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Abstract

Background: Dynamic aspects of gene regulatory networks are typically investigated by measuring system variables
at multiple time points. Current state-of-the-art computational approaches for reconstructing gene networks directly
build on such data, making a strong assumption that the system evolves in a synchronous fashion at fixed points in
time. However, nowadays omics data are being generated with increasing time course granularity. Thus, modellers
now have the possibility to represent the system as evolving in continuous time and to improve the models’
expressiveness.

Results: Continuous time Bayesian networks are proposed as a new approach for gene network reconstruction from
time course expression data. Their performance was compared to two state-of-the-art methods: dynamic Bayesian
networks and Granger causality analysis. On simulated data, the methods comparison was carried out for networks of
increasing size, for measurements taken at different time granularity densities and for measurements unevenly spaced
over time. Continuous time Bayesian networks outperformed the other methods in terms of the accuracy of
regulatory interactions learnt from data for all network sizes. Furthermore, their performance degraded smoothly as
the size of the network increased. Continuous time Bayesian networks were significantly better than dynamic
Bayesian networks for all time granularities tested and better than Granger causality for dense time series. Both
continuous time Bayesian networks and Granger causality performed robustly for unevenly spaced time series, with
no significant loss of performance compared to the evenly spaced case, while the same did not hold true for dynamic
Bayesian networks. The comparison included the IRMA experimental datasets which confirmed the effectiveness of
the proposed method. Continuous time Bayesian networks were then applied to elucidate the regulatory
mechanisms controlling murine T helper 17 (Th17) cell differentiation and were found to be effective in discovering
well-known regulatory mechanisms, as well as new plausible biological insights.

Conclusions: Continuous time Bayesian networks were effective on networks of both small and large size and were
particularly feasible when the measurements were not evenly distributed over time. Reconstruction of the murine
Th17 cell differentiation network using continuous time Bayesian networks revealed several autocrine loops,
suggesting that Th17 cells may be auto regulating their own differentiation process.
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Background
In response to internal and external stimuli, a cell mod-
ifies its transcriptional state through the activation of
multiple regulatory interactions that take place over time
and which include complex mechanisms such as regula-
tion chains, auto-regulations and feedback loops. Under-
standing gene regulatory networks (GRNs) is of extreme
relevance in molecular biology and represents an open
challenge for computational sciences. The task of uncov-
ering the underlying causal structure of these cellular
dynamics is referred to as gene network reconstruction or
(network) “reverse-engineering”.

Reconstruction of gene regulatory networks from time
course expression data is an active area of research [1,2].
In recent years, the granularity and length of time course
data made available by omics technologies has been con-
stantly increasing. This offers a chance for a deep study of
the dynamic evolution of regulatory networks [3] and calls
for computational approaches that can effectively exploit
the dynamic nature of data. In fact, most of the state-of-
the-art methodologies for gene network reconstruction
have been conceived before the advent of omic technolo-
gies and may not be always suitable for the new types and
magnitudes of data.

A number of approaches have been applied to the GRNs
reconstruction problem. Boolean networks [4] have been
widely applied but are now giving way to more sophis-
ticated approaches. Probabilistic graphical models such
as Bayesian Networks [5] were shown to be powerful
tools for solving the GRN reconstruction problem [6]
and they led to significant discoveries [7]. When richer
time course measurements started to be made available,
Dynamic Bayesian networks (DBNs) [8] gained more and
more relevance in the field, and today are largely applied
with many variations and proposed optimizations. Other
probabilistic approaches are state space models [9] and
probabilistic Boolean networks [10]; however it has been
shown that the latter are outperformed by DBNs for GRN
reconstruction problems [11]. Other approaches are ordi-
nary differential equations (ODEs) [12,13] which tend to
become infeasible as the size of the network increases.
Information-theoretic algorithms such as ARACNE [14]
led to interesting discoveries [15], as well as evolutionary
algorithms, which are reviewed in [16]. Finally, Granger
causality (GC) [17,18] is a robust method for analysing
time course data; since its early introduction it has been
successfully applied to a multitude of domains such as
economics, neuroscience and biology. Exhaustive reviews
of the existing network reconstruction approaches can be
found in [19-23].

Dynamic aspects of regulatory networks are investi-
gated by measuring the system variables at multiple time
points (e.g. through gene expression microarray or mRNA
sequencing). This approach is the result of technological

constraints of the experimental techniques which only
allow for measurements of “snapshots” of the system at
multiple time points. In this situation the risk of miss-
ing important pieces of information is high if the sample
rate is not adequately chosen or not fine enough (issue
known as temporal aggregation bias). While this issue
is currently unavoidable, when computationally analyz-
ing these time course datasets it can be advantageous to
separate the way the time course data is experimentally
obtained from the way the time is represented in the com-
putational model. Current state-of-the-art approaches
described above directly build on “snapshot-like” data,
making the strong assumption that the system under
investigation evolves in a synchronous fashion at fixed
points in time. Even when only discrete time data is
available, modeling the system as continuously evolving
over time represents a conceptually more correct/natural
approximation and improves model expressiveness [24].
Nowadays, the finely grained time course data made avail-
able by high throughput technologies make this contin-
uous time representation feasible. It is also relevant to
note that time course data are often unevenly spaced
(measurements are not taken at equal width intervals). In
such situations a continuous time model is preferable as
it makes the analysis independent of the data sampling
intervals.

In this paper continuous time Bayesian networks
(CTBNs) [25] are proposed as a new approach for GRN
reconstruction from time course data. In a CTBN vari-
ables can evolve continuously over time as a function of
a continuous time conditional Markov process while the
efficient factored state representation derives from the
theory of Bayesian networks. Such setting brings many
advantages to the description of the temporal aspect of
a system, some of them directly relevant to the GRN
reconstruction task. Firstly, the structural learning prob-
lem for CTBNs can be solved locally and in polynomial
time with respect to the dimension of the dataset once
the maximum number of regulators for each gene is set.
This feature suits regulatory networks well, which are sys-
tems characterized by a large number of variables (genes)
and where genes are typically regulated only by a lim-
ited number of other genes [26]. The second advantage
is that CTBNs can naturally handle variables evolving at
different time granularities. Gene networks are character-
ized by the presence of both regulatory interactions which
happen quickly, e.g. within minutes from a given trig-
gering event, as well as interactions which take place at
a slower pace, e.g. within hours or days. To reconstruct
such regulatory networks, one may want to integrate data
coming from experiments measuring genes whose state
evolve at different rates. In such a context, CTBNs is natu-
rally able to learn the overall causal network by combining
data coming from different time granularities. The third
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advantage is that once the network structure and param-
eters have been inferred, through inference CTBNs can
answer queries directly involving the quantification of the
temporal aspects such as “for how long does gene X have
to remain up-regulated to have an effect on the regulation
on gene Y?” and in presence of partial evidence such as
“What is the most probable state for gene X at time t given
that I observed that gene Y was up-regulated from time t -
α to t - β?”. With their graphical representation of causal
relations, CTBNs also provide an intuitive and meaningful
level of abstraction of dynamic regulatory process which
can help a molecular biologist to gain a better understand-
ing of the systems studied. Finally, CTBNs conserve all
of the advantages which are characteristic of probabilistic
graphical models and which make them suitable for the
analysis of biological networks [27].

The effectiveness of CTBNs for GRN reconstruction
is verified through a comparison with two state-of-the-
art models, namely DBNs and GC, in the case where no
a priori knowledge about the system is available. Both
DBNs and GC do not implement a direct representation of
time. DBNs are built on the observational model assump-
tion, with time slices representing the status of the system
at evenly spaced time points. Hence, if data samples are
not collected at fixed width intervals one must either
choose a time granularity equal to the smallest time inter-
val between measurements or bias the data by imposing
a uniform time granularity: in the first case the compu-
tational cost may increase dramatically while the second
solution can lead to biased results. Moreover, due to the
presence of intra-slice arcs for which the acyclicity con-
straint must be respected, learning DBNs in their general
formulation is a NP-hard problem. GC implements a type
of analysis based on an autoregressive model aimed to test
if knowledge about the past values of a variable can help
in predicting the future value of another variable. GC has
a great historical and current relevance when faced with
the task of inferring causal relations from time series data.
Its simplicity, flexibility and effectiveness made it broadly
applied. However, almost all GC tests assume that the
time intervals between measurements are fixed, risking
to obtain biased results if this assumption is not verified.
GC is designed to work on continuous valued variables,
while DBNs have been developed to analyze continuous
or discrete valued variables. A drawback of CTBNs is that
they have been developed only to analyze discrete val-
ued quantities. DBNs and GC were directly compared for
the reconstruction of gene networks in [28]: the authors
showed that when the length of the time course is smaller
than a given threshold, DBNs tend to outperform GC
while vice-versa when the length of the time course is
greater than a threshold. CTBNs theoretically overcome
the limitations associated with the discrete-time assump-
tions of both DBNs and GC. Therefore, we had reason to

believe that CTBNs would show advantages over DBNs
and GC when applied to the problem of gene network
reconstruction.

The analysis and comparisons performed here are based
on an extensive and robust set of numerical experiments
run on simulated time course data and include a test on
an experimental dataset as well. The study with simulated
data has been conducted on networks of 10, 20, 50 and 100
genes in order to investigate how the approaches perform
on systems of increasing size; the networks were extracted
from the known transcriptional networks of two different
organisms: E. coli and S. cerevisiae. To ensure robustness
the performance is not calculated on a single network
instance, but it is estimated by the average value computed
over a set of 10 randomly sampled network instances of
the same size.

We then investigated the methods’ performances with
respect to different time course granularities (11, 21 and
31 time points), while keeping the overall time duration
of the experiment fixed. Finally, we investigated how the
methods perform when the measurements are collected
at unevenly spaced time points. For a robust compari-
son we evaluated the performance on 10 different random
time point instances. Our comparative investigation also
included an experimental dataset as well: a 5 genes reg-
ulatory network synthetically constructed in the yeast S.
cerevisiae (IRMA network) [29] which provided rich time
course expression data and a gold standard for accurate
benchmarking. In the second part of this work, we applied
CTBNs for the reconstruction of the regulatory network
responsible for murine T helper 17 (Th17) cell differ-
entiation, testing their ability to confirm known regula-
tory interactions and to generate new plausible biological
insights.

