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We present a network model of striatum, which generates “winnerless” dynamics typical

for a network of sparse, unidirectionally connected inhibitory units. We observe that these

dynamics, while interesting and a good match to normal striatal electrophysiological

recordings, are fragile. Specifically, we find that randomly initialized networks often show

dynamics more resembling “winner-take-all,” and relate this “unhealthy” model activity to

dysfunctional physiological and anatomical phenotypes in the striatum of Huntington’s

disease animal models. We report plasticity as a potent mechanism to refine randomly

initialized networks and create a healthy winnerless dynamic in our model, and we explore

perturbations to a healthy network, modeled on changes observed in Huntington’s

disease, such as neuron cell death and increased bidirectional connectivity. We report

the effect of these perturbations on the conversion risk of the network to an unhealthy

state. Finally we discuss the relationship between structural and functional phenotypes

observed at the level of simulated network dynamics as a promising means to model

disease progression in different patient populations.

Keywords: Huntington’s disease, striatum, medium spiny neuron, network, dynamics, homeostatic plasticity,

STDP, neurodegenerative

1. INTRODUCTION

Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disease, which
leads to widespread cell death in the striatum of humans who carry the mutant huntingtin gene. In
particular principal cells of this structure known as medium spiny neurons (MSNs) die first. The
mutant gene includes a translated trinucleotide repeat that encodes a poly-Glutamine (poly-Q)
region of the Huntingtin protein, which when expanded beyond ∼ 37 residues in the mutant
form, guarantees the disease will emerge during an otherwise normal individual’s life (Vonsattel
and DiFiglia, 1998).

The neuronal structure affected most by HD, striatum, acts in global brain circuitry as the
input stage to the Basal Ganglia (BG), a set of basal forebrain structures involved in behavioral
reinforcement learning and action selection among all vertebrate organisms (Graybiel, 1998).
GABAergic MSNs comprise ∼ 90% of the tissue’s neuronal population, such that the striatum’s
microcircuitry is almost entirely inhibitory, with collaterals of MSNs creating a sparsely connected
network, free of bidirectional connections, and receiving excitatory drive from Layer 5 of
neocortex (McGeorge and Faull, 1989; Czubayko and Plenz, 2002; Tunstall et al., 2002; Cepeda et al.,
2013). Other inputs to MSNs derive from interneurons, including strong inhibition from a local
feed-forward inhibitory network, which also receives Layer 5 inputs, and comprises fast-spiking,
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parvalbumin-positive interneurons (FSIs) (Gerfen et al., 1985;
Luk and Sadikot, 2001; Taverna et al., 2007; Gittis et al., 2010;
Berke, 2011; Szydlowski et al., 2013).

Experimental observations of the striatum have established
that normal in vivo firing patterns of MSNs include episodic
bursting activity, which appears spontaneously, even when the
animal is at rest (Walker et al., 2008; Miller et al., 2011).
Furthermore, these firing patterns seem inconsistent with activity
observed in other networks that include lateral inhibition, such
as sensory epithelia and neocortex. Here, receptive fields are
sharpened and outputs made sparser by strong competition
between neurons or neuronal groups (Sachdev et al., 2012).

1.1. Previous Theoretical Work
Theoretical work has made great progress in modeling the
episodic bursting firing patterns of MSNs by carefully replicating
distinctive properties of striatal microcircuitry in network
models, such as sparse inhibitory connections and variable
excitability among MSNs (Wickens et al., 1991; Angulo-
Garcia et al., 2016). However, the importance of asymmetric
connectivity in this network has been largely ignored.

Most recently, models of striatum have revisited the
“winnerless” inhibitory network model, and derived from it a
sophisticated network of biologically plausible units that show
transitions in rate dynamics related to network stability and
chaos (Ponzi and Wickens, 2010). Originally used to model
an olfactory stimulus encoder in the locust, the winnerless
network of Rabinovich et al. (2001) formalized intuitions about
the requirements for episodic bursting in inhibitory networks,
but in a much simpler model, which depends on asymmetric
connectivity for these dynamics. Characterized by their ability
to dynamically encode input patterns based on groups of
neurons continuously competing through lateral inhibition,
ongoing winnerless dynamics and network trajectories act as the
output code. This coding is in contrast to more conventional
“winner-take-all” network encoding schemes, which rely on
lateral inhibition achieving a stable representational state as
the network’s output. Given that both networks depend on
lateral inhibition for normal function, what makes the winnerless
network’s dynamics so different from winner-take-all?

First, winnerless network topology enforces an assymmetry
by disallowing reciprocal connections between inhibitory
units (Rabinovich et al., 2001). Winner-take-all networks instead
rely on mostly reciprocal lateral connections between excitatory
and inhibitory units to achieve stable representational states
(Maass, 2000). Second, winnerless networks generate a constant
total level of activity when their units are driven to spike. This
activity results in the network continuously shaping its units’
ongoing dynamics, even when inputs to those units are weak. In
this way, winnerless networks encode a changing input rapidly
as multiple units respond alternately, compete continuously for
net excitatory drive, and implement a flexible population code.
In contrast, winner-take-all networks, implemented with the
same unit models, decrease their total activity during continued
stimulation as initial competition settles and a few winners
emerge. Escape from inhibition among silent non-winners is

slow as inputs change, resulting in sparse, stable encoding by just
a few constantly active units (Kohonen, 1982).

