001
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Results

py-substitution permits flexible derivation of a steady
state solution

An important goal in developing py-substitution was that it be

generally applicable to any model whose reaction rates obey mass

action kinetics. This requires that the independent quantities be

chosen freely among the species concentrations and reaction rate

constants, and that non-linear rate equations do not confound the

derivation of a steady state expression. To demonstrate these

capabilities we consider an open-system analog of the classical

Michaelis-Menten model of enzyme kinetics (OMM, see also

Figure 2). Substrate synthesis and product degradation allow this

system to achieve a non-trivial steady state v=0, which we derive

here using four different substitution strategies. The set R of

reactions for this model is given by

r1 : x1zx2 ?
v1
x3

r2 : x3 ?
v2
x2zx1

r3 : x3 ?
v3
x2zx4

r4 : � ?
v4
x1

r5 : x4 ?
v5

�

The symbol Ø represents a source or sink for mass and is not

modeled by a time-varying species. From the set R we derive the

stoichiometric matrix and reaction velocity vector,

S~

{1 1 0 1 0

{1 1 1 0 0

1 {1 {1 0 0

0 0 1 0 {1

2
6664

3
7775, v~

k1x1x2

k2x3

k3x3

k4

k5x4

2
6666664

3
7777775
:

By Equation 4 this results in the following system of equations,

dx1=dt~{k1x1x2zk2x3zk4

dx2=dt~{k1x1x2zk2x3zk3x3

dx3=dt~k1x1x2{k2x3{k3x3

dx4=dt~k3x3{k5x4

for which we now derive functions yss such that Syss(v)~Sv~0.

Homogeneous substitution: steady state concentrations

do not uniquely determine reaction rate constants. The

most straightforward substitution strategy is to let Klin~K and

Xp~X . The corresponding function yp maps

k1.y1 x1.p1

k2.y2 x2.p2

k3.y3 x3.p3

k4.y4 x4.p4

k5.y5

See ‘‘omm1.m.trace.pdf’’ in Protocol S1 for details of this

partition and all subsequent steps. Applying yp to v results in a

reaction velocity vector that is linear in y, as required by Equation

17,

yp(v)~Py~

p1p2 0 0 0 0

0 p3 0 0 0

0 0 p3 0 0

0 0 0 1 0

0 0 0 0 p4

2
6666664

3
7777775

y1

y2

y3

y4

y5

2
6666664

3
7777775
:

The resulting coefficient matrix is given by

C~SP~

{p1p2 p3 p3 0 0

{p1p2 p3 0 1 0

p1p2 {p3 {p3 0 0

0 0 p3 0 {p4

2
6664

3
7775,

which row reduces to

C*Crref~

1 {p3=(p1p2) 0 0 {p4=(p1p2)

0 0 1 0 {p4=p3

0 0 0 1 {p4

0 0 0 0 0

2
6664

3
7775: ð26Þ

From Equation 26, we observe that rank C~3. Thus, of the 9

degrees of freedom in this system (5 rate constants plus 4 species

concentrations), 3 will have values that are constrained by

Equation 5. Since our substitution strategy only identifies 4

independent parameters, 2 additional elements mapped to Y must

in fact be independent as well. These elements can be identified by

the columns in Crref that do not contain pivots, namely columns 2

and 5. To see this, note that Equation 26 yields the following basis

for the null space of C,

Figure 2. An open system analog of the classical Michaelis-
Menten model for enzyme catalysis. Enzyme and substrate bind to
form an intermediate complex, followed by catalysis and dissociation of
the product. The substrate is synthesized by a zero-order reaction, r4 ,
and the product is degraded by a first-order reaction, r5 . See ‘‘omm1.m’’
in Protocol S1 for a complete description of the model.
doi:10.1371/journal.pcbi.1002901.g002
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N~

p3=(p1p2) p4=(p1p2)

1 0

0 p4=p3

0 p4

0 1

2
6666664

3
7777775
:

Letting q~½q1,q2�T, Equation 22 gives

y~

(q1p3zq2p4)=(p1p2)

q1

(q2p4)=p3

q2p4

q2

2
6666664

3
7777775
: ð27Þ

Thus by Equation 23, we have that Yq~fy2,y5g and

Ycq~fy1,y3,y4g. By Equation 24, Equation 27 can be described

by the mapping function yy :

p1.p1 y1.(q1p3zq2p4)=(p1p2)

p2.p2 y2.q1

p3.p3 y3.(q2p4)=p3

p4.p4 y4.q2p4

y5.q2

From yy and yp we construct the composite forward map,

ypy~(yy0yp) :

k1.(q1p3zq2p4)=(p1p2) x1.p1

k2.q1 x2.p2

k3.(q2p4)=p3 x3.p3

k4.q2p4 x4.p4

k5.q2

To reverse the substitution, notice from Equation 27 that

y2~q1 and y5~q2, giving the following map, y{1
q :

P?P(identity) q1.y2

q2.y5

This yields a composite backward map, y{1
qp ~(y{1

p 0y{1
q ) :

p1?x1 q1.k2

p2?x2 q2.k5

p3?x3

p4?x4

The complete steady state mapping yss~(y{1
qp 0ypy) is there-

fore

k1.(k2x3zk5x4)=(x1x2) x1.x1

k2.k2 x2.x2

k3.k5x4=x3 x3.x3

k4.k5x4 x4.x4

k5.k5

ð28Þ

Applying this transformation to the original vector of reaction

velocities yields

v~yss(v)~

k2x3zk5x4

k2x3

k5x4

k5x4

k5x4

2
6666664

3
7777775

,

which one can verify satisfies Equation 5. An interesting

implication of this trivial application of py-substitution is that,

because ypy maps every species concentration to an independent

parameter, we can interpret Equation 28 to mean that any vector

of steady state concentrations will be consistent with an infinite

number of reaction rate constants. In this particular case, knowing

all four concentrations tells us nothing about the rates of enzyme-

substrate dissociation or product degradation. As we shall see, by

using different substitution strategies, we have some flexibility in

choosing which rate constants are constrained by the steady state

concentrations, but the structure of the OMM model makes

finding a unique set of rate constants impossible. In general, a

unique set of reaction rate constants requires that the coefficient

matrix be full rank, or

rank C~dy: ð29Þ

Since complete knowledge of the species concentrations implies

dp~dx and dy~dk, by Equation 20, Equation 29 becomes

rank S~dk:

In other words, a unique set of rate constants requires that the

stoichiometric matrix be full rank, which is equivalent to requiring

that the corresponding reaction network have no cycles. Since

even a single reversible reaction represents a cycle, we conclude

that in the general case, a set of steady state species concentrations

does not imply a unique set of reaction rate constants.