Methods
Dynamic Bayesian networks
The definition of DBN has necessarily to start from the
definition of a Bayesian network. A Bayesian network
(BN) is a graphical model consisting of two components -
a causal graph (qualitative component) which encodes
conditional dependence and independence relationships
between the variables (nodes), and a set of conditional
probability tables (CPTs) (quantitative component) quan-
tifying how strong the influence is of one variable over the
others. More formally:

Definition 1. (Bayesian Network). [30] A BN consists of:

• A set of random variables (nodes) and a set of
oriented arcs connecting the random variables which
form a Direct Acyclic Graph (DAG).

• A finite set of mutually exclusive states associated
with each random variable.
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• For each random variable X with parents Y1, . . . , Yn a
CPT encoding the probability P = (X|Y1, . . . , Yn). In
other words, the CPT quantifies the effect of the
parents Y1, . . . , Yn on X. If X has no parents, X is
associated with an unconditional probability table,
that is P(X).

Exploiting the concept of conditional independence, a
BN compactly represents the joint probability distribu-
tion over a set of random variables by factorizing it into
a product of conditional distributions contained in the
CPTs associated with each node in the graph.

Learning a BN involves:

• Parameter learning: learning of the conditional
probability distributions.

• Structural learning: learning of the qualitative
component of the network, e.g. the relations of
conditional independence between variables.

• The goal of the learning phase is the finding of the
structure and the parameters which best describe the
initial data.

Bayesian networks are a static model, since variables
cannot change their state over time. Dynamic Bayesian
networks (DBNs) [8] extend BNs by introducing a tem-
poral dimension to represent dynamic systems. DBNs
represent the state of the system through “snapshots” or
‘time slices” of the system at each time point, where each
“time slice” is a traditional BN.

In a DBN a random variable Xi can assume different
values, one for each time point t: a “trajectory” is an
assignment of values to each variable X(t)

i for each time t.
A number of assumptions are made in order to keep this
representation tractable [31].

The first assumption is discretization of time into time
slices where system’s measurements are assumed to be
collected at regularly spaced time intervals. According to
this assumption we can reparametrize the joint probabil-
ity distribution (using the chain rule) in the following way:

P
(

X(0), . . . , X(t)
)

=
T∏

t=1
P

(
X(t+1)|X(0:t)

)
(1)

From equation (1) it is clear how the distribution over
the trajectories is calculated as the product of the condi-
tional distributions of the variables in each time slice given
their values in the preceding ones.

The second assumption is the Markovian assumption
that the state of X at the future time t + 1 is independent
from its past given its present, i.e, for every t ≥ 0,

(
X(t+1)⊥X(0:(t−1))|X(t)

)
(2)

Equation (1) can now be represented compactly as:

P
(

X(0), . . . , X(t)
)

=
T∏

t=1
P

(
X(t+1)|X(t)

)
(3)

We can now formally define a DBN.

Definition 2. (Dynamic Bayesian network) [31]. A
dynamic Bayesian network is a pair (B0, B→). B0 is
Bayesian network over a set of random variables X1 . . . Xn
and represents the initial distribution over the states. B→
is a 2-timeslice Bayesian network (2-TBNs) which provides
a transition model from the timeslice t to timeslice t+1. For
any desired time span T ≥ 0, the distribution over X0:T is
defined as an “unrolled” Bayesian network, where for any
i = 1 . . . n:

• the structure and conditional probability distributions
of X(0)

i are the same for those for Xi in B0.
• the structure and conditional probability distribution

of X(t)
i for t > 0 are the same as those for X′

i in B→

Is it therefore clear that a DBN represents the state of a
system at different time points, but does not implement an
explicit representation of time. A DBN for example cannot
be queried to obtain a distribution over when a specific
event takes place. In a DBN random variables can also
be continuous. In this case, we would have a conditional
probability function (generally Gaussian) and parameters
such as mean and variance associated with each node.

One of the most popular approaches for structural
learning of a dynamic Bayesian network is to find the
graph structure which maximizes the Bayesian informa-
tion criterion (BIC) [32], which for a DBN is defined as
follows:

log P (D|θ) − d
2

log N (4)

where θ are the estimated parameters of the structure,
d is the number of parameters and N is dimensionality
of the data. In equation 4 log P(D|θ) describes how well
the graph predicts the data while (d/2) · logN keeps the
model’s complexity under control by penalizing the addi-
tion of edges to the graph. As can be noted, the BIC does
not depend on any a priori information. In their general
formulation DBNs must respect the acyclicity constraint
due to the presence of intra-slice arcs. In order to compare
them with CTBNs, learning with DBNs was performed
using the REVEAL [33] algorithm, which learns the parent
set of each node independently (only forward inter-slice
arcs are calculated). Moreover, in this work DBNs are
considered in their discrete data version only, as CTBNs
cannot handle continuous input data. A survey of the
structural learning algorithms for general DBNs can be
found in [34].
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Continuous time Bayesian networks
CTBNs cannot be considered a direct extension of
DBNs, but a direct comparison naturally arises and helps
to better understand the differences between the two
approaches. DBNs model dynamic systems without repre-
senting time explicitly. They discretize time to represent
a dynamic system through several time slices. In [25] the
authors pointed out that “since DBNs slice time into fixed
increments, one must always propagate the joint distribu-
tion over the variables at the same rate”. Therefore, if the
system consists of processes which evolve at different time
granularities and/or the observations are unevenly spaced
in time, the inference process may become computation-
ally intractable. CTBNs overcome the limitations of DBNs
by explicitly representing temporal dynamics and thus
allow us to recover the probability distribution over time
when specific events occur. CTBNs have been used to
discover intrusion in computers [35], to analyse the relia-
bility of dynamic systems [36], for learning social network
dynamics [37], to model cardiogenic heart failure [38] and
high frequency trading [39]. However, CTBNs have never
been applied to the analysis of molecular data (a prelimi-
nary version of this paper appeared in the proceedings of
ISBRA 2014 [40]).

A continuous time Bayesian network (CTBN) is a prob-
abilistic graphical model, whose nodes are associated with
random variables and whose state evolves in continuous
time. The evolution of each variable is conditioned on the
state of its parents in the graph associated with the CTBN
model. A CTBN consists of two main components: i) an
initial probability distribution and ii) the dynamics which
rule the evolution over time of the probability distribution
associated with the CTBN.

Definition 3. (Continuous time Bayesian network). [25].
Let X be a set of random variables X1, X2, . . . , XN . Each Xn
has a finite domain of values Val(Xn) = {x1, x2, . . . , xI(n)}.
A continuous time Bayesian network B over X consists of
two components: the first is an initial distribution P0

X, spec-
ified as a Bayesian network B over X. The second is a
continuous transition model, specified as:

• a directed (possibly cyclic) graph G whose nodes are
X1, X2, . . . , XN ; ParG(Xn), often abbreviated Un,
denotes the parent set of Xn in G.

• a conditional intensity matrix, QParG(Xn)

Xn
, for each

variable Xn ∈ X.

Given the random variable Xn, the conditional inten-
sity matrix (CIM) QPar(Xn)

Xn
= QXn|Un consists of a set of

intensity matrices, one intensity matrix

QXn|u =
⎡
⎢⎣

−qx1|u qx1x2|u . qx1xI(n)|u
qx2x1|u −qx2|u . qx2xI(n)|u

. . . .
qxI(n)x1|u qxI(n)x2|u . −qxI(n)|u

⎤
⎥⎦ ,

for each instantiation u of the parents Un of node Xn,
where qxi|u = ∑

xj �=xi

qxixj|u is the rate of leaving state xi for

a specific instantiation u of Un, while qxixj|u is the rate of
arrival to state xj from state xi for a specific instantiation
u of Un. Matrix QXn|Un can equivalently be summarized
by using two types of parameters, qxi|u which is associated
with each state xi of the variable Xn when its parents are
set to u, and θxixj|u = qxixj |u

qxi |u
which represents the proba-

bility of transitioning from state xi to state xj, when it is
known that the transition occurs at a given instant in time
and parents Un are set to u.

Learning the structure of a CTBN from a data set D
consists of finding the structure G which maximizes the
Bayesian score [41]:

scoreB (G : D) = ln P (D|G) + ln P(G). (5)

Efficiency of the search algorithm for finding the
optimal structure G∗ is significantly increased if we
assume structure modularity and parameter modular-
ity. The prior over the network structure P(G) sat-
isfies the structure modularity property if P(G) =∏N

n=1 P (Par (Xn) = ParG (Xn)), while the prior over
parameters satisfies the parameter modularity property, if
for any pair of structures G and G’ such that ParG(X) =
ParG′(X) we have that P(qX, θX|G) = P(qX, θX|G′). In
[41] the authors combined parameter modularity, param-
eter independence, local parameter independence and
assumed a Dirichlet prior over θ parameters and a beta
prior over q parameters to obtain the following expression
of the Bayesian score for a CTBN B:

scoreB (G : D) =
N∑

n=1
FamScore (Xn, ParG(Xn) : D)

(6)

where
FamScore (Xn, ParG(Xn) : D) =

ln P (Par (Xn) = ParG (Xn)) +
ln MargLq (Xn, Un : D)+

ln MargLθ (Xn, Un : D) .

(7)

According to [41] MargLq(Xn, Un : D) can be written as
follows:

∏
u

∏
x

�
(
αx|u + M[ x|u] +1

)
τ

αx|u+1
x|u

�
(
αx|u + 1

) (
τx|u + T[ x|u]

)αx|u+M[x|u]+1 (8)

while MargLθ (Xn, Un : D) can be written as follows:

∏
u

∏
x

�
(
αx|u

)
�

(
αx|u + M[ x|u]

) ×
∏
x′ �=x

�
(
αxx′|u + M

[
x, x′|u])

�
(
αxx′|u

) .