1.2. Current Aims and Approach
Given the complex dynamics present in a simple winnerless
model of striatal activity, we aimed to validate this model against
HD network-level phenotypic measures. In our previous work,
we proposed a set of hypotheses surrounding neurodegenerative
disease (Kozloski, 2016). In summary, network perturbations
due to unary modifications to network parameters governing
network properties such as signal propagation and plasticity
were proposed as possible primary disease risks (stemming for
example from the single gene mutation in HD). Our hypotheses
included a proposed role for feedback and network dynamics
in neural circuits to restore near-normal circuit set points,
while at the same time increasing secondary risks of neuronal
dysfunction, damage, or loss. We proposed that these secondary
risks may lead to cascading failures or dysfunction of neural
tissues as neuronal loss requires the accrual of even greater
secondary risks to maintain normal network function.

Interestingly, well before MSNs die in HD model animals,
they become dysfunctional (Cepeda et al., 2007; Estrada-Sanchez
and Rebec, 2013), suggesting that altered signaling through
corticostriatal circuitry may set the stage for HD and its
subsequent progression. In support of this view, both cortical
and striatal neurons show aberrant patterns of spiking activity
in behaving R6/2 transgenic HD model mice (Walker et al.,
2008; Miller et al., 2011). In particular, MSN firing patterns at
times manifest sustained firing without the episodic bursting
characteristics of normal striatal MSN firing (Miller et al., 2008)
and the winnerless network. Striatal network connectivity is
greatly disrupted in HD model animals, with the fraction of
bidirectional connections betweenMSNs in R6/2 HDmodel mice
greatly increased (Cepeda et al., 2013). Recent evidence also
suggests altered communication between cortex and striatum in
HD (Hong et al., 2012), and disturbances in both feed forward
and, to a lesser extent, feedback inhibition to MSNs, which then
drive increased GABAergic synaptic activity of indirect pathway
MSNs in HD model mice (Cepeda et al., 2013).

The transition from winnerless dynamics to winner-take-all
dynamics has been described previously, and occurred when
network connectivity fractions and weights were increased
(Ponzi and Wickens, 2013), although reciprocal connections
were not explicitly removed from the network topology in
this study. Here, we report how introduction of bidirectional
connections into a wholly unidirectional network, as has been
observed in the R6/2 HDmodel when compared to the wild-type
(WT) background strain fromwhich it was derived (Cepeda et al.,
2013), may be of equal or greater importance to the transition
fromWT toHDnetwork phenotypes.With this diseased network
topology, the previous studies’ transitions to winner-take-all
dynamics might be altered, and we therefore emphasize in
this study the importance of carefully controlling bidirectional
connections to create a robust winnerless striatum model. We
show how modeled disruptions can elucidate risks of phenotypic
conversion and neurodegeneration in HD model organisms
and humans. Finally, we consider how changes to normal
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maintenance and restorative mechanisms such as plasticity and
balanced synaptic transmission are possible contributors to
dysfunction.

1.3. Model Overview
We employed a FitzHugh-Nagumo (FN) model derived from
the work of Rabinovich et al. (2001) for all simulations of
MSN dynamics in striatum. We reasoned that because of
the robust winnerless-like dynamics exhibited by MSNs, and
their similar asymmetric network topology, even a very simple
model and basic network configuration may be sufficient to
capture and study network phenotypes of the normal and
dysfunctional striatum. Our base assumption is that certain
striatal network dynamics are universal, given a set of simple
network constraints (implementing winnerless vs. winner-take-
all dynamics), and that network dysfunction may be similarly
universal given modifications to these constraints. If this
assumption is true, future work with more detailed models
will remain constrained by the observations reported here
for the simpler network model. (For example, even when
using more physiologically detailed neurons and synapses
in similar striatal microcircuit models of specific animal
models of HD should yield results verifiable against our
findings).

Briefly, a unit potential, recovery factor, and synaptic
conductance were each modeled by a first-order ordinary
differential equation (see Materials and Methods). Excitatory
stimulation to units in the network was fixed at randomly
chosen values with a small offset, in order to represent the
inputs to striatum by a constant pattern of cortical activity
in Layer 5. These inputs were varied during our simulations
only where noted. We interpreted a single positive fluctuation
in the unit potential (i.e., an FN spike) as a striatal MSN’s
burst of action potentials lasting ∼ 350 ms. In Kozloski
(2016), we termed these FN spikes the “burst potential” of
the neuron, with a positive transient representing a 350 ms
burst in the physiological neuron’s spike train. This coarse
resolution model of the neuron’s membrane potential is adequate
to capture the dominant burstingmode of firing inMSNs, and the
observation that their activity is often alternating series of bursts
of bursts (Miller et al., 2008).