Heterogeneous substitution: the number of independent

model parameters is constant. Often, models contain species

whose concentrations are difficult to measure or reactions whose

rates have been well characterized. For such models it is preferable

to partition sets K and X so that species whose concentrations are

difficult to measure are mapped to Y while well-characterized

reaction rates are mapped to P. For example, if the kinetics of the

enzyme are well characterized, an attractive partitioning of the

OMM model might be Kp~fk1,k2,k3,k5g and Xp~fx2g. This

yields a map yp :
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k1.p2 x1.y1

k2.p3 x2.p1

k3.p4 x3.y2

k4.y4 x4.y3

k5.p5

Again, see ‘‘omm2.m.trace.pdf’’ in Protocol S1 for complete

details. Notice here that we have forced the enzyme kinetic

parameters k1, k2, and k3 to be independent by mapping them to

elements in P. The resulting coefficient matrix and null space basis

are

C~

{p1p2 p3zp4 0 0

{p1p2 p3 0 1

p1p2 {(p3zp4) 0 0

0 p4 {p5 0

2
666664

3
777775,

N~

(p3zp4)=(p1p2p4)

1=p4

1=p5

1

2
666664

3
777775,

which yield the steady state map yss :

k1.k1 x1.k4(k2zk3)=(k1k3x2)

k2.k2 x2.x2

k3.k3 x3.k4=k3

k4.k4 x4.k4=k5

k5.k5

As desired, x2 is the only independent species concentration.

Applying this transformation to the original vector of reaction

velocities gives

v~yss(v)~

k4(k2zk3)=k3

k2k4=k3

k4

k4

k4

2
6666664

3
7777775
:

Notice that even though the cardinality of P differs in this

example as compared to the one above (5 versus 4), the cardinality

of Ycq does not (3). Let dc denote this cardinality. Obviously,

dc~dy{dq, or equivalently,

dc~ncols C{ncols N:

This is simply the rank-nullity theorem again. By Equation 20,

we can therefore conclude that

dc~rank S:

In other words, the final number of dependent elements in the

steady state expression for a system is independent of the

substitution strategy, and only depends on the structure of the

reaction network.

Substitution with sublinear velocities: using py-

substitution to resolve non-linearities (I). Some reaction

velocities are zero-order but well-characterized. For example, if

the rate v4 of substrate synthesis in the OMM model has been

accurately measured, we may wish to partition K such that k4[Kp.
The resulting mapping function yp, however, fails to linearize v.

To compensate, we introduce a pseudospecies x̂x5~1 and let

v4~k4x̂x5. If we now partition X such that x̂x5[X lin, the linearity of

yp(v) in y is preserved and we may continue as before.

To illustrate this approach, we again let X p~fx1,x2,x3,x4g and

Kp~fk4g. The remaining rate constants and one pseudospecies

are partitioned into sets Klin and X lin, respectively, such that

yp(x̂x5)~y5. See ‘‘omm3.m.trace.pdf’’ in Protocol S1 for details.

The resulting velocity vector is linear and yields a coefficient

matrix whose null space is two-dimensional,

N~

p3=(p1p2) p5=(p1p2)

1 0

0 p5=p3

0 p5=p4

0 1

2
6666664

3
7777775
: ð30Þ

However, one of these two dimensions is constrained by the

pseudospecies. We are thus not at liberty to take a general linear

combination as per Equation 22 but must find q such that

ypy(x̂x5)~1: ð31Þ

By our choice of yp, and by Equations 22 and 30, we have

ypy(x̂x5)~(q)2. Equation 31 is therefore satisfied when (q)2~1.

This gives q~½q1,1�T and

y~

(p3q1zp5)=(p1p2)

q1

p5=p3

p5=p4

1

2
6666664

3
7777775
:

The complete steady state mapping yss~(y{1
qp 0ypy) is

k1.(k4zk2x3)=(x1x2) x1.x1

k2.k2 x2.x2

k3.k4=x3 x3.x3

k4.k4 x4.x4

k5.k4=x4 x̂x5.1
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As desired, k4 remains an independent parameter. Applying this

transformation to the original vector of reaction velocities yields

v~yss(v)~

k4zk2x3

k2x3

k4

k4

k4

2
6666664

3
7777775
:

Substitution with superlinear velocities: using py-

substitution to resolve non-linearities (II). Some reaction

velocities are superlinear in their reactant concentrations. If good

estimates for these concentrations do not exist, we would like to

partition these species into X lin. Analogous to the sublinear case

above, doing so results in a velocity vector yp(v) that is non-linear

in y. Fortunately, the strategy above is useful here as well:

introduce a pseudospecies for each superlinearity, calculate a basis

for the null space of the coefficient matrix, and identify basis vector

coefficients that satisfy the constraints imposed by the pseudos-

pecies.