(9)
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where � is the Gamma function, M[ x, x′|u] represents the
count of transitions from state x to state x′ for the node Xn
when the state of its parents Un is set to u, while T[ x|u]
is the time spent in state x by the variable Xn when the
state of its parents Un is set to u. Furthermore, M[ x|u] =∑

x′ �=x M[ x, x′|u], αx|u and τx|u are hyperparameters over
the CTBN’s q parameters while αxx′|u are hyperparameters
over the CTBN’s θ parameters. However, Par(G) does not
grow with the amount of data. Therefore, the significant
terms of FamScore(Xn, ParG(Xn) : D) are MargLq(Xn, Un :
D) and MargLθ (Xn, Un : D). Thus, given a dataset D,
the optimal CTBN’s structure is selected by solving the
following problem:

max
G∈G

N∑
n=1

ln MargLq(Xn, Un : D)

+ ln MargLθ (Xn, Un : D),

(10)

where G = {Un ∈ X : n = 1, . . . , N} represents all pos-
sible choices of parent set Un for each node Xn, n =
1, . . . , N . Optimization problem (10) is over the space G
of possible CTBN structures, which is significantly sim-
pler than that of BNs and general DBNs. Indeed, learning
optimal BN’s structure is NP-hard even when the maxi-
mum number of parents for each node is limited, while the
same does not hold true in the context of CTBNs. In fact,
in CTBN all edges are across time and represent the effect
of the current value of one variable to the next value of
other variables. Therefore, no acyclicity constraints arise,
and it is possible to optimize the parent set Un for each
variable Xn, n = 1, . . . , N , independently. In [41] the
authors proved that if the maximum number of parents is
restricted to k, then learning the optimal CTBN’s struc-
ture is polynomial in the number of nodes N . However,
we usually do not want to exhaustively enumerate all pos-
sible parent sets Un for each variable Xn, n = 1, . . . , N .
In this case we resort to greedy hill-climbing search by
using operators that add/delete edges to the CTBN struc-
ture G. It is worthwhile to mention that family scores of
different variables do not interact. Therefore, the greedy
hill-climbing search on CTBNs can be performed sepa-
rately on each variable Xn, thus making the overall search
process much more efficient than on BNs and general
DBNs.

CTBNs for gene network reconstruction
In a CTBN the amount of time that a gene spends in a
given state before switching to a different state plays a
central role. This is a key point since the duration of a reg-
ulatory interaction is known to be relevant. For example,
Th17 cells tend to became pathogenic when the produc-
tion of Il17a remains protracted for a long time. When
cells become pathogenic, the regulatory interactions are
different compared to the non-pathogenic phenotype.

From this it is clear how the duration of a certain regu-
latory event can trigger different reactions. The learned
structure of a CTBN provides an intuitive and meaningful
level of abstraction of the evolution of the regulatory pro-
cess over time. For instance, a transcription factor which
works as permanent hub during the whole process will
most likely be at the top of the inferred network hierarchy
and is characterized by a high degree of outgoing arcs. On
the other hand, transcription factors which act only dur-
ing some time intervals will likely appear at an interme-
diate level with both incoming and outgoing connections.
Intuitively, genes which are only regulated (i.e. cytokines)
will be leaf nodes with only incoming arcs. In the learned
network arcs are directed but do not encode information
about positive or negative regulation. A direct arc between
two genes implies a direct causal relation (regulation)
between the pair. Longer paths between two nodes suggest
that the influence of one gene on the other pass through a
regulatory chain involving intermediate genes. Even if not
displayed in the networks, auto regulation interactions,
interaction directions (positive/negative) and relative tim-
ings are encoded within the conditional intensity matrices
(CIMs) associated with each node. Let’s consider the fol-
lowing example consisting of a small network of 3 genes
and shown in Figure 1. The three variables are binary; for
example the gene A can be in either the status a0 = nor-
mally expressed or a1 = over expressed. The set of CIMs
below describes the full dynamic behavior of the system.
Specifically, each CIM describes the expected times of
transition of a node conditioned to the current state of
its parents. Here, we assume the time unit is equal to
one minute. If the gene C is normally expressed and both
its parents A and B are currently over expressed, then
its transient behavior is described by the CIM QC|a1,b1 ,
which is telling us that the gene C is expected to switch

A

C B
Figure 1 A simple gene network.
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from normally expressed to over expressed in 1/0.7 = 1.43
minutes.

QA|c0 =
[ −0.1 0.1

0.2 −0.2

]
QA|c1 =

[ −0.5 0.5
0.1 −0.1

]

QB|a0 =
[ −0.1 0.1

0.2 −0.2

]
QB|a1 =

[ −0.5 0.5
0.1 −0.1

]

QC|a0,b0 =
[ −0.1 0.1

0.2 −0.2

]
QC|a0,b1 =

[ −0.5 0.5
0.1 −0.1

]

QC|a1,b0 =
[ −0.5 0.5

0.1 −0.1

]
QC|a1,b1 =

[ −0.7 0.7
0.1 −0.1

]

From this CIM QC|a1,b1 , the probability distribution
over the possible states of C can be propagated forward to
any continuous point in time, by calculating:

exp
((

QC|a1,b1

) · �t
)

(11)

Where exp is the matrix exponential and �t is the dif-
ference between the last known state for the parents of C
and the time t for which we want to calculate the probabil-
ity distribution of C. CIMs are learned together with the
graph structure and represent the basis for the inference
task, which is not directly investigated in this work.

Granger causality
The Granger causality test was firstly conceived for the
economic domain [17] and is based on a linear vector
autoregressive model (VAR). The intuitive idea behind it
is that an effect never happens before its cause and trans-
lated into the GRN domain it can be explained as follows.
Suppose we have a sequence of time measurements for the
genes X and Y . X is said to Granger cause Y if the autore-
gressive model of Y is more accurate when based on the
past values of both X and Y rather than Y alone. The accu-
racy of the prediction is measured through the variance of
the prediction error. Let us suppose that we have bivari-
ate linear autoregressive model for the variables X and Y
defined as:

X(t) =
p∑

j=1
Axx,jX(t − j) +

p∑
j=1

Axy,jY (t − j) + εx(t) (12)

Y (t) =
p∑

j=1
Ayx,jX(t − j) +

p∑
j=1

Ayy,jY (t − j) + εy(t) (13)

Where p indicates the model’s order, e.g. the number
of past observations of the time series to incorporate in
the autoregressive model. The impact that each one of
these observations has on the predicted values of X and
Y is contained in the matrix A. ε represents the predic-
tion error for the time series (residuals). Considering the
first equation, for Y to Granger cause X the variance of εx
must be smaller than the variance of εx when the Y term
is removed from the equation. This original GC formula-
tion is meant to uncover causal relationships among two

variables; in multivariate systems a pairwise analysis of
this kind applied to all possible pairs of variables is limited
in the type of causal relationships that can be uncovered.
For this reason, this concept was extended [18,42] to the
analysis of multivariate data by introducing the concept
of conditional GC. Suppose we have a system with three
variables, X, Y and Z. Intuitively, the multivariate linear
autoregressive model for the variable X can be written as:

X(t) =
p∑

j=1
Axx,jX(t − j) +

p∑
j=1

Axy,jY (t − j)

+
p∑

j=1
Axz,jZ(t − j) + εx(t)

(14)

In the equation above, Y Granger causes X if the vari-
ance εx is smaller than what it would be when the Y term
is removed from the equation. VAR models have the unde-
niable advantage of being well-understood and widely
applied in many disciplines such as the neurosciences,
economics and biology. In this work GC, like in almost
the totality of its applications and theoretical investiga-
tions, is considered in its formulation which assumes the
observations to be taken at regular and fixed time inter-
vals. As underlined in [43], the Granger causality test can
be sensitive to the sampling frequency of the time series,
with the risk of the results of the test being biased. Many
theoretical efforts have been made to extend this formula-
tion to enable it to directly accommodate time. However,
most of the contributions remain theoretical and not
much investigation has been performed about adequate
test statistics [44]. GC is usually applied in its linear ver-
sion. However, gene expression data is known to contain
non-linear features. Many extensions of GC to the non-
linear case have been proposed. Hiemstra and Jones [45]
investigated a nonparametric test for both linear and non-
linear Granger causality in the economic domain (HJ test),
resulting in their method being used in a number of sub-
sequent works. However, Diks and Panchenko [46] more
recently showed that the HJ test has a tendency to detect
spurious non-linear GC. Among other alternatives pro-
posed to deal with nonlinearities are kernel methods [47],
with many kernels being proposed and the Gaussian being
one of the most common ones. Non-linear extensions of
GC have to deal with the issue of overfitting, which makes
the statistical interpretation of the results less clear [48].
Moreover, it is known that different nonlinear transfor-
mations lead to different results of the GC test [49]. A
recent study [50] showed that for Gaussian distributed
variables, non-linear GC approaches cannot account for
any extra information in the data because a stationary
Gaussian autoregressive process is necessarily linear. For
these reasons, in this study GC is considered in its linear
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approximation, which has been found to work well on
systems characterized by a large number of variables.

Results
Simulated data
Simulated datasets are important for benchmarking the
accuracy of gene regulatory network reconstruction as the
true network structure is known a priori, which is seldom
the case with real biological datasets. In this section sim-
ulated time course datasets have been used to benchmark
the accuracy network reconstruction with GC, DBNs and
CTBNs.

The datasets were generated by the same methodology
as was used in the DREAM4 competition [51], extract-
ing subnetworks from the known in vivo gene networks of
E. coli [52] and S. Cerevisiae. Subnetworks were extracted
by randomly choosing a seed node and progressively
adding nodes with the greedy neighbor selection pro-
cedure, which maximizes the modularity and is able to
preserve the functional building blocks of the full network
[53].

To ensure robustness, our studies are not based on one
single network instance, but are always based on a set of
10 different networks instances. The reconstruction algo-
rithms are tested under several conditions: for increasing
number of nodes in the network (network size), for dif-
ferent time points densities in the dataset (time course

granularity) and for datasets with time measurements not
evenly but unevenly distributed (randomly spaced). The
accuracy of network reconstruction was measured using
the F1 measure for binary classification which is defined
as:

F1 = 2 · precision · recall
precision + recall

where precision = true positive arcs
true positive arcs + false positive arcs and

recall = true positive arcs
true positive arcs + false negative arcs .

In statistics the recall is referred to as sensitivity and the
precision as positive predicted value.

Benchmarking for increasing network size
The first step of our analysis on simulated data consisted
in studying how the three methods perform when faced
with the task of reconstructing gene networks of differ-
ent sizes. From the known in vivo gene regulatory network
structures of E. coli [52] and S. cerevisiae we randomly
extracted sets of 10 networks consisting of 10, 20, 50 and
100 genes for both organisms. For the sake of brevity,
the sets of 10 networks consisting of 10, 20, 50 and 100
genes will be referred to as 10-NETs, 20-NETs, 50-NETs
and 100-NETs respectively. Statistical analysis of the com-
plexity of the extracted network structures is provided in
Figure 2.

