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Towards treatment of viral pathogenesis

Traditionally, antiviral drugs have been developed
by targeting specific enzymes encoded by viruses.
This not only explains the excellent specificity and
selectivity of many of the drugs but also explains
why we have no potent licensed broad spectrum
antiviral drugs because the targeted enzymes are
specific to virus families; (note that ribavirin,
although broad spectrum, is not a potent antiviral
drug and that cidofovir is not licensed for treat-
ment of the several viruses against which it has
activity). An exception is where viruses in two dif-
ferent families share a particular enzyme, such as
reverse transcriptase in the case of HIV and HBV,
so that drugs such as lamivudine have activity
against both viruses.

Now the spectre of natural epidemics, or even
bioterrorism, is demanding exploration of a differ-
ent approach. A rapid response is required to any
novel influenza virus which crosses into humans
and threatens to cause a pandemic. A rapid
response is also required for a whole host of rare
infections where there is no financial argument
for the development of compounds specific for
each infectious agent. Would it therefore be possi-
ble, rather than targeting each infection itself, to
target common components of the diseases trig-
gered by different viruses? In this way, diseases
would be seen as complications of infection and
treatment would be directed at downstream patho-
genetic effector mechanisms, which are shared by
viruses from distinct families. Several possible
examples present themselves.

First, the renin-angiotensin system, well known
for its contribution to hypertension, is also
involved in the diffuse alveolar damage known
as acute respiratory distress syndrome (ARDS)
which is a component of the respiratory disease
caused by SARS coronavirus and influenza
viruses. Angiotensin converting enzyme (ACE)
cleaves angiotensin I to angiotensin II which can
bind to alternative receptors in the lung which
either cause (AT1 receptor) or decrease (AT2
receptor) protein transudation, lung oedema and

tissue damage [1]. Angiotensin II can be cleaved
to a benign form through the action of ACE2.
Now, ACE2 is the receptor for SARS coronavirus
[2–4] as well as the more benign, recently
described, NL63 coronavirus [5]. A recent report
in Nature Medicine shows that SARS coronavirus
downregulates ACE2 [2] so probably exaggerat-
ing the ARDS response by decreasing inactivation
of angiotensin II by ACE 2. Furthermore, recom-
binant ACE2 reduced lung injury in mice with
diffuse alveolar damage [6] as did antagonists of
AT1 receptor [7]. Although there remain some
unresolved matters of detail [1], the therapeutic
implications are clear. While reappearance of
SARS appears unlikely, the imminent arrival of
H5N1 influenza virus offers the potential to eval-
uate, in randomised controlled trials, the efficacy
of already licensed anti-hypertensive AT1 recep-
tor inhibitors and/or recombinant ACE 2, as adju-
vant therapy to the neuraminidase inhibitors for
the unfortunate humans who become infected.
Second, despite being caused by diverse mem-

bers of the Filoviridae, Arenaviridae, Flaviviridae and
Bunyaviridae, many, but not all, of the various hae-
morrhagic fevers share elements of pathogenesis
[8,9]. The cardiovascular manifestations of hypovo-
laemia, hypotension, petechiae, mucosal haemor-
rhage and bleeding from venepuncture sites are
not due to blood loss itself but to various combina-
tions of disseminated intravascular coagulation
(DIC), thrombocytopenia and adrenal insuffi-
ciency. The bleeding time, prothrombin time and
activated partial thromboplastin time are fre-
quently prolonged, with decreased synthesis of
coagulation factors within the liver contributing
to this cause of multiple organ dysfunction. These
defects of clotting co-exist with defects of fibrinoly-
sis, thus consuming the labile coagulation factors
produced by the liver [10,11]. Over-expression of
tissue factor in monocytes/macrophages is another
component of pathogenesis [10]. The thrombocyto-
penia may result from interferon-induced arrest of
megakaryocyte maturation [12]. Disruption of the
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function of endothelial cells has also been sug-
gested as a contributor to the haemorrhagic dia-
thesis and Ebola virus glycoprotein can directly
damage endothelial cells [13]. However, current
evidence suggests that endothelial involvement
occurs late in the disease process as a pre-terminal
event [14,15]. The therapeutic implications are that
drugs able to interfere with the coagulopathy
induced by the haemorrhagic fever viruses might
have broad clinical applicability. For example,
DIC has, paradoxically, been treated in humans
with the anticoagulant heparin which ultimately
leads to cessation of the consumption of clotting
factors. There is evidence from animal studies
that interfering with clotting can improve the out-
come of haemorrhagic fevers and some human
anecdotes of the use of heparin [16]. Likewise,
recombinant nematode anticoagulant protein C2,
an 85aa protein which inhibits the tissue factor/
factor VIIa complex, blocks clotting and improves
survival when given to macaques infected with
Ebola virus [17].
Third, hepatitis B (HBV) and hepatitis C (HCV)