Let us consider a version of the OMM model where the rate of

product formation is proportional to the square of the enzyme-

substrate complex, v3~k3x
2
3. Let us further assume that no

estimate exists for the value of x3. We would therefore like

yp(x3)[Y. Since this fails to linearize the velocity, we introduce a

pseudospecies x̂x5~x2
3 and let v3~k3x̂x5. We now define yp such

that

k1.p2 x1.y4

k2.p3 x2.p1

k3.p4 x3.y1

k4.y5 x4.y3

k5.p5 x̂x5.y2

This satisfies the linearity requirement and maps x3 and x̂x5 to

the lowest indices in Y, thereby favoring these quantities to

become dependent parameters. See ‘‘omm4.m.trace.pdf’’ in

Protocol S1 for details. The resulting coefficient matrix has a null

space that is spanned by the columns of

N~

p1p2=p3 {1=p3

0 1=p4

0 1=p5

1 0

0 1

2
6666664

3
7777775
:

Letting q~½q1, q2�T maps k4 and x1 to Q and satisfies our

requirement that ypy(x3) and ypy(x̂x5)[Ycq. As in the previous

section, however, one dimension of N is constrained by the

pseudospecies. Specifically, we require that ypy(x̂x5)~ypy(x
2
3). by

Equation 22, this requires that

(q2{p1p2q1)2=p2
3~q2=p4:

Solving for q1 (we may just as easily have solved for q2; in this

example, whether k4 or x1 map to Q is immaterial), we are left

with the following:

y~

ffiffiffiffiffiffiffiffiffiffiffi
q2=p4

p
q2=p4

q2=p5

q2(p3
ffiffiffiffiffi
q2
p

)=(p1p2
ffiffiffiffiffi
p4
p

)

q2

2
6666664

3
7777775
:

The complete steady state mapping yss~(y{1
qp 0ypy) is

k1.k1 x1.(k4zk2

ffiffiffiffiffiffiffiffiffiffiffiffi
k4=k3

p
)=(k1x2)

k2.k2 x2.x2

k3.k3 x3.
ffiffiffiffiffiffiffiffiffiffiffiffi
k4=k3

p
k4.k4 x4.k4=k5

k5.k5 x̂x5.k4=k3

Applying this transformation to the original vector of reaction

velocities yields

v~yss(v)~

k4zk2

ffiffiffiffiffiffiffiffiffiffiffiffi
k4=k3

p
k2

ffiffiffiffiffiffiffiffiffiffiffiffi
k4=k3

p
k4

k4

k4

2
6666664

3
7777775
:

This example illustrates that, using pseudospecies, a mapping

function yp can always be found such that yy can be derived using

linear methods. Non-linearities introduced by pseudospecies can

then be resolved on a case-by-case basis, resulting in the final

steady-state solution.

Py-substitution is more general, but not less efficient,
than King-Altman

Some chemical reaction systems are linear in the species

concentration vector, or can be rendered linear by assuming that the

concentrations of certain species don’t change over time. The classical

model for malate synthesis is an example of the latter [42]. Here, the

enzyme fumarase binds reversibly to fumarate and hydrogen in either

order, followed by reversible binding of hydroxyl and reversible

formation of malate (Figure 3). The reactions for this model are

r1 : x1zx6 ?
v1
x3 r7 : x3 ?

v7
x1zx6

r2 : x3zx7 ?
v2
x4 r8 : x4 ?

v8
x3zx7

r3 : x1zx7 ?
v3
x5 r9 : x5 ?

v9
x1zx7

r4 : x5zx6 ?
v4
x4 r10 : x4 ?

v10
x5zx6

r5 : x4zx8 ?
v5
x2 r11 : x2 ?

v11
x4zx8

r6 : x2 ?
v6
x1zx9 r12 : x1zx9 ?

v12
x2
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By Equation 1, the corresponding reaction velocities are

v1~k1x1x6 v7~k7x3

v2~k2x3x7 v8~k8x4

v3~k3x1x7 v9~k9x5

v4~k4x5x6 v10~k10x4

v5~k5x4x8 v11~k11x2

v6~k6x2 v12~k12x1x9

ð32Þ

The stoichiometric matrix is

S~

{1 0 {1 0 0 1 1 0 1 0 0 {1

0 0 0 0 1 {1 0 0 0 0 {1 1

1 {1 0 0 0 0 {1 1 0 0 0 0

0 1 0 1 {1 0 0 {1 0 {1 1 0

0 0 1 {1 0 0 0 0 {1 1 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
{1 0 0 {1 0 0 1 0 0 1 0 0

0 {1 {1 0 0 0 0 1 1 0 0 0

0 0 0 0 {1 0 0 0 0 0 1 0

0 0 0 0 0 {1 0 0 0 0 0 1

2
6666666666666666664

3
7777777777777777775

:

Notice that the submatrix formed by the first five rows of S
satisfies the definition for a linear model given in Equation 7. Call

this submatrix S5 and let x
0
~½x1, . . . ,x5�T be the vector of enzyme

concentrations. If we assume that the substrate concentrations

x6, . . . ,x9 are time-invariant, the steady state equation for this

model becomes

S5v~0: ð33Þ

Because S5 satisfies Equation 7, we may define the following

transition rate constants

k
0
1,3~k1x6 k

0
3,1~k7

k
0
3,4~k2x7 k

0
4,3~k8

k
0
1,5~k3x7 k

0
5,1~k9

k
0
5,4~k4x6 k

0
3,4~k10

k
0
4,2~k5x8 k

0
2,4~k11

k
0
2,1~k6 k

0
1,2~k12x9

ð34Þ

Substituting Equations 34 into 32 results in a velocity vector v
0

that is linear in x
0
. Let Px’~(Lv

0

i=Lx
0

j) as before, where

i~1, . . . ,dk and j~1, . . . ,dx’. This gives

v
0
~Px’x

0
: ð35Þ

If we now define a matrix

K~S5Px’, ð36Þ

Equation 33 becomes

Kx
0
~0, ð37Þ

where the elements of K are given in Equation 11. The solution to

Equation 37 is given by Equation 13, which we saw may be

evaluated using the King-Altman method. Alternatively, we may

solve Equation 33 directly using py-substitution. Given that py-

substitution applies to a more general class of mass action models

then King-Altman, we wondered whether this flexibility came at

the cost of computational efficiency. Here we show that, for

models that can be treated using the King-Altman method, py-

substitution yields an equivalent result, and at no loss of efficiency.
Py-substitution and King-Altman yield equivalent steady

state expressions. Equation 37 has been solved previously

using KAPattern [26]. The solution is reproduced here in

‘‘fum1.m.trace.pdf’’ in Protocol S1. For each enzyme i, 1ƒiƒ5,

the steady state concentration has the form

�xxkai ~
Nka
i

Dka
: ð38Þ

In this subsection only, we use �xxkai to mean the ith element of

the vector x, made to satisfy Equation 37 by the King-Altman

method. The element �xxpyi is defined analogously for py-substitu-

tion. To solve Equation 33 by py-substitution, we partition X into

subsets

~fx1, . . . ,x5g
c~fx6, . . . ,x9g,

ð39Þ

and define yp such that

yp :
K| c?P

?Y:

�

Figure 3. The model of malate synthesis used to compare py-
substitution with the King-Altman method. This mechanism for
the conversion of fumarate to malate by the enzyme fumarase was
proposed in [42]. Fumarase binds to fumarate and hydrogen in either
order, then hydroxyl, followed by formation of the product, malate. All
reactions are reversible. See ‘‘fum1.m’’ in Protocol S1 for a complete
description of the model.
doi:10.1371/journal.pcbi.1002901.g003
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The resulting coefficient matrix is precisely the matrix of rate

constants, K. The null space of K is one-dimensional and spanned

by a single basis vector n. In our solution, the basis vector is

normalized to element (n)5, which by Equations 22 and 23 yield a

partition of Y into subsets Yq~fy5g and Ycq~fy1, . . . ,y4g. After

reversing the substitution we find that the steady state concentra-

tion of each enzyme likewise has the form

�xxpyi ~
Npy
i

Dpy
: ð40Þ

By inspection, Equations 38 and 40 are related by the following:

Npy
i ~�xxpy5 N

ka
i , i~1,2,3,4 ð41Þ

Dpy~Nka
5 : ð42Þ

In other words, the solutions given by KAPattern and py-

substitution are not identical. The disparity arises from Equation

13, which imposes the constraint
P

i �xxkai ~1. When derived by

King-Altman, the steady state expression for each enzyme is

therefore a ratio of the total enzyme concentration. In contrast, py-

substitution results in �xxpy1 , . . . ,�xxpy4 being expressed in terms of �xxpy5 ,

the only element x[ for which ypy(x)[Q. Despite this disparity,

Equations 40 to 42 can be combined to give

�xxpyi ~�xxpy5 N
ka
i =N

ka
5 :

Therefore,

X5

i~1

�xxpyi ~
�xxpy5

Nka
5

X5

i~1

Nka
i

~�xxpy5 (Dka)=Nka
5

~�xxpy5 =�xxka5 :

If we likewise impose the constraint
P

i �xxpyi ~1, then �xxka5 = �xxpy5 ,

and for i=5,

�xxpyi ~�xxpy5 N
py
i =N

ka
5

~(Nka
5 =Dka)Nka

i =N
ka
5

~Nka
i =D

ka

~�xxkai :

The two solutions are thus equivalent.

Py-substitution is not less efficient than King-

Altman. We next wondered whether the King-Altman method

is computationally more efficient than direct algebraic solution of

the linear steady state equation (Equation 18). The King-Altman

method requires exhaustive enumeration of valid King-Altman

patterns. The number of patterns depends critically on the

structure of the model. A model of strongly connected species

generates ddx{2
x patterns while a simple cycle generates only dx

[38]. By comparison, solving Equation 18 requires Gaussian

elimination on the matrix K. For a fixed-precision numeric

matrix, this would take at most O(d3
x); however, since K has

symbolic entries rather than numerical ones, the sizes of the

entries grow with the number of row operations. In fact, as

Equation 15 shows, the number of valid King-Altman patterns is

precisely the number of terms in the polynomial expansion of the

minors. Thus even a few species, if highly connected, can

generate thousands of terms and easily overwhelm conventional

memory architectures.

To evaluate the performance of py-substitution versus KAPattern,

we generated random models with six species and anywhere from

10 to 20 first-order reactions between them. Three distinct

realizations were generated for each model. Models for which

KAPattern failed – typically because the stoichiometric matrix

described a disjoint network – were discarded. The command-line

version of Matlab 2010b was used to derive the steady state

concentration vector for each model using py-substitution and

KAPattern, and for py-substitution the command-line version of

Maple 14 was used as well. Internal memory was cleared prior to

each derivation to prevent caching. The architecture used was a

commodity netbook PC running Windows XP SP3 with an Intel

1.7 GHz Atom processor and 1 GB RAM. The derivation was

repeated in triplicate for each realization to reduce variance

introduced by the CPU scheduler. Execution times include

initialization of the symbolic variables and coefficient matrix, kernel

calculation, and derivation of y in the case of py-substitution, and all

steps prior to file writing in the case of KAPattern.

Results from the simulation are given in Figure 4. The data show

that using Matlab, KAPattern provides consistently better perfor-

mance and better scaling with respect to the number of reactions.

This is likely because KAPattern uses Wang algebra to avoid explicit

representation of the fully expanded minors in memory [25]. In

contrast, Gaussian elimination of the coefficient matrix uses

MuPAD, the Matlab symbolic engine, which is memory intensive

and sensitive to expression swell. Models of even modest degree

exhaust physical memory and cause ‘‘thrashing’’, resulting in poor

runtime performance for models larger than 15 reactions. However,

using Maple, direct solution of the steady state equation is typically

an order of magnitude faster than KAPattern and exhibits identical

scaling. This is likely because Maple’s symbolic solver considers

equations in increasing order of their memory footprint. This data

therefore argues that the King-Altman method is not more efficient

than direct solution of the steady state equation.

Py-substitution is more general than King-Altman. To

solve the steady state equation, the King-Altman method requires

that the stoichiometric matrix S satisfies Equation 7. As we saw

above, for S to satisfy Equation 7 we must be able to partition X
into two disjoint sets, a set of ‘‘enzymes’’ and a complementary

set c of ‘‘substrates’’. The partition must be such that every

reaction r[R consumes a single species in and produces a single,

different species in . All other species produced or consumed by r
must be in c. The concentrations of these substrates are assumed

to be time-invariant. As such, rows in S that correspond to

substrates can be removed, and the substrate concentrations can

be incorporated into the kinetics of the reactions. By inspection,

the only such partition for the fumarase model is Equation 39,

analyzed above.