Figure 2 Degree distribution (in-degree plus out-degree) of nodes in E. coli (red) and S. cerevisiae (blue) for 10-NETs, 20-NETs, 50-NETs
and 100-NETs. Each distribution is obtained from the data of all 10 sampled network instances. X-axis has been shifted up for better visibility. The
distribution shows the presence of both large and intermediate hubs indicating that the networks are non-trivial.
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The generated dataset consists of 21 evenly spaced time
points. This dataset aims to simulate the amount of data
that high-throughput techniques will soon generate while
maintaining a realistic time course magnitude: expression
microarray experiments repeated with these many time
points are today possible. On the other hand, the dataset
is still unrealistically rich in terms of number of per-
turbations and replicates. Such a comprehensive dataset
is however necessary to fairly compare the analyzed
methods.

Prior to learning, we performed an empirical opti-
mization of the model parameters for the three meth-
ods; for CTBNs and DBNs this included experimen-
tally establishing the optimum number of discretization

levels. More details can be found at the end of this
document.

Results on E. coli dataset are summarized in Table 1
(top), where aggregate F1 values are calculated as the
arithmetic mean over the sets of 10 sampled network
instances, and Figure 3A, where the individual F1 val-
ues obtained by the methods on the 10 sampled network
instances are represented through boxplots. For 50-NETs
and 100-NETs learning with DBNs became computation-
ally intractable; therefore, the corresponding results are
not available. It can be concluded that the reconstructed
network structures were the most accurate for CTBNs
which outperformed DBNs and GC for 10-NETs, 20-
NETs, 50-NETs and 100-NETs in terms of the mean F1

Table 1 Performance comparison of CTBNs, DBNs and GC on simulated data for different network sizes

Method NETs size Mean precision Mean recall Mean F1 F1 SEM

GC

10 0.46 0.68 0.54 6.40E-02

20 0.40 0.70 0.49 4.33E-02

50 0.24 0.82 0.37 3.23E-02

100 0.16 0.82 0.27 2.13E-02

DBNs
10 0.90 0.29 0.41 6.90E-02

20 0.55 0.42 0.47 3.66E-02

CTBNs

10 0.66 0.58 0.61 5.13E-02

20 0.72 0.48 0.57 2.79E-02

50 0.53 0.57 0.54 1.95E-02

100 0.45 0.51 0.48 2.28E-02

Random

10 0.16 0.55 0.24 2.12E-02

20 0.11 0.51 0.18 1.68E-02

50 0.03 0.49 0.06 4.35E-03

100 0.02 0.50 0.04 1.15E-03

Method NETs size Mean precision Mean recall Mean F1 F1 SEM

GC

10 0.42 0.75 0.52 4.18E-02

20 0.28 0.81 0.41 2.32E-02

50 0.22 0.78 0.34 1.58E-02

100 0.14 0.80 0.23 5.24E-03

DBNs
10 0.62 0.53 0.56 3.40E-02

20 0.60 0.57 0.58 4.31E-02

CTBNs

10 0.95 0.58 0.69 6.08E-02

20 0.72 0.70 0.70 3.86E-02

50 0.64 0.56 0.59 3.84E-02

100 0.56 0.51 0.53 2.65E-02

Random

10 0.18 0.59 0.27 2.10E-02

20 0.07 0.49 0.12 1.27E-02

50 0.05 0.50 0.08 4.88E-03

100 0.02 0.50 0.05 2.63E-03

Organism E.coli (top) and S. cerevisiae (bottom). Aggregate F1 , precision and recall values are calculated as the arithmetic mean over the sets of 10 sampled network
instances, the standard error of the F1 mean (SEM) is also shown. See also Figure 3.



Acerbi et al. BMC Bioinformatics 2014, 15:387 Page 10 of 27
http://www.biomedcentral.com/1471-2105/15/387

Figure 3 Performance comparison of CTBNs, DBNs and GC on simulated data for different network sizes. Organism E.coli (A) and S. cerevisiae
(B). Boxplots represents the F1 values obtained on the 10 sampled network instances of each size, which are also plotted individually as circles.

values. A paired t-test confirmed that the F1 values for
CTBNs were significantly higher than for DBNs and GC
in all tested network sizes (p-value cutoff 0.05). More-
over CTBNs were robust with respect to the increasing
network size: their performance smoothly degraded as
the number of nodes of the network increased. Indeed,
the difference between mean F1 values for CTBNs and
GC increased progressively with the network’s size. GC
outperformed DBNs on 10-NETs (0.13 mean F1 gap)
while on 20-NETs GC were only marginally more accu-
rate than DBNs with a limited mean F1 difference
of 0.02.

Results on S. cerevisiae dataset shown in Table 1 (bot-
tom) and Figure 3B reaffirmed the same conclusions even
more emphatically. CTBNs outperformed DBNs and GC
for all network sizes, with the mean F1 difference between
CTBNs and GC increasing from 0.17 for 10-NETs up to

0.29 for 100-NETs. Interestingly, on this dataset DBNs
outperformed GC (+0.04 mean F1 on 10-Nets, +0.17
mean F1 on 20-NETs). The paired t-test confirmed the
significant superiority of CTBNs in all cases over both
DBNs and GC. DBNs were significantly better than GC on
20-NETs.

As a negative test we also simulated a random recon-
struction method which starts with an empty graph and
randomly adds edges to it. As expected, this random algo-
rithm had low precision while its recall stabilized around
0.50. As shown in Table 1 the performances of the three
methods were always better than the random algorithm,
confirming their effectiveness.

Benchmarking for increasing time course granularity
The second set of tests are conceived to compare the net-
work reconstruction algorithms with time course datasets
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of increasing time granularity. Although the overall
duration of the simulated experiment was kept fixed, mea-
surements were collected at increasing frequencies (11,
21 and 31) of evenly spaced time points. As in the previ-
ous section, datasets were generated for both E. coli and
S. cerevisiae. The network size was kept constant at 20
nodes, as this was seen in the previous section to rep-
resent a good trade-off between network complexity and
computational cost.

Results on E. coli are shown in Table 2 (top) and
Figure 4A. Looking at the aggregate F1 values calcu-
lated as the arithmetic average over the sets of 10 net-
work instances (Table 2 (top)) it can be observed that
GC appeared to perform consistently, achieving mean
F1 values of 0.50, 0.49 and 0.47 for granularities 11, 21
and 31 respectively, whereas both DBNs and CTBNs
achieved their peak performance for a time granularity
of 21. DBNs performed poorly (mean F1 0.26) for a low
time granularity of 11, best for granularity 21 (mean F1
0.47) and achieved a slightly lower accuracy for gran-
ularity 31 (mean F1 0.40). CTBNs achieved a slightly
lower accuracy than GC for time granularity 11 (mean
F1 0.47), achieved the overall best performance for time
granularity 21 (mean F1 0.57) and had a slightly lower
accuracy for granularity 31 (mean F1 0.54). A paired t-
test over the F1 values concluded that CTBNs performed

significantly better than DBNs for all time course granu-
larities (p-value) and also better than GC (p-value) with
the exception of time courses of granularity 11. Finally, GC
proved to be significantly better than DBNs for granular-
ity 11, while no statistically significant difference emerged
between the two for higher time granularities. The three
methods share the trend of reconstruction accuracy ini-
tially increasing from time granularity 11 to 21, reaching
a peak at 21 and then decreasing for granularity 31: this
behavior could be explained by the fact that the opti-
mal number of discretization levels has been empirically
established for time granularity 21 data and subsequently
applied to time granularity 11 and 31 data. The discretiza-
tion level applied to granularity 31 data may be therefore
suboptimal.

Results on S. cerevisiae are shown in Table 2 (bottom)
and Figure 4B. GC performed well on time courses of
granularity 11, achieving a mean F1 of 0.57; however, the
drop of effectiveness for granularities 21 and 31 was clear
with mean F1 values of 0.41 and 0.42 respectively. CTBNs
were always the most accurate achieving mean F1 values
of 0.60, 0.70 and 0.60 for the three time course densities.
Again, DBNs performed poorly for granularity 11 (mean
F1 0.32, with a -0.28 gap from CTBNs), while better for
more finely grained data (0.58 and 0.48 mean F1). With
the exception of granularity 11, DBNs outperformed GC,

Table 2 Performance comparison of CTBNs, DBNs and GC on simulated data for different time granularities

Method Time course granularity Mean precision Mean recall Mean F1 F1 SEM

GC

11 0.43 0.61 0.50 2.88E-02

21 0.40 0.70 0.49 3.35E-02

31 0.35 0.75 0.47 3.80E-02

DBNs

11 0.84 0.15 0.26 4.33E-02

21 0.55 0.42 0.47 3.66E-02

31 0.68 0.30 0.40 2.79E-02

CTBNs

11 0.70 0.36 0.47 2.05E-02

21 0.72 0.48 0.57 5.54E-02

31 0.59 0.51 0.54 3.23E-02

Method Time course granularity Mean precision Mean recall Mean F1 F1 SEM

GC

11 0.47 0.76 0.57 4.05E-02

21 0.28 0.81 0.41 5.78E-02

31 0.29 0.80 0.42 3.56E-02

DBNs

11 0.76 0.21 0.32 2.32E-02

21 0.60 0.57 0.58 4.31E-02

31 0.63 0.40 0.48 3.86E-02

CTBNs

11 0.60 0.53 0.60 3.25E-02

21 0.72 0.70 0.70 6.03E-02

31 0.56 0.67 0.60 3.48E-02

Tests refer to 20NETs, organism E.coli (top) and S. cerevisiae (bottom). Aggregate F1 , precision and recall values are calculated as the arithmetic mean over the sets of
10 sampled network instances, the standard error of the F1 mean (SEM) is also shown. See also Figure 4.
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Figure 4 Performance comparison of CTBNs, DBNs and GC on simulated data for different time granularities on 20-NETs, organism E. coli
(A) and S. cerevisiae (B). The set of 20NETs does not change, what changes is the granularity of the time course data generated from the networks.
Boxplots represents the F1 values obtained on the 10 sampled network instances of each size, which are also plotted individually as circles.

which is the opposite of what we observed for E. coli
datasets. A paired t-test concluded CTBNs significantly
outperformed DBNs for all time granularities and GC for
granularities 21 and 31. Interestingly, it is possible to prove
the superiority of GC over DBNs for granularity 11, while
vice-versa for granularity 21.

It has to be noted that the search for the optimal value
of the hyperparameters α and τ has been performed only
for the dataset associated with a granularity value equal
to 21. These optimal values were subsequently applied to
datasets associated with granularity values equal to 11 and
31. While this choice makes the performances achieved
by CTBNs suboptimal, it also ensures robustness, that

is, it implicitly protects from potential overfitting of the
hyperparameters.