frequently establish chronic infections which lead,
over decades, to cirrhosis and liver failure with or
without hepatocellular carcinoma. A common
component of the pathogenesis of cirrhosis is
fibrosis, which leads to distortion and permanent
remodelling of liver architecture. This explains
the haemodynamic effects of cirrhosis which allow
toxins, absorbed from the gut, to reach the brain
causing hepatic encephalopathy. Fibrosis can be
defined as a wound maintaining chronic signals
for tissue repair [18]. TGF-� is the master switch
for profibrotic genes as shown by studies in radia-
tion induced fibrosis [18], while transgenic mice
with TGF-� under the control of the albumin pro-
moter showed hepatocyte specific expression of
TGF-� and produced extensive hepatic fibrosis
[19]. When carbon tetrachloride was used as a liver
toxin in normal mice and in TNF receptor knock-
outs, the acute infection was similar, but chronic
inflammation, TGF-� levels, and fibrosis were sig-
nificantly decreased in the knockout mice, impli-
cating TNF-� as also being profibrotic [20]. In
humans, transplant or HIV patients show acceler-
ated fibrosis so that immune control of viral repli-
cation must decrease liver inflammation.
However, immunity may act as a dual-edged
sword; studies of intrahepatic T-cells reveal that
virus-specific cells provide protection while non-

specific cells contribute to inflammation [21]. In
addition, when genes from the HCV genome
were linked to a reporter gene under the control
of the TGF-� promoter, the core protein produced
activation with evidence that the mitogen acti-
vated kinase pathway was involved in directly
stimulating fibrogenesis [22].
Irrespective of how TGF-� is stimulated, the

fibrosis is similar [23]. Stellate cells are profibrotic
when activated and transdifferentiate to become
myofibroblasts [23]. Matrix metalloproteinases
produced by fibroblasts and macrophages digest
the fibrotic extracellular matrix but are inhibited
by tissue inhibitor of metalloproteinase (TIMP).
Decreasing inflammation reduces TIMP, thus
allowing activated stellate cells to be removed
through apoptosis [24]. Regression of fibrosis can
occur even in cirrhotic livers, but the ultimate clin-
ical response is limited by the degree of matrix
cross linking produced by tissue transglutaminase
blocking the function of the metalloproteinases
[25]. This argues in favour of intervening thera-
peutically as soon as fibrosis is identified. Conven-
tionally, fibrosis is detected by histopathological
examination of liver biopsies, but quantification
of mRNA for profibrotic genes is also being evalu-
ated [23]. Less invasively, serial biochemical
assessments of blood are showing improved abil-
ity to identify liver fibrosis. For example, an inter-
national multicentre evaluation of a panel of 9
biomarkers, which measure various elements of
matrix synthesis or matrix degradation, had a
90% sensitivity and 92% negative predictive value
for identifying fibrosis on liver biopsies from over
1000 patients [26].
What are the implications for treatment? Fibro-

sis regresses when hepatitis C responds to inter-
feron/ribavirin treatment [27]. In addition,
novel drugs could be developed to interfere spe-
cifically with the development of fibrosis. The
multiple points at which profibrotic signals could
potentially be blocked by candidate compounds
are reviewed elsewhere [23,28] and a controlled
trial is planned for at least one compound, Cu–
Zn superoxide dismutase [29]. Initially, patients
who are non-responders to interferon will be
recruited, but the potential of studying combina-
tion interferon/anti-fibrotic therapy is obvious.
Thus, inhibition of fibrosis within the liver
has the potential to delay the progression to cir-
rhosis triggered by HBV and HCV, despite their
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classification as members of the distinct Hepadna-
viridae and Flaviviridae families.

PD Griffiths
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