By comparison, py-substitution does not require that the

stoichiometric matrix satisfies Equation 7. The substrates

x6, . . . ,x9 can therefore remain variable with respect to time

and incorporated into the steady state solution, of which there are

many. Without recourse to pseudospecies, the six bimolecular

reaction velocities require that x6,x7,x9 and x1,x3,x5 be

partitioned separately into sets X p and X lin, or vice-versa. One

such partition is
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Kp~fk1, . . . ,k5,k12g

K lin~fk6, . . . ,k11g

Xp~fx1, . . . ,x5g

X lin~fx6, . . . ,x9g:

The resulting coefficient matrix has a five-dimensional null

space, consistent with Equation 21 since dy~10 and rank S~5. A

basis for this null space is given by the columns in N, where

N~

0 0 0 0 (p6p7)=p8

{p10=p9 (p4p11zp1p7)=p9 0 0 0

{1 (p4p11)=p10 (p2p9)=p10 0 0

p10=p11 {p4 (p3p7)=p11 0 0

1 0 0 0 0

0 0 0 (p5p10)=p8 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666666666666666664

3
7777777777777777775

:

The set Yq must therefore contain five elements. We may select

these elements with some flexibility by our choice of basis vector

coefficients. The simplest choice, q~½q1, . . . ,q5�T, yields the steady

state mapping yss :

k1.k1 k6.(k12x1x9)=x2 x1.x1 x6.x6

k2.k2 k7.(x6(k1x1zk4x5))=x3{(k10x4)=x3 x2.x2 x7.x7

k3.k3 k8. k2x3x7zk4x5x6ð Þ=x4{k10 x3.x3 x8.x8

k4.k4 k9. k10x4zk3x1x7ð Þ=x5{k4x6 x4.x4 x9.x9

k5.k5 k10.k10 x5.x5

k12.k12 k11.k5x4x8=x2

Other maps are available, however. By Equation 25, the submatrix

formed by taking any 5 linearly independent rows of N produces a

different vector of coefficients, and thus a different partition of Y. For

our particular choice of yp above, 72 partitions are possible,

calculated by testing which combinations of 5 rows in N are linearly

independent. As an illustration, consider the case where the rate

constants k8 and k11 are easier to measure than substrates x7 and x8.

Because of this, we would prefer x7 and x8 to be dependent variables.

Equivalently, we want ypy(x7), ypy(x8)[Ycq, and ypy(k8),

ypy(k11)[Yq. Since yp(k8)~y3 and yp(k11)~y6, any 5|5

submatrix of N containing rows 3 and 6 whose determinant is not

zero will accomplish this. Below is the vector q
0

calculated from the

matrix formed by rows 3, 5, 6, 7, and 10.

q
0
~

q2

q4

(q1p10zq2p10{q4p4p11)=(p2p9)

(q3p8)=(p5p10)

q5

2
6666664

3
7777775

,

This results in the desired steady state mapping, y
0
ss :y

0
ss :

k1.k1 x1.x1

k2.k2 x2.x2

k3.k3 x3.x3

k4.k4 x4.x4

k5.k5 x5.x5

k6.(k12x1x9)=x2 x6.x6

k7.(x6(k1x1zk4x5))=x3{(k10x4)=x3 x7.(k10x4zk8x4{k4x5x6)=(k2x3)

k8.k8 x8.(k11x2)=(k5x4)

k9.(k10x4)=x5{k4x6z x9.x9

(k3x1(k10x4zk8x4{k4x5x6))=(k2x3x5)

k10.k10

k11.k11

k12.k12

This offers another illustration of how the choice of substitution

strategy and null space basis vectors allow one to choose

independent parameters flexibly among sets K and X when

solving for steady state. See ‘‘fum2.m.trace.pdf’’ in Protocol S1 for

details of this derivation.

Steady state establishes a threshold for drug-induced cell
death

Finally, we sought to use py-substitution to characterize the

relationship between steady state and the response to the cancer

drug, dulanermin. Dulanermin is a recombinant human form of

the endogenous ligand TRAIL, whose mechanism for triggering

cell death is modeled in version 1.0 of the extrinsic apoptosis reaction

model, or EARM [14]. This model considers the biochemical

events following engagement of the death receptors 4 and 5 (DR4/

5), including receptor-induced cleavage of initiator caspases,

positive-feedback by effector caspases, and feed-forward amplifi-

cation by the mitochondrial pathway following outer membrane

permeabilization, or MOMP (Figure 5). The EARM model was

trained on data derived from HeLa cells co-treated with

cyclohexamide, an inhibitor of protein synthesis that results in

hypersensitivity to TRAIL [43]. Accordingly, any amount of

ligand in the EARM model results in cell death. The abundance of

ligand still affects the time of death, defined for example by the

time tPARP at which half of the caspase 3 target protein PARP has

been cleaved (Figure 6A, left) [44]. Note in this section we refer to

the abundance of a species rather than its concentration, as these

are the units chosen by the original authors.

In the absence of cyclohexamide, however, HeLa cells do not all

die following exposure to TRAIL. Rather, a fraction of cells

persist, and this resistance is a function of the proteomic state prior

to stimulation [6]. To capture this phenomenon, we extended the

EARM model so that proteins continued to be synthesized and

degraded following exposure to TRAIL. Specifically, we intro-

duced 43 new synthesis and degradation fluxes as well as 2 protein

inactivation reactions (see ‘‘xearm.mpl’’ in Protocol S1). These

reactions were chosen so that every species is subject to at least one

efflux. We refer to our extended model as xEARM. Because

xEARM satisfies our definition of a mass action model, we use py-

substitution to identify an analytical expression for its steady state.