Benchmarking for unevenly spaced time measurements
The third step of our analysis on simulated data con-
sisted in evaluating the performance of the three meth-
ods changes when the time measurement are not evenly
spaced over time but randomly sampled. This is a typical
scenario in wet-lab experiments.

For the purpose of the test, 10 different random time
point instances were sampled and used to generate 10
unevenly distributed time course datasets; tests were run
on the set of 20-NETs of the organism E. coli. We repeated
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the numerical experiments for time courses of granular-
ity of 11, 21 and 31 (keeping the 10 random time point
instances consistent).

Results are shown in Figure 5 and are consistent for all
the three time course granularities (panels A, B, C). For
all the network instances, the minimum F1 value achieved
by DBNs among the 10 unevenly (randomly) sampled
time point instances is always smaller than the minimum
F1 value achieved by CTBNs on the same 10 unevenly
sampled time point instances. Furthermore, the maxi-
mum F1 value achieved by DBNs on the same samples is
always smaller than the maximum achieved by CTBNs, for
all network instances and time course granularities. The
result is clear, showing that CTBNs are always preferable
to DBNs when the time course data is not evenly spaced.
CTBNs and GC showed comparable ranges of F1 values
(for all granularities), with no clear trend in either of the
methods to perform better. GC was better than DBN with
respect to both minimum and maximum F1 values (for all

granularities), with only a few cases for which DBNs was
preferable.

Synthetic gene network in S. cerevisiae
Due to the current lack of reliable large scale gold stan-
dards, in vivo evaluation is a critical point for GRN recon-
struction methods which often rely on less quantifiable
evaluations such as comparison with existing literature
and/or information available in public databases. The
benchmarking of CTBNs was performed on a small but
certified network: a network consisting of five genes syn-
thetically constructed in the yeast S. cerevisiae [29] and
shown in Figure 6 was used. This network, despite its
small size, contains a representative set of interconnec-
tions including regulator chains and feedback loops. The
dynamic behavior of the network was studied by shifting
cells from glucose to galactose and vice-versa, and collect-
ing samples every 20 min up to 280 min for the switch-on
and every 10 min up to 190 min for the switch-off. 4

Figure 5 Performance comparison of CTBNs, DBNs and GC on simulated data for unevenly spaced time points on 20NETs, organism E.
coli, for different time course granularities. Each boxplot represents the F1 values achieved by the method over the set of 10 unevenly sampled
time points instances; the sampled time points are consistent among the three methods. Results are shown separately for each of the 10 network
instances of the 20NETs set.
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Figure 6 Performance comparison on S. cerevisiae experimental data. True network (A), network inferred by GC (B), DBNs (C), CTBNs (D).
Green arcs represent true positives, red arcs false positives and dotted lines false negatives.

and 5 biological replicates were analyzed respectively,
gene expression levels were measured through RT-PCR.
The authors also made available some interventional data
obtained by over expressing each of the five genes in
cells grown in either glucose or galactose; however, since
only steady-state data was generated for these pertur-
bational experiments, the benchmark was performed on
time course unperturbed data alone. On the S. cerevisiae
experimental dataset the results were coherent with those
obtained on simulated datasets: CTBNs outperformed
DBNs and GC. A graphical representation of the true net-
work compared with the ones inferred by DBNs, GC and
CTBNs is provided in Figure 6. CTBNs achieved both the
maximum value of true positives (5) and the minimum
value of false negatives (3) while all the three methods
made exactly one false positive prediction each.

Elucidating the regulatory network responsible for murine
Th17 differentiation using CTBNs
Gene regulatory networks have been described exten-
sively in the regulation of immune response, but more
importantly in the control of inflammation. Inflamma-
tion is a multifaceted cellular response critical for the

protection of the host against different types of injuries
such as infections. However, the dark side of the inflam-
matory process is represented by tissue damage since
inflammatory responses react against self-tissues. Precise
regulation of gene expression is extremely important in
the context of inflammation for host survival under its
own immune activation. In particular, gene regulation of
inflammatory cellular differentiation appears essential for
fine-tuning of the entire inflammatory response. At the
onset of chronic inflammation, Th17 cellular response
is of particular interest. Th17 cells produce well-known
soluble molecules such as IL17A, IL17F and IL21 which
are important for neutrophil recruitment, infection clear-
ance and delivery of antimicrobial peptides. Fine tuning of
the Th17 cell differentiation program appears to be piv-
otal for proper control of over exuberant inflammatory
processes in the vertebrate immune system. While some
key regulators of the Th17 differentiation are known, a
large portion of the regulatory mechanisms controlling
this process remains unclear.

Naive T cells (or Th0) can be polarized to differenti-
ate into one of the T helper phenotypes (such as Th1,
Th2, or Th17) by exposing them to various polarizing
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cytokines. The external signals through cytokines drive
different regulatory pathways within the cells, and gene
regulatory networks involving master regulator transcrip-
tion genes dictate the final differentiation status. Th0
cells can be programmed to undergo differentiation into
the Th17 phenotype by activating transcription factors
such as Stat3 and RORγ t through soluble molecules such
as IL6, TGFβ , IL1β . Furthermore, stabilization of the
Th17 phenotype requires the activation of IL23R receptor
through the innate cytokine IL23 [54].

Here, structure learning of CTBNs is applied to eluci-
date the gene regulatory network controlling differentia-
tion of murine naive Th0 to the Th17 phenotype. Data for
this study is derived from a recently published time course
microarray experiment [55] resulting in transcriptional
profiles obtained during murine Th17 differentiation. The
microarray measurements were taken with Th0 cells cul-
tured in the presence or absence of polarizing cytokines
IL6 and TGFβ1 in two biological replicates. Measure-
ments were taken at 18 time points unevenly spanned
over the first 72 hours following induction. Furthermore,
separate measurements were taken involving perturbation
with the stabilizing innate cytokine IL23 50h from the
start of polarization. This dataset is one of the longest
and most finely grained time course data ever generated
in the T helper differentiation context, with a total of 58
gene expression microarray samples. In order to keep the
results interpretable, the analysis was restricted to the rep-
resentative set of 275 genes individuated by the authors
[55] as reflecting as many aspects of the differentiation
program as possible. The bioinformatic analysis of raw
data and the data discretization process allowed to fur-
ther narrow down this set to 186 genes (excluding genes
whose fold-changes levels were constant among all the
time points). More details about the pre-processing steps
can be found at the end of this document. Since the goal
of this study is to investigate mechanisms which are char-
acteristic of the IL6+TGFβ1 type and not those regulatory
fluctuations which take place independently of the dif-
ferentiation process (in both Th0 and IL6+TGFβ1 cells),
fold-change values of IL6+TGFβ1 versus Th0 were used
as input data for the learning algorithm.

Two separate networks have been learned: the first
one using unperturbed time course series (from fold
changes IL6+TGFβ1 vs. Th0), the second one using the
time course series with the addition of the Il23 cytokine
into the culture (from fold changes IL6+TGFβ1+IL23 vs.
Th0+IL23). In order to evaluate which mechanisms are
relevant to the stabilization of the phenotype, we looked
at differences among the two networks. If the perturba-
tions would have been the type of gene knock-outs and/or
gene knock downs, the correct way to proceed would have
been to learn one single network from both the unper-
turbed and perturbed data. Here, the perturbation is of a

stabilizing nature, e.g. it enhances differentiation process
through the activation of additional regulatory mecha-
nisms and the inhibition of others. For simplicity, from
now on we will refer to the first network as IL6+TGFβ1
network and to the second one as IL23 network.

While a few attempts have been recently made to eluci-
date the molecular mechanisms of the Th17 stabilization
following the addition of IL23 [56,57], the validation of the
network dynamic is still open to debate. Consequently, the
interpretation and validation of results is more difficult on
the IL23 network than on IL6+TGFβ1. For this reason, a
large part of the discussion and quantitative validation of
the results refers to the IL6+TGFβ1 network, while only
main differences and specific interesting mechanisms that
emerged in the IL23 network are discussed.

Network validation in absence of gold-standard
CTBNs bring to light the interactions happening in
between densely sampled time slices, resulting in a
detailed description of all the regulatory steps taking place
over the 72 hours differentiation process. Due to the lack
of biological analysis with this level of detail, validation
through the literature gives evidence that the inferred net-
work is non trivial. Indeed, literature gives evidence that
gene interactions are often derived from studies based
on static or coarsely grained measurements. As a conse-
quence, what emerges from such studies can be incom-
plete since the known set of interactions may represent
only a subset of all the interactions that are taking place.
For this reason, a validation approach that tries to enu-
merate how many predicted direct interaction are known
is not a reliable one. On the other hand, it is known that
when considering networks encoding temporal interac-
tions like in the case of CTBNs, the graph can allow cycles.
In this situation the presence of an incorrectly inferred arc
at some point of the network (something likely to happen)
creates a large number of additional paths connecting
genes. For this reason, a validation approach which tries to
find a pathway between genes known to be related could
lead to biased results, where incorrectly inferred arcs
paradoxically lead to a greater number of true positives. It
is clear that the benchmarking of CTBNs in the absence of
a gold-standard cannot be performed in a purely quanti-
tative way, but it has to be complemented with a reasoned
biological interpretation of the network.

Quantitative validation of the IL6+TGFβ1 inferred network
The IL6+TGFβ1 network inferred from data is shown
in Figure 7. The graph is characterized by 186 nodes
connected by 365 arcs. For 67 of these arcs solid lit-
erature evidence has been found. Only direct known
relations were considered, while known relations sepa-
rated by one or more unknown intermediary nodes were
not included in these statistics. A list of these known
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Figure 7 IL6+TGFβ1 inferred network. Node sizes are proportional to the number of outgoing arcs.

interactions together with related PubMed IDs is provided
in Table 3. Among the listed arcs, 14 appeared in the
predicted IL6+TGFβ1 network with a reverse orientation
compared to the literature. This is a well known prob-
lem with reconstructing networks referred to as model
non-identifiability, which arises when given the data, it is
not possible to recover (learn) a unique set of parame-
ters. Instead, in such situations we have multiple sets of
parameters settings that are indistinguishable given the
data [31]. The non-identifiability of a model can be due

to data scarcity (and/or lack of interventional data) or the
presence of hidden variables. Given that we are examining
a subset of genes, both hypotheses are possible. For these
reasons, the inverted interactions were considered valid.

An additional assessment of the validity of the inferred
network was performed by looking at the leaf nodes
(nodes with no children) and the root nodes (nodes with
no parents).