Free parameters of our model were then the number of the
neurons and their network connectivity for each simulation.
Unless otherwise noted, the results reported here derived from
simulations of a 500 neuron network. Similar qualitative results
have also been verified for networks of size 50, 100, and 1, 000,
though the magnitude of the effect given a perturbation may
differ.

We show that changes such as (1) neuron silencing, which
models cell death among MSNs, (2) disruptions in network
connectivity (in particular to the bidirectional connection
fraction), and (3) abnormal cortical inputs can each lead to HD
phenotypes in our model. We further show how these disruption
may be resolved or exacerbated by simple changes to the model’s
plasticity. Our approach creates a research path toward applying
network models of striatal activity to therapeutic insights into
HD.

2. RESULTS

2.1. Criterion for Healthy Network
Dynamics
We present results indicating that HD neuron and circuit
phenotypes may be modeled in a winnerless network model of
striatum based on perturbations known to be associated with HD
progression. As noted previously, in vivo recordings of MSNs
display bursts that episodically recur throughout recorded spike
trains in both WT and in behaving HD model mice (Miller et al.,
2008). Furthermore, alternating bursts appear as the dominant
feature of healthy MSN firing patterns in the WT background
strain from which the R6/2 model was derived. Our model
specifically addresses a localized population ofWTMSNs, among
which burst durations most often (defined as the middle 50
percentiles of all observations) occurred at 0.65− 1.1 s durations
(min < 0.1s, max ∼ 4 s). Bursts occurred most often at a rate
of ∼ 1 − 4 per minute (max ∼ 11), with 2 − 9% (max ∼ 58%)
of bursts occurring simultaneously across MSNs, and 12 − 54%
(max∼ 90%) of all spikes occurring within bursts1.

Our model MSN deployed stereotyped FN spikes representing
bursts of a short duration (∼ 350 ms), which occurred at
a higher rate in the winnerless network (∼ 30 per minute)
than in WT recordings. Furthermore, in our model, 100% of
spiking activity occurred as bursting activity. We considered
these deviations from theWT firing patterns acceptable, since the
focus of our study was to address network burst dynamics and
how winnerless network instability can drive units to cease firing
in episodic bursts of bursts altogether (Figure 1), and instead fire
continuously. In our study, the phenomenon of constant firing
among FNmodel MSNs was robust under a variety of conditions,
and we noted a similarity of this phenotype to those reported by
Miller et al. (2008) (cf., Figure 9, R6/2 Units 1 and 5). Specifically,
we defined normal bursting activity in our network as a period
of continuous bursts (FN spikes) that falls within the range of
burst durations observed (< 4 s), and at low rates of simultaneous
bursting normally observed in WT animals. We further required
that all units in the network burst at some point during 1 min of
simulated stationary excitatory inputs in order for a network to
be considered healthy (Figure 1), since at this initial condition,
silencing of neurons was always correlated with the emergence
of neurons that burst continuously (i.e., > 4 s). These two
criteria for a healthy network (1. episodic simultaneous bursting
among groups of MSNs, and 2. episodic alternating bursting
among every MSN) were then evaluated. To establish a baseline,
we show different healthy networks (except where noted) for
each experiment; the baseline was further confirmed for different
healthy networks, not shown.

Our winnerless MSN network topology was modeled on
that of Rabinovich et al. (2001), with a completely asymmetric
set of connections and a connection fraction of 0.35 among
unidirectionally connected pairs. We first noticed that randomly
initializing such a network, subject to these constraints, was
not sufficient to consistently produce healthy network dynamics.
Specifically, by randomly initializing and simulating 100 distinct

1Each of these measures saw a decrease among the R6/2 HD model animals.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 July 2017 | Volume 11 | Article 70

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zheng and Kozloski Striatal Network Models of Huntington’s Disease

FIGURE 1 | An example of healthy winnerless network dynamic. Shown are 11 out of the total 50 FN neuron network simulated. As in striatum, the network shows

episodic “bursts of bursts” which are organized in neuronal activations that alternate, and which include no silent neurons. The network, derived from a preliminary

evolution of a randomly initialized, unidirectional set of connections between neurons, meets our criteria for health.

networks of size 500 units, we found that only ∼ 30%
of networks met the criterion that no unit should produce
continuous bursting that exceeds the maximum burst duration
of 4 s for networks of this size. Instead, in ∼ 70% of
networks, firing in at least one unit continued at a high
rate for the duration of the simulation. Furthermore, among
the 30% that showed normal firing rates, > 90% failed
to meet the criterion that every neuron burst at least once
during a 1 min simulation. Silent neurons, which never
fire regardless of the duration of the network simulation,
occurred in almost all networks initialized in this manner,
such that overall < 3% of randomly initialized networks were
healthy.