To derive this expression, a mapping function yp was chosen so

that every non-zero parameter in EARM was mapped to an

independent parameter in P . As a result, we were able to preserve

the snap-action dynamics of MOMP that is central to the original

model (Figure 6A, right). Honoring the published parameters
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required that we introduce two pseudospecies, one for each the di-

and tetrameric forms of Bax (variables x32 and x35, respectively),

x̂x59~x2
32 ð43Þ

x̂x60~x2
35: ð44Þ

The coefficient matrix C and null space basis matrix N were

calculated as before, with the latter calculation requiring less than

a minute on our benchmark PC. The null space of C has 17-

dimensions, resulting in a matrix of basis vectors of the form

N~ n1 n2 n3 n4 . . . n17½ �:

Basis vectors n4 to n17 preserve the steady state ratios of paired

synthesis and degradation reactions. Vector n17, for example,

ensures that a change d in k114 results in a change dx42 in k113,

where x42 is the abundance of Cytochrome C in the mitochondria

and k113 and k114 are its rates of synthesis and degradation,

respectively. The vector n3 scales the steady state abundances of

mitochondrial Bax and Bcl2 complexes with respect to changes in

the rate of Bcl2 synthesis. Vectors n1 and n2 are algebraically

intractable and thus defy simple biochemical interpretation. Two

of these vectors, n1 and n3, are constrained by the pseudospecies

x̂x59 and x̂x60. To resolve these constraints, note that Equations 43

and 44 require that

yp(x̂x59)~yp(x
2
32) ð45Þ

yp(x̂x60)~yp(x
2
35): ð46Þ

By our mapping function ypy (see ‘‘xearm.mpl.trace.pdf’’ in

Protocol S1, pp. 120–121), Equations 45 and 46 become

y42~y2
21 ð47Þ

y43~y2
23, ð48Þ

where yy(y21),yy(y23),yy(y42),and yy(y43)[ spanQ(P) (fq1,q2,q3g).
Solving Equation 48 for q3 gives

q3~
b1

b2

q2
2, ð49Þ

where b1,b2[Q½P�. Substituting Equation 49 into Equation 47 and

solving for q1 gives

q1~
{a2+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2{4a1a3

q
2a3

, ð50Þ

where a1,a2, and a3[Q(P)½q2� (see ‘‘xearm.mpl.trace.pdf’’ in Protocol

S1, pp. 121–126).

Obviously, Equation 50 identifies an explicit bistability in the

xEARM model. Basis vector coefficient q1 — and by Equation 49,

q3 — can take either of two values for any numerical realization of

the model. By examination of ypy, we find that these two

coefficients affect all modified and compound species, as well as

synthesis rates for proteins within and upstream of the mitochon-

dria. Using the parameter values supplied in [14], however, we

Figure 4. Computational performance of KAPattern versus py-substitution, implemented in either Matlab or Maple. Given a first-order
model with six species and the number of reactions indicated by the x-axis, the time required to derive an expression for the steady state of the
model is indicated by the y-axis. Three random realizations were used for every model size. Every calculation was performed in triplicate, but the error
in calculation time was negligible.
doi:10.1371/journal.pcbi.1002901.g004
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find that one of the solutions to Equation 50 is negative. The

corresponding steady state is therefore infeasible and the solution

was discarded.

In addition to parameters in [14], a full numerical realization of

the xEARM model requires values for parameters p71, . . . ,p86 and

q2,q4, . . . ,q17. All but three of these elements represent first-order

degradation rate constants, to which we assigned values equivalent

to a half-life of one hour. This value was based on global

quantifications of protein turnover in mammalian cells, which

revealed that signaling proteins tend to be short-lived [45]. Two of

the elements, p77 and p78, represent first-order inactivation fluxes,

which we assumed to be ten times faster than protein degradation.

The final element q2 is the steady state abundance of the

mitochondrial Bax2:Bcl2 complex, which we set to 20 molecules.

Six of the elements were then modified from their initial values to

better match the dynamics of caspase activation and PARP

cleavage, as reported in [14]. The complete table of parameter

values required to initialize and numerically integrate the xEARM

model is given in Table S2.

For comparison, Table S3 lists the steady state abundances of

species in the original and extended EARM models, sorted in

order of decreasing difference. As expected, every species in

EARM with a non-zero abundance has precisely the same

abundance in xEARM, since these are independent parameters

in the steady state solution. Among species with zero abundance in

EARM, the mitochondrial Bax:Bcl2 complex exhibits the greatest

disparity, with the steady state abundance in xEARM being in the

low thousands of molecules. Ubiquitinated, cleaved caspase 3 and

cleaved PARP are also in the low hundreds of molecules, but this

represents only a small fraction of their total cellular abundance. A

full 25 species with zero abundance in the EARM model have an

abundance of less than 1 molecule in xEARM. This indicates that,

even though the steady state reaction velocities are markedly

different between EARM and xEARM, by using py-substitution we

were able to engineer a steady state where the species abundances

are appreciably similar between the two models.

Next we asked whether the xEARM model remained viable in

the presence of low doses of TRAIL, but still exhibited MOMP

when stimulated with high doses of TRAIL. To do so we created a

numerical realization of the model using the parameters from

Table S2, then perturbed the model from its steady state using a

step increase in the abundance of TRAIL (variable x1). The

magnitude of the step ranged from 1 to 100-fold and was followed

by numerical integration of the mass balance equations out to

48 hours. As shown in Figure 6A, MOMP is only observed in

xEARM when TRAIL is increased by 101:25-fold or more. We

label this minimum dose of TRAIL required for MOMP Lthresh.

Increments less than Lthresh result in a small and transient change

in cleaved PARP abundance, followed by a return to the pre-

stimulated steady state. By comparison, any magnitude dose of

TRAIL causes MOMP in the original EARM model.