In the temporal network semantic leaf nodes are asso-
ciated with final products (cytokines in our case). In the
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Table 3 IL6+TGFβ1 network validated interactions

Source Target PubMed ID

Il17a Klrd1 21911461

Il17a Sgk1 23467085

Il17a Cd24 19830744

Il21 Rorc 19682929

Stat3 Foxo1 22761423

Irf4 Il21 24430438

Il2rb Runx1 21292764

Fasl Rora 19119024

Il10 Ccl20 11244051

Il10 Il7r 18401464

Il10 Rbpj 22933629

Il10 Il24 24130510

Il10 Batf 22992523

Il10 Csf2 24222115

Prkca Il10 9278292

Stat3 Foxo1 22761423

Foxo1 Smox 22761592

Jun Maf 22001828

Il4ra Il4 11918534

Il4ra Cd30l 11918534

Il4ra Tgfb3 8601720

Il4ra Gata3 18792410

Hif1a Il2ra 23183047

Stat5a Cxcr5 22318729

Stat5a Irf8 18342552

Tnfsf11 Prdm1 20133620

Ahr Tnfsf11 18396263

Egr2 Spry1 21826097

Stat4 Tgfbr1 19808254

Il21 Irf1 19617351

Gata3 Nkg7 19805038

Cebpb Jak3 12794134

Ifng Cd74 11009094

Tnfsf8 Nampt 11719441

Csf2 Inhba 12456957

Ccl4 Ccr5 11278962

Bcl3 Irf1 16306601

Bcl3 Id2 22580608

Ncf1 Ifng 15557642

Prdm1 Tnfsf11 20133620

Prkca Csf2 15661932

Tnfsf11 Fas 12171919

Table 3 IL6+TGFβ1 network validated interactions
(Continued)

Rora Mt1h 17666523

Cd80 Cd9 9686645

Elk3 Hif1a 20427288

Foxo1 Timp2 18277385

Bcl3 Il2rb 20235165

Bcl3 Il6st 12969979

Casp1 Tgfbr1 10096572

Ifng Il7r 18250439

Il2rb Stat3 9192639

Bcl6 Il2rb 19307668

Ccl20 Il10 20720211

Rora Stat4 12912921 *

Lamp2 Foxo1 16492665 *

Il2rb Bcl6 19307668 *

Gap43 Jun 22920255 *

Ctla2b Stat4 15153495 *

Bcl3 Bcl6 23589612 *

Bcl2l11 Jun 11301023 *

Bcl2l11 Lsp1 23446150 *

Cd9 Spp1 24412090 *

Cxcr5 Cxcl10 22349504 *

Ccl4 Irf8 23853600 *

Ccr8 Stat3 20064451 *

Stat4 Tgfbr1 15879087 *

Sult2b1 Jun 18277385 *

List of direct interactions in the IL6+TGFβ1 network for which the
literature evidence has been found, together with related PubMed IDs.

inferred IL6+TGFβ1 network 13 of the 90 leaf nodes
represented soluble immune mediators, which usually
characterize the cells at final steps of their differentia-
tion processes. That was the case of the cytokines Il4,
Il9, Il24, Il1rn, Clcf1 and Tgfb3, cytokine signal trans-
ducer Il6st which is shared by many cytokines, cytokine
receptors such as Il12rb2, Il1r1, chemokines such as Ccl1,
and chemokine receptors such as Ccr5, Ccr6, Cxcr4.
Among leaf nodes we also found clusters of differentia-
tions such as Cd2, Cd24, Cd274, Cd86 which represent
a clear marker of the final steps in acquisition of the
terminal Th17 phenotype. Furthermore, apoptosis mark-
ers like Casp3, Fas, Daxx, Vav3, Trat1, Tnfrsf25, Tgm2,
Sertad1 together with programmed cell death 1 ligand 2
(Pdcd1lg2) which follow T cell activation and exhaustion
were correctly associated with leaf nodes. Transcription
factor regulators of late phases of the differentiation pro-
cesses such as for Tbet, Runx2, Runx1, Rorc, Maf, all
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responsible for the final steps of the definition of the Th17
cell phenotype, are correctly placed at the end of the chain.
Finally, Sgk1 is a recently discovered marker identifying
the Th17 pathogenic phenotype, acquired by T cell at the
late phases of the T cell polarization [58]; in our Sgk1
network is correctly represented as a leaf node.

Conversely, root nodes are associated with molecules
at the beginning of the cascade. Two root nodes were
observed at the top of the network structure and both
appear to be correctly identified so with their role in ini-
tiating the differentiation cascade. One of them is Filamin
A (Flna), an actin binding and signal mediator scaffolding
protein, required for T cell activation in response to TCR
activation, also known as “signal1” [59]. The same applies
to Bcl3, which is known to be activated in response to ini-
tial TCR activation [60]. The role of Bcl3 is discussed more
in detail in the next paragraphs, as new interesting insight
related to its role emerged from the network.

Topological properties and hub nodes of the IL6+TGFβ1
inferred network
From a topological point of view, the sparsity of the
learned causal structure (186 nodes, 365 arcs) is appre-
ciable. From a theoretical point of view, given that the
number of variables under study is several order of mag-
nitude greater than the data sample size, network sparsity
is something that reconstruction methods seek [61]. A
network densely connected may indicate that the learn-
ing algorithm is failing to identify true causal relations.
Furthermore, sparsity has been shown to be a feature of
regulatory networks [26,62]. Even considering that the
number of potential arcs was limited by the maximum
number of parents allowed per node, which was set to 5,
the learned network with 365 interactions (arcs) connect-
ing 186 nodes remains way below this threshold. Another
topological feature of the network which emerged is the
presence of a few hub nodes regulating a vast number
of other genes together and signs of naturally occurring
modularity. Both of these features are well-known char-
acteristics of gene networks. Interestingly, modularity has
been shown to be a characteristic of static gene net-
works, but so far modularity has not been studied as a
characteristic of networks evolving over time.

A major hub node in the network is Il4ra, the recep-
tor of the cytokine Il4, shown in Figure 8A. Its role in
Th2 differentiation is well known, but more interestingly,
its preeminent role in regulating Th17 differentiation is a
subject of current investigation. Importantly, an inherited
polymorphism of Il4ra seems to control the ability of the
human immune system to regulate the magnitude of Il17
production [63]. Thus, a central role of Il4ra in negative
regulation of Th17 differentiation is expected [64].

Other major hub nodes include Cathepsin W (Ctsw),
Bcl3, Zfp281, Il4Ra, Prickle1 and Tnfsf11. Among these

Bcl3 and Tnfsf11 are known to have a significant influ-
ence on Th17 differentiation. Bcl3, a member of IkB family
of proteins, is an essential negative regulator of Toll-
like receptor-induced responses and inhibitor of NFkB.
Reduced Bcl3 expression has been associated with Crohn’s
disease [65] which is known to be mediated by Th17
chronic expansion. Bcl3 has an inhibitory role in reg-
ulating IL17 release [66]. Indeed, Bcl3-/- mice develop
autoimmune diabetes with increased Th17 type cytokine
expression. Therefore, Bcl3 is correctly inferred as hub
node. Tnfsf11 alias Rankl is known to be a marker of
pathogenic Th17 cells in inflammation, and therefore its
status as hub in the network is correct [67]. Ctsw is a
member of the peptidase C1 family, a cysteine lysosomal
proteinase that plays a crucial role in the turnover of intra-
cellular proteins as antigens and has a specific function
in the mechanism or regulation of CD8+ T-cell cytolytic
activity [68]. However, its role in Th17 differentiation is
presently unknown. Similarly, the role of Zfp281, a zinc
finger transcription factor required in embryonic stems
cells for pluripotency [69], and Prickle1, a nuclear recep-
tor which is a negative regulator of Wnt/beta-catenin
signaling pathway, in Th17 differentiation is yet unknown.

Impact of IL23 addition on the differentiation process
As mentioned, by looking at differences between IL6+
TGFβ1 and IL23 networks we can analyse the impact that
the addition of the IL23 cytokine has on the differentia-
tion process. Significant differences emerged between the
two networks (IL23 network shown in Figure 9). 165 arcs
that were present in the IL6+TGFβ1 network disappeared
in the IL23 network, while 173 new arcs appeared, con-
firming the widespread impact that IL23 treatment has on
the regulatory interactions taking place in the cells [55].

It is interesting to observe how the hub nodes in the
IL6+TGFβ1 network are affected by IL23 perturbation.
Considering that the IL23 perturbation represents a pos-
itive impulse in Th17 differentiation, it is expected that
the IL23 network will not contain hubs that represent a
negative regulation of the Th17 differentiation process.
This is the case with Il4ra, which loses all its outgoing
connections and its status as a hub in the IL23 network.
On the other hand, IL23 network is expected to have
hub nodes which positively regulate the Th17 phenotype.
Some newly introduced hubs in the IL23 network include
Il12rb2 and Il2rb, both of which are well known for being
positive regulators and hubs of the phenomenon [70-72].
Il2rb is known to strongly influence the regulation of Th17
differentiation depending on the levels of Il2 [73]. Another
hub node, Spp1 [74], is particularly interesting because
while Spp1 is known to increase Th17 differentiation, its
direct relation with IL23 is still unproven.

Some specific well-known regulatory mechanisms
emerged both in the IL6+TGFβ1 and IL23 networks,



Acerbi et al. BMC Bioinformatics 2014, 15:387 Page 19 of 27
http://www.biomedcentral.com/1471-2105/15/387

Figure 8 Some selected interesting known and novel regulatory mechanisms that emerged from the inferred IL6+TGFβ1 and IL23
networks. Panels A-F show the selected regulatory interactions which are explained in the discussion section. Light-blue arcs are specific to the
IL6+TGFβ1 network, while pink arcs are specific to the IL23 network. Black arcs are present in both networks.

together with the new biological insights which can be
derived from them, are discussed in the next section.

Discussion
Comparative study
For the first time continuous time Bayesian networks
(CTBNs) were applied to the gene regulatory network
reconstruction task from gene expression time course
data. A comparison with two state-of-the-art methods, i.e.
dynamic Bayesian networks (DBNs) and Granger causal-
ity analysis (GC), was conducted. The performance of
the methods was analyzed in three different directions:
for networks of increasing size, for time course data
of increasing granularity and for evenly versus unevenly
spaced time course data.