2.2. Mechanisms to Establish Healthy
Dynamics
In order to study randomly initialized, asymmetric winnerless
networks from a starting point of healthy dynamics, we aimed
to first determine how to shape the network in order to establish
a healthy state. Here we explore if mechanisms responsible for
maintaining a physiologically balanced self-organizing recurrent
network (SORN) (Zheng and Triesch, 2014) might also help
balance activity in a winnerless network. Specifically, we studied
the ability of intrinsic plasticity (IP) and inhibitory spike-timing
dependent plasticity (iSTDP) to maintain network activity that
satisfies our two criteria for healthy dynamics.

The IP mechanism described by Zheng and Triesch (2014)
regulates spiking thresholds such that all neurons fire at the same
rate. For the winnerless network, we chose a rate of bursts equal to
themean bursting rate of otherwise normally activeMSNs (0.5/s).
Spike detection in the FN neurons was performed on positive
transients, and the FN thresholds of MSNs were not directly
modified. Instead, by adding a spike-rate dependent intrinsic
current, MSNs which would otherwise remain silent became
active, and those which were constantly firing resumed episodic
bursting.

Next, inhibitory weights in the asymmetrically initialized
winnerless network were further refined by subjecting them to
iSTDP. The iSTDP rule was derived from Zheng and Triesch
(2014), and implements a logical weight modifier, such that if a
unit is undergoing an FN spike, and the unit receiving inhibition
from this unit stays silent for a period of time after the MSN
bursts, the corresponding weight is weakened by a fixed amount.
Thus, if anMSN succeeds in silencing a targetMSNwith its burst,
its inhibitory influence on the postsynaptic MSN is weakened.
Conversely, if the MSN fails to silence the postsynaptic MSN, its
inhibitory influence on it is strengthened.

IP was sufficient to create a healthy network, according to
our two criteria. Similar to IP, iSTDP was sufficient to restore
healthy network dynamics to the MSN winnerless network. We
observed that after iSTDP, the uniform distribution of initial
weights had adopted a lognormal distribution. Furthermore, after
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modifying inhibitory weights between MSNs according to this
rule, every unit became active at some point in the simulation.
Furthermore, those units which were constantly firing resumed
episodic bursting as inhibition from other units in the network
was strengthened.

We did not attempt to combine these two mechanisms in
a single simulation, however in SORNs we note the influence
of each is complementary in establishing a normal network.
For experiments with different network perturbations described
below in different subsections, we established a single healthy
asymmetric network using iSTDP and used it for all perturbation
simulations.

2.3. Mechanisms Leading to Unhealthy
Dynamics
From these randomly initialized networks, balanced in their spike
initiation by iSTDP, we next aimed to study perturbations to the
networks that could disrupt these healthy dynamics and cause
MSNs to enter a state of continuous firing. These studies were
aimed at mimicking perturbations known to occur in HD.

Our initial perturbation study first established a healthy
network dynamic, and then turned off iSTDP, thus using a
fixed network topology without plasticity for perturbing the
network and studying its failure in this vulnerable state. In real

biological networks, iSTDP may remain constant and act as
continuous compensating influence to counteract the sensitivity
to perturbations we analyze here.

2.3.1. Neuron Silencing to Model MSN Cell Death
We studied the effect of neuron silencing on the striatal
winnerless network model dynamics. To silence a neuron in this
study, it was sufficient to set the neuron’s membrane potential,
x(t), to zero resulting in elimination of its ability to influence
network dynamics.

We first simulated cell silencing on a small 50 MSN network
to gain better understanding of changes to dynamics. In several
simulations, removing a single neuron from the network of size
50 was sufficient to transform it from a healthy to an unhealthy
dynamics as shown in Figure 2. The winnerless pattern of firing
relies on inhibition that a MSN receives from other neurons
to transiently balance its constant excitation, and iSTDP was
sufficient to establish this balance during initialization for all
states that the network enters. In the absence of iSTDP, MSNs
in the immediate downstream of the affected neuron suffered
a permanent reduction in inhibitory input, and this change for
some MSNs could destroy the balance and result in excess firing.

Excess firing among some MSNs then results in increased
inhibition onto its immediate downstream neurons, which
thereby destroys their balance, leading to decreased activity

FIGURE 2 | A healthy network shows winnerless activity (left) which abruptly changes when 1 neuron in a 50 neuron network is silenced, simulating

neurodegeneration. Neurons which fire prolonged bursts are considered “unhealthy.” The network dynamics and trajectories shift to winner-take-all (right) in which

some neurons fire continuously while others fall silent. In a simple three neuron motif, over-firing in unhealthy neurons inhibits downstream MSNs, producing silent

“losers”, which fail in turn to provide proper inhibition to downstream neurons, thus producing a second winner. Multiple competitive interactions in this complex

network makes the final outcome of the winner-take-all dynamics difficult to predict.
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and even permanent silencing. We propose that this unhealthy
dynamic continues to propagate, alternating between decreased
and increased inhibition throughout the network to eventually
cause the observed transformation from a winnerless network
into a winner-take-all network. However, this propagation
of unbalanced dynamics is almost impossible to analyze
quantitatively in a complex network topology, which has
many possible signal propagation paths for each MSN,
such that even starting with those neurons responsible for
the unhealthy dynamics results a complex global causal
chain.