This ability of xEARM to distinguish between low and high doses of

TRAIL, in conjunction with an analytical expression for its steady

state, allowed us to systematically perturb the steady state and ask how

these perturbations affect the sensitivity to TRAIL. To illustrate this

capability we varied the steady state abundance of each major xEARM

species over a 100-fold range, centered about each species’ wildtype

value as reported in Table S2. For each variation, we performed a

binary search to identify Lthresh. The results from this procedure are

plotted in Figure 6B. As expected, increases in XIAP, Bcl2, FLIP, and

Bar result in reduced sensitivity to TRAIL stimulation, while increases

in Procaspase 8, TRAIL receptor DR4/5, Bax, and Bid result in

increased sensitivity [46]. What is interesting, however, is the following.

First, TRAIL sensitivity is most affected by changes in the abundance

of Procaspase 8 and Bar, an inhibitor of active caspase 8 [47]. The

ability to activate caspase 8, then, appears to be a critical determinant

of TRAIL sensitivity, as previously suggested [48,49]. Second, the

abundances of Procaspase 3, 6, and 9 have little effect on the sensitivity

to TRAIL. This observation is in good agreement with the model-

based prediction that induction of MOMP does not require positive-

feedback via this caspase loop [14].

A common metric for describing how model parameters affect

the sensitivity to TRAIL is to calculate the change in time at which

death occurs in response to a small change in each parameter

[6,44,50]. It is conceivable, however, that changes in the time of

death do not accurately reflect changes in the threshold of TRAIL

at which death occurs. Therefore, to test this assumption we

calculated parameter sensitivity coefficients for the ligand thresh-

old, LLthresh=Lp, and the time at which death occurs, LtPARP=Lp,

using the xEARM and EARM models, respectively. The

numerators LLthresh and LtPARP were calculated by backward

finite difference approximation and all sensitivities were normal-

ized to the maximum observed sensitivity for each metric

(Figure 6C). The data show good agreement for positive regulators

of TRAIL sensitivity, but some disparity in the negative regulators.

Specifically, while tPARP is particularly sensitive to changes in

XIAP and Bcl2, Lthresh is most sensitive to changes in Bar. This

result argues that some caution should be taken when equating

changes in the time of death with changes in TRAIL sensitivity.

Discussion

We have described a simple but flexible method for deriving

analytical expressions for the steady states of mass action models.

Central to our method is the observation that mass action models

are systems of polynomial equations that are generally no greater

than degree 2. This permits a partitioning of rate constants and

species concentrations into disjoint sets of quantities, P and Y,

where the reaction velocity vector is linear with respect to the

variables in Y. If the cardinality of Y is greater than the rank of the

stoichiometric matrix, then the steady state equation can be solved

analytically using simple linear methods.

There is considerable benefit to deriving an analytical

expression for the steady state of a model. An analytical expression

can be used to identify network ultrasensitivity [51], robustness

[52], multistationarity [53], and invariants [54]. For enzyme

catalytic models that have no true steady state but nevertheless

satisfy the assumptions for quasi-steady state, an analytical

expression can relate the rate of product formation to the initial

concentrations of the substrates and enzyme [55]. Critically, these

properties do not depend on the numerical values of the

parameters, which may be difficult to measure [56]. In our

companion manuscript, we show that analytical steady state

expressions can be used to identify changes in the kinetic rate

constants that do not alter the species concentrations. These

isostatic perturbations can be used to characterize the dynamic

plasticity of a system, and also how changes in the rates of protein

turnover can affect the response to perturbation, independently of

changes to steady state concentrations.

Even if numerical interrogation is ultimately intended and all

parameters must be assigned values, deriving an analytical expression

for the steady state still confers a number of benefits. First, including

steady state constraints can facilitate the construction of a model [57].

As illustrated by our treatment of the Open Michaelis-Menten model,

py-substitution affords considerable flexibility in selecting which

quantities are independent — thus requiring numerical values prior

to simulation — and which quantities can be derived from the

independent quantities. This partly transforms the problem of
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parameterizing a model from one of numerically fitting the rate

constants to available data [58], to one of identifying the steady state

expression that maximizes incorporation of known quantities into the

independent set of parameters. Second, incorporating steady state

concentration measurements can reduce the total number of

parameters required. In the traditional approach to parameterization,

every rate constant is assigned a value prior to simulation, as well as the

abundance of any species not subject to synthesis and degradation.

Using py-substitution, only independent quantities must be assigned a

value. This number is equal to the total number of species and

reactions, minus the rank of the stoichiometric matrix. As the

stoichiometric matrix approaches full rank, this number converges to

the number of species. Since most systems have more reactions than

species, py-substitution often requires fewer parameters than the

traditional approach. This can be observed in the xEARM model,

where 119 parameters are required for simulation after deriving a

steady state expression using py-substitution (100 rate constants, 18

species, and the mitochondrial volume), versus 133 parameters

required for traditional parameterization (115 rate constants, 17

species, and the mitochondrial volume).

Further, in the case of the xEARM model, we have

demonstrated that an analytical expression of the steady state

allows systematic characterization of its effect on the response to

perturbation. This was made possible in two ways. First, it allowed

the model to operate at a non-trivial steady state. In the original

EARM model, infinite sensitivity to TRAIL is caused by

unbalanced reactions. Once the receptor is engaged, caspase

cleavage and pore formation proceed deterministically to comple-

tion. As a result, for cells to be ‘‘alive’’ prior to stimulation, the

model must assume a trivial steady state in which the abundance

of TRAIL and all reaction velocities are zero. Using py-

substitution, we were able to engineer a non-trivial steady state

that is viable at low doses of TRAIL. Second, we were able to

apply systematic changes to the steady state concentrations. By

virtue of the mapping function yss, these resulted in compensating

changes to the kinetic rate constants such that steady state was

preserved. For each modification, we were then able to calculate

the number of TRAIL molecules required to induce cell death, as

well as the sensitivity of this threshold to changes in the steady state

concentrations of different species.