CTBNs achieved the highest value of the F1 measure
for all network sizes and both E. coli and S. cerevisiae.
Furthermore, they suffered from a limited and smooth
loss of performance with respect to the networks of
increasing size. This suggests that if applied to networks
larger than those analyzed in this paper, CTBNs can still
effectively help to uncover the causal structure of the
regulatory network. These aspects make CTBNs a good
candidate for solving the reconstruction of regulatory net-
works, which are systems characterized by a large number
of variables.

CTBNs were the best performing approach when
the time course granularity was sufficiently fine (21
and 31 time points in our experiments), while for
coarser granularities (11 time points) CTBNs and GC
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Figure 9 IL23 inferred network. Node sizes are proportional to the number of outgoing arcs.

performed analogously. DBNs performed poorly in the
granularity 11 case, showing a big gap from CTBNs
and GC on both organisms. The result of CTBNs for
granularity 11 was unexpected: probabilistic approaches

tend to require a big amount of data in order to be
effective.

Thanks to their explicit representation of the time,
CTBNs were always preferable to DBNs when the time
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points were not evenly spaced: the worst case in terms
of F1 value that one can obtain when learning a network
from unevenly sampled data (over 10 random samples)
is was always better than the worst case obtainable when
learning with DBNs. The same favorable situation for
CTBNs applied to the best cases. Considerations made for
CTBNs over DBNs applies to GC over DBNs as well, while
CTBNs and GC showed a similar behavior in response to
unevenly spaced data. The poor performance of DBNs on
unevenly spaced data is due to the observational model
assumption on which their representation of the time is
built: variables are assumed to evolve at fixed increments;
when that is not the case, time points are treated as evenly
spaced with consequent introduction of incorrect infor-
mation in the model. On the other hand, the good perfor-
mance of GC on unevenly spaced time course data is sur-
prising; in order to understand the exact reason why GC
does not suffer significantly further studies are required.
This feature of both CTBNs and GC which emerged is
particularly relevant to the gene network reconstruction
problem. Indeed, time course data are rarely collected at
regular time intervals, while the most common scenario
is to have time measurements more densely sampled dur-
ing some specific phases of the studied phenomenon and
coarsely sampled during other phases.

In accordance with what was shown in [28], DBNs
and GC were found to perform similarly. In particular, it
was not possible to determine if one of these methods
was definitively better than the other: for simulated data,
GC performed better than DBNs on E. coli (Figure 3A)
while on S. cerevisiae DBNs performed better than GC
(Figure 3B). However, when tested on coarsely grained
time course data DBNs showed a net loss of performances
on both E. coli and S. cerevisiae, remaining way below the
level of accuracy achieved by GC. This result is in contrast
with [28] where the authors showed that when the length
of the time course is smaller than a given threshold, DBNs
outperform GC while vice-versa when the length of the
time course is greater than the threshold. However, their
test was performed on a 5 genes network, and the authors
themselves stated that the results of the test could have
changed on networks of larger dimensions.

The simulated time course dataset that we used for the
analysis is at present unrealistically rich in terms of the
number of perturbations and replicates. However, con-
tinuous improvement in experimental technologies will
soon allow researchers to reach this level in the near
future. When tested on a real experimental dataset of
limited dimension and with no interventional data avail-
able, CTBNs still achieved the best performance. This
result suggest that CTBNs can perform well also on
datasets of small dimensions and that they could be suit-
able for the reconstruction of other types of biological
networks as well, such as signaling cascades, where direct

manipulation and measurement of the individual mem-
bers of the cascade are difficult.

Biological insights emerged from application of CTBNs to
Th17 cell differentiation
As follows we discuss some well-known regulatory mech-
anisms emerged both in the IL6+TGFβ1 and IL23 net-
works together with the new biological insights which
can be derived from them. For specific direct interactions
which are said to be known in the literature, the corre-
sponding reference is omitted in the text but included in
Table 3.

Negative regulator Il4ra is suppressed upon IL23 addition
As described previously, IL4RA, which mediates a nega-
tive role on the Th17 differentiation process, loses its role
as a hub node upon IL23 perturbation (Figure 8A). Thus
the negative role exerted by Il4 on Th17 differentiation is
suppressed. On the other hand, Bcl3 and Spp1 are seen
to target Il4ra in the IL23 network. Since Bcl3 and Spp1
are known to regulate both activation and proliferation of
T cells and Th17 differentiation, the interaction between
Bcl3, Spp1 and IL23 as suggested by the model is highly
plausible.

IL23 activates an autocrine loop involving Nfil3
Nfil3 is a basic leucin zipper transcription factor, known
to regulate NK cell differentiation processes and devel-
opment of NK progenitors [75]. Recently, it has been
found that Nfil3 is required to control the Th17 pheno-
type by binding the Rorc promoter gene and repressing its
expression [76]. Nfil3 is regulated by the circadian clock,
which determines the Th17 ability to release Il17a. The
interruption of the normal circadian clock reduces Nfil3
expression leading to a disregulated Th17 with higher
Il17a expression and occurrence of various inflammatory
diseases [76]. The perturbation with IL23 leads interest-
ingly to a change in the Nfil3 gene interactions: in the
IL6+TGFβ1 network Nfil3 appear regulated by Prickle1
(Figure 8B), whose function is still unknown for Th17
differentiation. In the IL23 network, Nfil3 is regulated
by Il17. If confirmed, this would further underline the
importance of the activation, by IL23 cytokine, of an
autocrine loop mediated by Il17. This mechanism is cur-
rently unknown and in light of this result may be worth a
biological validation.

The role of Il10 in Th17 cell differentiation
IL10 is a very well known cytokine, which represents
a strong immunoregulator of inflammatory processes.
Thus, it is not surprising that in this regulatory network
Il10 represents one of the minor hubs. In particular, the
network highlights an interaction/loop already extensively
described in the literature between Ccl20 ligand and Il10
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(Figure 8C). Il10 is known to be highly expressed in Th17
cells; furthermore the interaction with Batf is known as
well. A correlation between levels of Il10 and Il7r is also
described in T cells. Interestingly, IL23 perturbation here
shows that IL23 eliminates this last interaction favoring
a new one between Il10 and lipopolysaccharide-induced
TNF-alpha factor (Litaf ), a DNA-binding protein that
mediates the TNF-alpha expression binding to the pro-
moter of the TNF-alpha gene. Litaf may be then impor-
tant to delineate the Th17 pathogenic phenotype, which is
achieved thanks to the addition of IL23 in the culture and
regulated by Il10 during Th17 differentiation (Figure 8C).
Furthermore, in the IL23 network the loop between Ccl20
and Il10 does not appear anymore, which is worth investi-
gating to better understand the function of Ccl20 in Th17
differentiation.

Bcl3 may play a key role in balancing positive and negative
markers of Th17 cells
The IL6+TGFβ1 network shows a central role of Bcl3. An
interesting and potentially novel interaction between Bcl3
and Id3, a transcription factor involved in T cell devel-
opment, is suggested (Figure 7D). Bcl3 is also suggested
to interact with Bcl6 and Il2rb. All of these genes are
known to be negative regulators of Th17 differentiation
[77,78]. In particular, the transcriptional repressor protein
Bcl6 regulates T cell differentiation by repressing Th17
responses and promoting follicular Th cell responses [77].
Interestingly, Bcl3, which is also suggested to interacts
with Il4ra upon IL23 addition, appears to interacts in nor-
mal conditions (IL6+TGFβ1 network) also with Irf4, Sgk1,
Il17ra and Id2, which are all known as being phenotypic
markers of Th17 pathogenic cells [79]. This may indi-
cate a crucial role of Bcl3 in Th17 differentiation, since
it appears to be able to interact and probably affect the
balance between positive and negative markers of Th17
cells (Figure 8D). Also, Bcl3 is revealed by the network as
an important regulator of the final Th17 program. Bcl3
indeed regulates a chain in the network upon IL23 addi-
tion (Figure 8F). The interaction between Il21 and Rorc
is extensively known, as well as the interaction between
Irf4 and Il21. The whole chain seems then to be regu-
lated by Bcl3, which as shown before (Figure 8D) is able to
regulate other Th17 differetiation markers. Finally, Rorc is
correctly placed at the end of the chain, as it represents a
marker of final differentiated Th17 cells.

Prdm1 and Tnfsf11 regulation loop may play a key role in
balancing Th17 pathogenic and non pathogenic cells
The IL6+TGFβ1 network highlights a known interaction
between Tnfsf11 alias Rankl and Prdm1, alias Blimp1 (B
lymphocyte-induced maturation protein-1) (Figure 8E).
Tnfsf11 is known to be a marker of pathogenic Th17 cells
in inflammation whereas Prdm1 binds to the Il17a gene

and acts as repressor of Il17a expression [80]. The net-
work highlights a loop between Tnfsf11 and Prdm1 genes,
suggesting an inter-regulation between the two. Interest-
ingly, this interaction is known in other cell types, but
not in Th17. The negative feedback loop between the
inhibitory transcription factor Prdm1 and Tnfsf11 may
indicate a balancing mechanism between pathogenic and
non pathogenic Th17 cells with Prdm1 acting as a neg-
ative regulator of pathogenic Th17 cells characterized
by high expression of Tnfsf11. Furthermore, the regula-
tory chain between Il17ra, Prdm1 and Tnfsf11 suggests a
negative regulation of Prdm1 on Tnfsf11 in response to
Il17a. This is significant considering that Il4ra is also hub,
which may be an indicator of the importance of cytokine
autocrine loops in Th17 differentiation. In other words,
this suggests that as in many others systems, Th17 cells
autoregulate their differentiation. Finally, according to the
prediction, Tnfsf11 might represent a master regulator
of phenotipic markers of Th17 differentiated phenotype
since the network underlines its regulation on Tbx21, Ahr,
Fas, and Sgk1. This last consideration is worth further
investigation, since the regulator of finally differentiated
pathogenic Th17 cells is not known.

Il17a directly regulates Salt-sensing kinase Sgk1
One of the genes which appears to be controlled by
Tnfsf11 is the salt-sensing kinase Sgk1 (Figure 8E), which
has recently been described as a marker of pathogenic
Th17 cells [55]. It has been shown recently that environ-
mental factors promote and stabilize Th17 cells and affect
their pathogenic role in autoimmune diseases. Sodium
chloride has recently been found to drive experimen-
tal autoimmune encephalomyelitis (EAE) disease by the
induction of pathogenic Th17, thus linking sodium salt
intake as an environmental factor influencing the devel-
opment of autoimmune diseases. In the model proposed
in [55], Sgk1 has been found to be an essential node
downstream Il23 signaling in Th17 differentiation and sta-
bilization. Our network seems to confirm the relevance of
Sgk1 node as it appears to be controlled exclusively and
directly by three main hubs (Bcl3, Tnfsf11, Prickle1) and
Il17a in the IL6+TGFβ1 as well as in the IL23 network. If
experimentally confirmed, this may represent novel infor-
mation: Sgk1 would be independent of Il23 signaling, but
dependent on Il17 itself (Figure 8E). Interestingly, the reg-
ulation of Sgk1 also seems to occur through the receptor
of Il17 (Il17ra), through the regulatory chain involving
Prdm1 and Tnfsf11. This is aligned with the theory that
Sgk1 depends on Il17 and may suggest once again the
existence of an autocrine loop in the regulation of Sgk1.