To measure the effect of progressive neurodegeneration on
network risk, we devised a means to measure the probability
of transforming the network from healthy to unhealthy
dynamics given a specific fraction of neurons silenced. A 500
neuron network was used, and for each network condition,
20 simulations were conducted. In each simulation, different
populations were selected for silencing according to the specific
fraction of cell silencing we aimed to model. From these
20 simulations, the probability of an unhealthy network was
computed and the complex changes in network dynamics during
different disease progression stages in the model was reduced to
a single statistic. Figure 3 shows the probability of developing
unhealthy dynamics as a function of neuron silencing fraction,
and the function was well fitted by a sigmoidal.

2.3.2. Bidirectional Connectivity
As already noted, weights in our model network, wij were
initialized in a randomly chosen asymmetric network topology
and subjected to the iSTDP learning rule. The purpose of this
weight initialization routine was to ensure that the network
showed a healthy initial dynamics. Because iSTDP was turned
off, we were able to perturb the same network topology in
different ways in order to study how such changes might effect
an unhealthy dynamic.

First, we examined how the introduction of bidirectional
connections affects network dynamics. As previously noted,
measurements from wild type mice, and presymptomatic R6/2
mice (Cepeda et al., 2013), indicate that bidirectional connections
between MSNs do not exist, or are so rare that they were not
observed in this study. In contrast, the rate of bidirectional
connectivity in symptomatic R6/2 mice > 30 days old is 50%.
To study the clear progression to a high rate of bidirectional
connectivity as the HD model phenotype progresses, we varied
network bidirectional fraction, which is the percentage of the
total number of connected pairs of neurons in the network
that are bidirectionally connected. In addition, we varied the
magnitude of inhibitory weights chosen for the new connections
added to the already learned weights for the healthy network.
For each of our ∼ 50 bidirectional connection fraction to weight
combinations, we ran 20 simulations to compute the probability

FIGURE 3 | Probability of developing an unhealthy dynamic in at least one neuron in a 500 neuron network, as a function of fraction of neurons silenced (simulating

neuron death in a real striatum). Network conversion risk is calculated using 20 simulations with different neurons silenced. For each data point the proportion of

simulations in which an unhealthy neuron was observed is plotted. The red line represents a sigmoidal fit to the data, predicting a particular trajectory for disease

progression.
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of an unhealthy network for each combination, wherein each set
of 20 is represented by a single probability, for a total of 1, 000
simulations.

As shown in Figure 4, the network dynamics is sensitive to the
introduction of bidirectional connections. The chosen weights of
each added connection was relatively small, compared to those
of the rest of the network, and therefore had only a modulatory
effect on network dynamics. Furthermore, Figure 5 shows that
after adding a fraction of bidirectional connections of just 1%,
the probability of developing unhealthy dynamics in at least one
neuron reached 0.98. This indicates the network is quite sensitive
to this perturbation, and compensation must be robust to
counteract this influence in the real HD striatum. Furthermore,
the network inevitably showed an unhealthy phenotype if the
bidirectional connection fraction grew larger than 5%. These
results suggest a strong constraint on striatal microcircuitry
to minimize risk, namely unidirectional connectivity, which is
consistent with the experimental observation.

Finally, we explored if the specific neurons showing constant
activity, and therefore responsible for the unhealthy network
dynamics, were also topologically related to added bidirectional
connections. Because all networks were initialized from the same
starting configuration of weights, the identities of these unhealthy
neurons were maintained across all 1, 000 simulations, and
results could therefore be pooled according to neuron identity.
We measured each neuron’s risk to the network as the percentage
of simulations in which it was responsible for identifying the
network as unhealthy. As shown in Figure 6, in which these

risk levels were ranked from high to low, the risk profile across
neurons varies widely. First, a small portion of MSNs (neurons
ranked 1–25) tended to consistently cause unhealthy dynamics
no matter where in the network we added the bidirectional
connection. We noted that the topological distance between
the added connection, and the neuron was not predictive of
conversion. This indicated that neurons were exposed to risks
of conversion due to propagation of network dynamics, thereby
suggesting a global cause to their unhealthy phenotype. Second, a
broad plateau of risk of∼ 20% existed in the network for neurons
ranked 50–200. Lastly, a large portion of MSNs (neurons ranked
250–500) tended to maintain healthy dynamics no matter where
the network was perturbed.