Previous studies with models operating at trivial steady states

employed sensitivity metrics that were with respect to the time at

which death occurs, and not whether it occurs [6,44]. These

studies suggested that the dynamics of TRAIL-induced cell death

depend critically on Bcl-2 [44]. Also, whether cell death proceeds

to completion depends on XIAP [44], and whether the

mitochondrial feed-forward loop is required depends on the ratio

of XIAP to Procaspase 3 [59]. In contrast, our analysis indicates

that whether cell death occurs is primarily determined by the ratio

of Procaspase 8 to its negative regulator, Bar. Our sensitivity

analysis with respect to the threshold at which death occurs is

therefore related to but distinct from analyses that consider only

Figure 5. Reaction diagram for the xEARM model. Reactions new to this version include all fluxes to or from a source node, indicated by
dashed lines to or from a Ø. In addition, the activation of Apaf was made reversible, as were the formation of mitochondrial pores. The complete
model contains 58 species and 115 reactions. See [14] for a description of the original EARM model, and ‘‘xearm.mpl’’ in Protocol S1 for a complete
description of xEARM.
doi:10.1371/journal.pcbi.1002901.g005
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the timing of death, and may relate better to clinical applications

since we don’t assume co-treatment with cyclohexamide.

For all these reasons, an analytical expression for the steady

state of a model can be of general benefit to cell systems modeling.

Indeed, other methods have previously addressed the challenge of

deriving analytical steady state expressions, most notably the King-

Altman method. Prior to the advent of modern computers, the

authors realized that for a particular class of mass action models,

the laborious calculation of steady state enzyme ratios could be

achieved by a conceptually simpler graphical method. As we have

shown, however, this simpler approach is no longer more efficient.

More significantly, the King-Altman method requires that all

reactions be first- or pseudo-first order in the time-varying species.

Without this stipulation, Equation 7 no longer holds and the

reaction network can no longer be described by a graph. This

requirement is often stated as a pair of assumptions: 1) that no

enzyme is itself a substrate and 2) that all substrates remain

constant over the time scale of steady state formation [22]. The

second of these can be considered common to any method that

treats time-varying species as constants when solving the steady

state equation. The first of these, however, is violated by any

cascade of post-translational modifications, for example the well-

known MAP kinase cascade [60].

Although recent methods relax these assumptions [28,29], in the

contemporary systems biology literature, analytical derivation of the

steady state rarely, if ever, precedes numerical interrogation of a

model. Since this derivation is of considerable value, we sought to

develop a method that was simple, scalable, and general to mass

Figure 6. Determinants of sensitivity of TRAIL-induced cell death. (A) The dynamics of PARP cleavage are shown for EARM (left) and xEARM
(right), in response to increasing doses of the TRAIL ligand (gray to blue). The abundance of cleaved PARP for each model has been normalized to the
maximum observed abundance. For each model, for a particular dose of TRAIL, the time tPARP at which PARP is 50% cleaved is indicated by the
dashed red lines. For xEARM, the minimum abundance of TRAIL required to observe MOMP, Lthresh, is indicated on the color scale at right. (B)
Changes in Lthresh in response to changes in the steady state abundance of 12 primary xEARM species. Species have been sorted from left to right in
order of those for which an increase in abundance results in the greatest increase in TRAIL sensitivity, to those for which an increase in abundance
result in the greatest decrease in sensitivity. (C) Normalized sensitivity coefficients for Lthresh, calculated using the xEARM model (blue), and tPARP ,
calculated using both EARM (white) and xEARM (gray), for each of the 12 primary species in (B).
doi:10.1371/journal.pcbi.1002901.g006
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action models. First, we described our method using only concepts

from linear algebra, and we have provided complete code for all

seven examples described in this manuscript, with implementations in

either Matlab or Maple. Second, we show that py-substitution scales

well. The xEARM model has 58 species and 115 reactions, and we

were able to derive a steady state expression in less than a minute on a

conventional desktop computer. Finally, we demonstrated that py-

substitution can be generally applied to chemical reaction networks

whose reaction velocities are modeled by mass action kinetics. This is

a considerably broader class of models than can be addressed using

the King-Altman and other methods, which require that the reaction

network exhibit specific structural properties.

This does, however, open up an interesting avenue for further

research: precisely what properties must a mass action model

exhibit for its steady state to be derived using py-substitution ? How

many different steady state expressions are possible, and which of

these is the ‘‘best’’? As we have shown with the fumarase model,

even after the rate constants and species concentrations were

partitioned into sets P and Y, 72 different steady state expressions

were possible. These different expressions arose from flexibility in

selecting the pivot columns in the coefficient matrix, since the

pivot vs. free columns partition the linear variables into dependent

vs. independent variables. Equivalently, these different expressions

arise from flexibility in ordering the linear variables, since different

orderings permute the columns of the coefficient matrix and result

in a different reduced row echelon form. Since the number of

possible steady state expressions is large but finite, a combinatorial

optimization strategy ought to be able to identify the best steady

state expression, where the difference between any two expressions

could take into account measurement uncertainty in the indepen-

dent quantities, as well as computational complexity in deriving

the final steady state expression.

Finally, we consider that the steady state may not be the only

state of interest, but perhaps specified dynamic states as well.

Essentially, this replaces the zero vector in Equation 5 with a

vector of non-zero values. From linear algebra, we know that the

solution to this dynamic equation can be expressed as the sum of a

particular solution to the dynamic equation and an arbitrary point

in the null space of the coefficient matrix. The solution is thus

straightforward, raising the possibility of incorporating specific

dynamic states into the parameterization of a model as well.

Supporting Information

Protocol S1 This zip file contains all source code required to run

py-substitution, in either Matlab or Maple. Implementations for

every model described in this manuscript, including a pdf trace of

the steady state derivation using py-substitution, are also included.

For further details please see the included README file.

(ZIP)

Table S1 This table provides a summary and description of all

mathematical symbols used in this manuscript.

(PDF)

Table S2 This table compares the non-trivial steady state

abundances of all molecular species in the xEARM model with

their counterparts in the EARM model, published in [14]. All

abundances are in molecules.

(PDF)

Table S3 This table gives values for all parameters required to

numerically integrate the xEARM model. Also see ‘‘xearm.mpl’’

in Supporting Protocol S1.

(PDF)
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