Conclusions and future works
The encouraging results achieved in this investigation
suggest that structural learning of CTBNs should be
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considered as a new reliable gene network reconstruction
method when time course expression data is available;
results indicate that CTBNs would be particularly suit-
able for the learning of large networks and when the time
measurements are not collected at evenly spaced time
points. Those are key features which gives a great advan-
tage to CTBNs over the existing state-of-the-art methods.
However, CTBNs necessarily require the input data to be
discretized. If the data is noisy, as it is usually the case
in the biological domain, the discretization can help to
reduce the amount of noise. On the other hand, the dis-
cretization may also lead to loss of relevant information.
Researchers should keep that in mind when using CTBNs.

CTBNs helped elucidate the regulatory network respon-
sible for murine Th17 differentiation, confirming well-
known regulatory interactions and main regulators, as
well as formulating new biological hyphothesis. Apart
from a number of new potential regulators, the network
inferred by CTBNs highlighted the presence of several
autocrine loops through which Th17 could be autoreg-
ulating their own differentiation process. The relevance
of this insight comes from the fact that, while self-
regulating mechanisms are known to exist in other cell
lines, their existence in Th17 has not emerged yet. Wet-lab
experiments aimed at validating this hypothesis are now
required.

CTBNs assume the duration of the events to be a
random variable that is exponentially distributed. The
exponential distribution has the characteristics of being
“memoryless”. CTBNs can be extended to the modeling of
systems with memory by introducing hidden nodes/states
and representing the system through a mixture of expo-
nential distributions. The application of this extension to
the gene network domain is relevant and remains to be
explored. Another key aspect to be investigated is the
inference task, which would allow for a deeper analysis
of the dynamic aspect of the reconstructed gene network,
such as answering queries directly involving time. In many
biological processes the structure of the causal relation-
ships among variables can vary over time (i.e. there can be
different gene networks regulating different phases of the
cell cycle). Hererogeneous DBNs [81-83] model the pres-
ence of changepoints; that is, specific times when both the
structure and the parameters of the network can vary. The
area of non-homogeneous processes with CTBNs is yet to
be explored.

Details of numerical experiments
Simulated data generation
The simulated dataset was generated with the help of the
Gene Net Weaver tool [53,84] which has previously been
used to generate datasets for network inference challenges
of the international Dialogue for Reverse Engineering
Assessments and Methods (DREAM) competition [51].

The tool allows the extraction of subnetworks from
known in vivo gene regulatory network structures of
E. coli [52] and S. cerevisiae [85] endowing them with
dynamic models of regulation. When extracting the 10-
NETs and 20-NETs, no constraint on the minimum num-
ber of regulators (i.e. nodes that have at least one outgoing
link in the full network) to include was specified, while
for the 50-NETs and 100-NETs this parameter was set
to 10 and 20 respectively. This choice on 50-NETs and
100-NETs was made to avoid the generation of networks
characterized by a large number of leaf nodes and thus
with a too simple structure. No constraint was set on the
maximum number of parents allowed per node.

Given each extracted network structure, Gene Net
Weaver combines ordinary and stochastic differential
equations to generate the corresponding dataset. Pertur-
bations are applied to the first half of the time series and
removed from the second part, showing how the system
reacts and then goes back to the wild type state. The multi-
plicative constant of the white noise term in the stochastic
differential equations was set to 0.05 as in DREAM4.
Finally, all expression values were normalized by divid-
ing them by the maximum mRNA concentration of the
related dataset.

Parameter optimization and data discretization for
simulated data
Prior to running the tests on simulated data, an empir-
ical optimization of the model parameters for the three
methods was run; for CTBNs and DBNs this included
experimentally establishing the optimum number of dis-
cretization levels. Here all the steps aimed to individu-
ate the best configurations for the three methods here
described. It is important to notice that with the term
optimization we do not refer to the optimization of an
objective function, but to a set of independent numerical
experiments where the structural learning is run for differ-
ent values of the model’s parameters. The optimal param-
eters are considered the ones for which the algorithms
achieve the highest values of the F1 measure.

For CTBNs, optimization experiments were run on
the 10-NETs and 20-NETs, where the required learn-
ing time was still feasible. The optimal parameter values
found were subsequently applied to the 50-NETs and 100-
NETs. Because CTBNs cannot handle continuous data;
a discretization was applied. Discretization of continu-
ous data is known to be a critical task: too few bins
(levels) of discretization lead to a loss of important infor-
mation, while when increasing the number of bins it is
known that the required amount of data and computa-
tional resources increases as well. To find the optimal
number of bins, tests with data discretized into 3, 4, 5,
6 and 7 equal width bins were performed. Best perfor-
mances were obtained when using 5 equal width bins. It
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Figure 10 Impact of different numbers of discretization bins on
the performance of CTBNs and DBNs. Data shown is for organism
E. coli on 20-NETs.

is worthwhile to notice that discretization intervals were
chosen individually for each variable (gene) based on the
max and min value of expression levels of each variable
among the whole set of data generated. In order to pre-
serve the significance and comparability of the results,

one needs to keep track of the discretization intervals
applied to each variable. The impact of different num-
bers of discretization bins on the performance of CTBNs
and DBNs is shown in Figure 10. An analysis on the
importance of the discretization strategy can be found
in [5]. Regarding the hyperparameters α and τ , intro-
duced in section Methods, best values were found to be
0.01 and 5 respectively. Because of the local nature of
the learning, the optimal hyperparameters values found
on 10-NETs and 20-NETs are expected to be optimal for
50-NETs and 100-NETs as well. Indeed, separate opti-
mization process on 10-NETs and 20-NETs returned the
same optimal values. Sensitivity of network reconstruc-
tion performance to variation of hyperparameters α and
τ (CTBNs) is shown in Figure 11: variations in recon-
struction accuracy appeared to be moderate, indicating
that performances are robust with respect to values of α

and τ .
The computational nature of the exact structural learn-

ing problem lent itself to greedy learning. However,
preliminary tests on the 10-NETs returned the same

Figure 11 Sensitivity of network reconstruction performance to hyperparameters α and τ (CTBNs). Data shown is for organism E. coli on
10-NETs. Panel A shows the performance variation for different values of α when τ is kept fixed, while viceversa in Panel B. The F1 value obtained for
each of the 10 network instances of the 10-NETs set is represented by a different color.
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results for both exhaustive and greedy learning, although
it cannot be established whether the exhaustive learning
on the larger networks would have returned better results.
The last parameter investigated was the maximum num-
ber of parents allowed for each node: since the greater this
value is, the longer is the computational time required,
sequential tests with an increasing value of this parameter
were run. Interestingly, it was observed that CTBNs were
never able to detect more than 3 parents per node even
when the true networks contain nodes with a number of
parents greater than 3.

For DBNs parameter optimization on the number of
discretization bins was re-run, and results confirmed
that what is optimum for CTBNs may not be the best
option for learning with DBNs. Indeed, results indi-
cated 3 as optimum number of discretization bins for
DBNs. Discretization intervals were selected individually
for each variable as was done for CTBNs. Model selec-
tion has been performed by using the BIC criterion [32],
which reduces the chance of overfitting. Analogously to
what was observed with CTBNs, DBNs were never able
to detect more than 3 parents per node. Experiments
with 50-NETs and 100-NETs are not shown because the
problem became intractable.

For GC analysis no discretization was required since
the approach can handle continuous data. Best value for
the model order parameter, i.e. the number of past obser-
vations to incorporate into the regression model, was
discovered to be equal to 1. Covariance stationary (CS)
is a requirement for the GC to be applied. Data was CS
according to the ADF criterium [86], but not according to
KPSS [87]. However when differencing was applied to cor-
rect this condition, data interpretation may have become
more complicated and in fact performances were signifi-
cantly worse; as a consequence no differencing has been
applied. Pre-processing steps of detrending and demean-
ing have been applied as well. Analysis was based on the
conditional GC test. After performing the GC analysis
and obtaining the matrix of magnitudes of GC interac-
tions, the statistically significant set of interactions was
selected. The best results were observed with a signifi-
cance cut-off of 0.01 and a Bonferroni multiple test correc-
tion.

Parameter optimization was run also with respect to
the synthetically reconstructed yeast dataset. Optimal
number of bins resulted to be 3 for DBNs and CTBNs,
while the maximum number of parents was set to 5.
Optimal prior values for CTBNs were equal to those
on simulated data. Learning criteria for DBNs was set
to BIC. For GC all the pre-processing steps listed for
the simulated data were applied, finding a p-value cut-
off of 0.05 with an approximation of the False Discov-
ery Rate (FDR) correction being the best performing
one.

Bioinformatic analysis and data pre-processing for murine
Th17 data
The microarray raw data for the 275 genes indicated by
[55] were analyzed using the Bioconductor package for
Affymetrix platform, with annotation chip mouse430a2.
Quantile normalization and log2 conversion were per-
formed using RMA. Fold-change values were obtained
separately for different biological replicates, assuming the
fold-change values being equal to 0 at time point 0. Data
was corrected to have mean 0 and standard deviation 1.
Supposing X to be the fold-change values, noise and ran-
dom fluctuations in the data resulted to be heavy for X <

1.2 and X > -1.2; as a consequence, X was discretized into
3 different levels: X < −1.2, −1.2 ≤ X ≤ 1.2, X > 1.2.
Genes whose fold-changes levels after discretization were
constant among all the time points were excluded from
the analysis.

Software and tools
Experiments were run using: for CTBNs the CTBN
Matlab Toolbox developed at the MAD (Models and Algo-
rithms for Data and text mining) Lab of the University
of Milano-Bicocca, for DBNs the Bayesian Net toolbox of
Murphy [88] version 1.07, for GC the toolbox for Granger
causal connectivity analysis (GCCA) [89] version v2.9.
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