2.3.3. Abnormal Cortical Input
Because dysfunctional cortical inputs to the striatum have been
implicated in the emergence of HD phenotypes in model animals
(Estrada-Sanchez and Rebec, 2013), we aimed to examine if
such dysfunction can also drive unhealthy network dynamics
in our model. We observed that at higher input strengths,
unhealthy network dynamics tended to develop, showing an
abrupt transition when the randomly chosen excitatory input
values, representing cortical inputs to our network, were
suddenly increased above a threshold which we observed to vary
depending upon the randomly initialized network topology and
dynamics that derived from iSTDP conditioning. These results
were consistent with those reported previously in studies of
a winnerless network that included bidirectional connections

FIGURE 4 | A healthy network again shows winnerless activity (left) which abruptly changes when a bidirectional connection is added to 1% of already connected

neurons. 10 out of the 500 neurons are plotted. Bidirectional connectivity is observed to increase dramatically among MSNs in Huntington’s disease model animals.
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FIGURE 5 | Probability of developing unhealthy dynamic in at least one neuron in a 500 neuron network simulation, as a function of the fraction of already connected

neurons to which a bidirectional connection is added. For each curve a different weight for the bidirectional connection is used. All other network weights were

developed by a preliminary refinement phase of the simulation using iSTDP. Network conversion risk is calculated as in Figure 3.

(Ponzi and Wickens, 2012). We further observed that decreasing
the inputs following this transition to unhealthy dynamics had a
restorative effect on network health.

2.4. Mechanisms to Restore Healthy
Dynamics
2.4.1. HD Therapeutics
Using the initial monotonic portion of the function relating
the perturbation of introducing bidirectional connections
at different fractions to the rate of conversion of the
network to an unhealthy HD-like dynamic (Figure 5, up
to the 0.05 bidirectional fraction, 100% risk of conversion),
we were able to also study risk to the network as a
measure of this function. Specifically, we interpreted slope
of this portion as a measure of risk, and went on to study
how secondary perturbations to the network changed this
slope (risk). Here we show how secondary perturbations
such as changes to synaptic transmission ameliorated or
exacerbated risks. In this way, ameliorating perturbations could
be identified as therapeutic to the network dynamics we
simulated. Specifically we created probability functions over
the fraction of bidirectional connections in the presence of 5
different secondary perturbations. For each of these secondary
perturbation simulations, bidirectional connections were added
with wij = 0.01. We ran 20 simulations to compute
the probability of an unhealthy network for each secondary

perturbation, wherein each set of 20 is represented in Figure 7

by a single data point at the probability, for a total of 500
simulations.

Ameliorating secondary perturbations included an overall
increase in GABAergic transmission among MSNs by increasing
all weights (including newly added bidirectional connections)

by 10% (Figure 7: GABA↑). This perturbation represents a
homeostatic upregulation in transmission due to synaptic

plasticity in the striatum (Cepeda et al., 2013).
Second, we modeled the same increase coupled with an

increase of 10% in cortical excitatory input to each neuron
responsible for the unhealthy dynamics (Figure 7: GABA↑ and

GLUT ↑). This perturbation approximates a normal and local

homeostatic response to increased cortical inputs by astrocytic
GABA release during increased glutamate reuptake by the same
glial cells through the GLT1 glutamate transporter (Wojtowicz
et al., 2013).

Third, we modeled an overall decrease in GABAergic
transmission throughout the network, together with
a total shutdown of cortical excitation to the neuron
responsible for unhealthy dynamics (Figure 7: GABA↓
and GLUTOFF). This perturbation approximated the
condition in which GABA release from glial cells becomes
widespread due to continuing excess glutamate release,
causing a further desensitization of glutamate receptors on
MSNs.
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Each of these perturbations added to an overall decrease in the
risk profile below baseline (Figure 7: Baseline), which we took to
represent the WT condition.

Finally, we modeled one perturbation which exacerbated
the risk function, namely an overall decrease in GABAergic
transmission throughout the network (Figure 7: GABA↓) which
approximates an overall decrease in glial cell GABA release
(Estrada-Sanchez and Rebec, 2012).

2.4.2. Bidirectional Elimination by Ongoing iSTDP
The previous studies aimed to examine perturbations to a
healthy network dynamics by altering the stationary topology and
homeostatic influences on the winnerless striatal network that
brought the network initially to its healthy state. This topology
was initialized with a random set of unidirectional connections
between MSNs, then further refined with iSTDP.

We examined the influence of iSTDP in a network
that is initialized with a very high connection fraction
(∼ 49%, Figure 8A) and bidirectional fraction (∼ 32.5%,
Figure 8B), which according to the previous results, in most
instances will result in an unhealthy dynamic. Despite this,
continuously computed iSTDP in this experiment was successful
at reorganizing the network topology and radically reducing
bidirectional connections, as well as loops of length three
(Figure 8C) after 7, 000 simulated seconds. These results are
consistent with n-order elimination of loops in recurrent
excitatory network reported by Kozloski and Cecchi (2010).
Specifically, the connection fraction converged to ∼ 19%, which
approximates the realistically observed fraction of connected
pairs in the WT animal (Cepeda et al., 2013). Bidirectional
connection fractions decreased to ∼ 6% of connected pairs in
this experiment with high initial connection fraction. In the
stationary topology used for our perturbation studies, when
bidirectional connections were added at a fixed and constant
weight, this same fraction caused the network to become
unhealthy (Figure 5). We observe therefore that ongoing iSTDP
has complex influence on the network, and can accommodate
higher rates of bidirectional connectivity while neutralizing the
risk of conversion of network dynamics.

3. DISCUSSION

Our results based on additions of homeostatic plasticity
mechanisms to a winnerless network for establishing network
health are consistent with the experimental findings of Cao
et al. (2014), which showed that activity-dependent homeostatic
regulation of excitability inMSNs is associated with enhancement
of the M current. The M current is mediated by the voltage-
gated potassium channel KCNQ, and is depressed in MSNs in
the R6/2 HD mouse model (Cao et al., 2014). Both M current
and the motor deficits that are observed concomitantly with
changes in this current were partially reversed by acute exposure
to M current activators. Therefore, our modeling result is well
validated by these experimental findings, and elucidates possible
mechanisms by which IP might maintain and restore healthy
striatal network dynamics in the R6/2 mouse model.

FIGURE 6 | Network conversion risk by neuron index constructed using

simulations from Figure 5. Because all simulations start from the same

developed and healthy network, statistics for individually identified neurons can

be pooled across simulations. For each simulation in which a network was

classified unhealthy by at least one neuron showing unhealthy dynamics,

neurons causing this classification due to prolonged firing were tabulated. The

table was then used to construct the histogram showing their participation rate

in causing the unhealthy network dynamics.

FIGURE 7 | Simulated of HD therapeutics. Network conversion risk from

Figure 5, wij = 0.001, plotted again in blue. Repeating the same simulation

under different conditions aimed at modeling different secondary perturbation

to the network. For each secondary perturbations, amelioration or

exacerbation of the network conversion risk is observed. For a detailed

description of each secondary perturbation, see Section 2.4.1.

We note that small fractions of cell silencing (i.e., < 2 − 3%)
in the larger networks we studied failed to reliably produce
unhealthy dynamics (Figure 3). The probability of developing
unhealthy dynamics then increases rapidly as the fraction of
neuron silencing increases from 0.2 to 0.6, before plateauing
at 1. In this way, the putative effect of different stages of HD
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FIGURE 8 | Topological changes in a 500 neuron network across time as a results of iSTDP. (A) Connection fraction decreases. (B) Bidirectional connection fraction

decreases. (C) Loops of length 3 decrease in frequency.

progression on striatal network dynamics, and potentially motor
disturbances observed in HD in humans, are approximated and
predicted by our model.

Comparing different curves in Figure 4 (inset), the weight
of the added bidirectional connections is not monotonically
related to the probability of developing unhealthy dynamics.
In other words, while adding bidirectional connections to
almost all networks increases the risk of unhealthy network
dynamics, increasing the weight of the few added connections
may increase or decrease this risk. For the highest weight
(wij = 0.07), fluctuations in risk as the bidirectional
fraction increased from 0.1 TO 0.4 occurred due to a driving
influence on the network dynamics, by which the new weight
dominated more than the previously learned weights (Figure 4).
We also note that the lowest bidirectional fraction (0.001)
approximates what should occur naturally in microcircuits
undergoing structural plasticity, in which synapses are added
spontaneously and at a low weight. The measured risk
indicates that structural plasticity, in which new connections
are introduced randomly at a low rate, within a winnerless
network such as striatum should be harmless to the network
dynamics.

In real neural systems, feedback from the the activity of
the network onto iSTDP at synapses is ongoing, and can
therefore compensate for the response to the perturbations we
studied in real time. For example, we have already described
how a low rate of structural plasticity (for purposes not
explored in this paper) produces a minimal perturbation
and little risk of an unhealthy dynamic. Continued structural
plasticity without a regulating mechanism such as iSTDP,
however, could potentially increase the bidirectional fraction
leading to an unhealthy dynamic. Any absolute risk profile
associated with these perturbations should be assumed to

be magnified here by the absence of ongoing iSTDP. Since
the sensitivity to the various perturbations we studied would
likely be compensated by ongoing iSTDP, our predictions
regarding real biological risks in striatum to the various
perturbations relate only to their relative measures of
risk.

The age of onset of Huntington’s disease correlates with the
number of poly-Q repeats beyond 37, with repeat lengths of
37–39 typically leading to emergence of the disease phenotype
in a patient’s sixties, while repeat lengths of 45–50 resulting in
disease onset in a patient’s thirties. Rarer, very long repeat lengths
may cause phenotypic conversion in a patient’s twenties or even
as a juvenile. Typically, disease progression is modeled against
a normalized “CAP” score (Ross et al., 2014), representing a
patient’s poly-Q length multiplied by age. This regularization of
the main axis of disease progression is useful to compare across
patients, but may mask underlying and different progression
pathways that may be correlated to the range of Huntingtin
protein poly-Q expansions.

In our study we observed several perturbations leading to
an increased risk of a HD network phenotype in striatum,
namely continuous activity in a small population of MSNs
in an otherwise winnerless network. The dose-dependence
of this risk on bidirectional connectivity (Figure 5) and
on neuron silencing (Figure 3) presents an interesting
opportunity to model disease progression pathways differently
for different patient populations possessing different poly-Q
lengths.

If, for example, poly-Q length is associated with a dose-
dependent modification to plasticity between MSNs, as many
studies of HD model animals suggest, the rate of bidirectional
connectivity may be correlated with this change in the
Huntingtin protein’s structure. Neuron silencing in our model
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magnified the risk of further unhealthy dynamics, making it a
potential strong feed forward influence in disease progression.
Given these combined non-linearities, we predict that different
ranges of poly-Q lengths may correlate with differently shaped
non-linear disease progression functions (e.g., sigmoids with
different slopes, Figure 3). It will be interesting to examine
patient symptom progression such as motor dysfunction in those
most likely to be affected by an unhealthy striatal dynamics.

4. MATERIALS AND METHODS

The winnerless network is composed of spiking FN neurons
with the inhibitory interactions, described by first-order ordinary
differential equations (Rabinovich et al., 2001),

τ1
dxi(t)

dt
= f (xi(t))− yi(t)− zi(t)(xi(t)+ 1.5)+ ri + 2i, (1)

dyi(t)

dt
= xi(t)− 0.8yi(t)+ 0.7,

τ2
dzi(t)

dt
=

∑

j

wijG(xj(t))− zi(t), j ∈ [1, n],

where n is the number of the neurons, xi(t)
denotes the membrane potential, yi(t) is the recovery factor, zi(t)
is the synaptic conductance modeled by first-order kinetics, ri
is the cortical stimulus, the elements of which are uniformly
distributed within [0.2, 0.5],2i regulates the neuron’s excitability,
f (x) = x − 1

3x
3 represents the internal neuronal non-linearity,

G(x) is a heaviside step function which gates the synaptic
connection, wij denotes the inhibitory weights from neuron j to
i. We set τ1 = 0.1 and τ2 = 10.

Due to the burst and bout nature of winnerless unit firing,
neuronal plasticities are implemented in a discontinuousmanner,
with plastic changes implemented every 500 ms. To accomplish
this, we divided the neuronal activity into 500 ms bins. For
each bin, the neuron is considered active if a burst potential
(FN spike) is observed. For the different forms of plasticity
modeled in our study, this set of binary states (active/inactive),
one for each 500 ms bin, provides input to our plasticity
functions.

The intrinsic plasticity function regulates the neuron’s
excitability (Cao et al., 2014). To accomplish this, when a neuron
is active, excitability is gradually lowered, while an inactive
neuron’s excitability is gradually increased. Both the decrease and
increase are accomplished by shifting the threshold 2i using the
same rate of change parameter ηIP = 0.001.

The inhibitory spike-timing dependent plasticity (iSTDP)
function adjusts the synaptic weight wij logically to ensure
inhibition is balanced against other drives of neuronal activation,
such as the amount of cortical excitatory drive. To accomplish
this, our logical criteria state that if the presynaptic neuron is
active and, during the subsequent time bin, the postsynaptic
neuron is inactive (i.e., the inhibitory presynaptic activity was
“successful” in preventing the postsynaptic burst), wij is reduced

by an amount ηLTD = 0.001. If after this reduction, wij <

0, the weight is set to a small value (0.001). If, however, a
presynaptic neuron is active and in the subsequent time bin,
the postsynaptic neuron is also active (i.e., the inhibitory spike
was “unsuccessful” in preventing the the postsynaptic burst),
the inhibitory weight is increased by the amount ηLTP = 0.01.
Following these adjustments, weights were normalized, such that
sum of all incoming weights was 4.

Studying causes of the unhealthy network dynamics described
required a quantitative means to assign a given simulation to
either the healthy or unhealthy class of dynamics.We determined
this classification according to the following criterion. For each
neuron in the network, if a neuron is active within 80% ormore of
all bins, the entire network was labeled unhealthy. Those neurons
which met this criterion, were also deemed “responsible” for the
unhealthy dynamics.

The single random network used for all perturbation
experiments was evolved using iSTDP to create a healthy
dynamic, after first confirming that for different other randomly
generated networks, this method of initialization was robust.
Random selection of neurons for silencing and random
selection of neuron pairs for the introduction of a bidirectional
connections were accomplished using MATLAB’s random
number generator to select the appropriate index, reseeded for
each simulation using MATLAB’s internal reseeding function.
In all measures, fraction of neurons silenced is computed
by the number of neurons silenced divided by the total
number of neurons in the original network. Bidirectional
connection fraction is defined as the number of pairs of
neurons that have bidirectional connection divided by the
number of pairs of neurons that originally had a unidirectional
connection.
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