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Abstract Quantitative genetics stems from the theoretical

models of genetic effects, which are re-parameterizations of

the genotypic values into parameters of biological (genetic)

relevance. Different formulations of genetic effects are

adequate to address different subjects. We thus need to

generalize and unify them under a common framework for

enabling researchers to easily transform genetic effects

between different biological meanings. The Natural and

Orthogonal Interactions (NOIA) model of genetic effects has

been developed to achieve this aim. Here, we further

implement the statistical formulation of NOIA with multiple

alleles under Hardy–Weinberg departures (HWD). We show

that our developments are straightforwardly connected to the

decomposition of the genetic variance and we point out

several emergent properties of multiallelic quantitative

genetic models, as compared to the biallelic ones. Further,

NOIA entails a natural extension of one-locus developments

to multiple epistatic loci under linkage equilibrium. There-

fore, we present an extension of the orthogonal

decomposition of the genetic variance to multiple epistatic,

multiallelic loci under HWD. We illustrate this theory with a

graphical interpretation and an analysis of published data on

the human acid phosphatase (ACP1) polymorphism.

Keywords Models of genetic effects � Hardy–Weinberg

disequilibrium � Multiple alleles � Variance
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Introduction

The models of genetic effects are re-parameterizations of

the genotypic values into parameters entailing clearer

biological (genetic) meanings (Kempthorne 1957; Fisher

1918, 1930). A general form of such reparameterizations

can be written in matrix notation as G = SE, where the

vector of genotypic values, G, is expressed as a linear

function of the vector of genetic effects, E (Cockerham and

Zeng 1996). Cockerham (1954) expressed statistical mod-

els of genetic effects in terms of orthogonal scales, also

known as contrasts, whose coefficients are used to form the

genetic-effect design matrix, S. Tiwari and Elston (1997)

showed that this notation enormously facilitates the

extension of the models of genetic effects to several loci

under linkage equilibrium (LE) and Zeng et al. (2005) have

further shown the convenience of this notation for statis-

tical analyses of two-allele equilibrium populations.

The G = SE matrix notation also provides an appro-

priate theoretical framework to unify different models of

genetic effects (Álvarez-Castro and Carlborg 2007). Some

issues in quantitative genetics need to be addressed using

different mathematical formulations and it is thus neces-

sary to unify all different uses of genetic effects under a
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single theoretical perspective (Phillips 2008). The natural

and orthogonal interactions (NOIA) model has indeed been

developed for this purpose by using the matrix notation

(Álvarez-Castro and Carlborg 2007).

The initial setting of the NOIA model provided a

framework under which genetic effects can be defined on

the basis of allele substitutions from the reference of

individual genotypes (functional effects) or average effects

of substitutions in populations (statistical effects) for the

case of two alleles per locus. As an example to show the

difference between these two formulations, the additive

functional effect is always equal to half the difference

between the performance of the two homozygotes whereas

the additive statistical effect is the coefficient of weighted

regression on the allele content—the number of one of the

alleles—in the different genotypes present in a population.

We have further extended the functional formulation of the

NOIA model to the case of multiple alleles and explored

the relationship between multiallelic functional and statis-

tical genetic effects (Yang and Álvarez-Castro 2008). In

that article, we have also shown some new properties of the

multiallelic models as compared to the biallelic ones.

We here extend the NOIA statistical formulation to the

multiallelic framework in non-equilibrium populations. To

do this, we first obtain the multiallelic genetic effects as

explicit functions of the genotypic values. This enables us

to obtain the scales for the multiallelic statistical genetic-

effect design matrix, S. Next, we show that this G = SE

matrix notation makes it possible to provide the compo-

nents of the genetic variance with multiple alleles also as

explicit functions of the genotypic values through rela-

tively simple expressions. The major focus of this com-

munication is on one multiallelic locus under Hardy–

Weinberg dissequilibrium (HWD). Under LE, extensions

of one-locus formulations to an arbitrary number of mul-

tiallelic, epistatic loci is straightforward. We illustrate the

theory developed in this communication with a graphical

interpretation and an application to published experimental

data on the polymorphism at the human acid phosphatase

locus (ACP1) (Greene et al. 2000).

The biallelic statistical formulation of NOIA

Before embarking on our new multillelic model, we pro-

vide a brief overview on the biallelic model as described by

Álvarez-Castro and Carlborg (2007). For a one-locus two-

allele (A1 and A2) genetic system, the general expression

for the statistical formulation as a function of the genotypic

frequencies of the population, pij, ij = 11, 12, 22, can be

expressed in matrix notation as G = SE. This matrix

expression can be expanded as:

G11

G12

G22

0
@

1
A ¼

1 �2p2 � p12p22

2p1p2�1=2p12

1 p1 � p2
p11p22

p1p2�1=4p12

1 2p1 � p11p12

2p1p2�1=2p12

0
B@

1
CA �

l
a
d

0
@

1
A; ð1Þ

where the reference point of the model is the population

mean, l, pi, i = 1, 2, are the frequencies of the alleles,

pi = pii ? �pij, j = i, and a and d are, respectively, the

additive and dominant statistical genetic effects.

The use of the G = SE matrix notation enables us to readily

obtain the genetic effects defined under one reference popula-

tion as a function of the genetic effects defined under another

reference population. A well-known example is the translation

of the genetic effects defined under F2 and F? populations

(Yang 2004; Van der Veen 1959). Given two different

decompositions (i.e. different formulations and/or from a dif-

ferent reference point) G = S1E1 and G = S2E2, we can

obtain E2 from E1 by (Álvarez-Castro and Carlborg 2007):

E2 ¼ S2ð Þ�1S1E1: ð2Þ

For obtaining a vector of genetic effects fitting to a

particular biological meaning, E2, from another vector of

genetic effects or genotypic values, it is necessary to have

an expression for its corresponding genetic-effect design

matrix, S2. In other words, expression (2) can be applied

only when the appropriate genetic-effect design matrices

are available. It is thus desirable to obtain expressions of

the form G = SE describing the properties of all possible

genetic systems and populations. Hereafter, we develop

genetic-effect design matrices fitting to statistical genetic

effects and the decomposition of the genetic variance of

multiallelic loci, whether their population frequencies are

under HWD or not.

The multiallelic statistical formulation of NOIA

We will now describe a one-locus multiallelic statistical

formulation of genetic effects. We will first use the matrix

notation to express the average genetic effects in terms of

the genotypic values, particularly in the form E = S-1G.

We will thus provide algorithms to build inverse genetic-

effect design matrices that fit to the definitions of the

genetic effects for any population frequencies. We start

from the decomposition of the genotypic values into sta-

tistical genetic effects as expressed by Kempthorne (1957):

G ¼ 1lþ Nag þ dG: ð3Þ

This expression entails a multiple regression in which the

additive (average) effects of the r alleles, ag = (ai), i =

1,…,r, are the regression coefficients and the dominance

deviations of the genotypes, dG = (dij), i,j = 1,…,r, i [ j,

are the residuals. Note that we use a capital G in the

subscripts to indicate genotypes and a lower–case g to
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indicate alleles. The vector 1 is an n 9 1 vector of ones,

where n = r(r ? 1)/2 is the number of possible genotypes,

and N is the genetic content matrix, as detailed in expression

(16), ‘‘Appendix A’’. The product Nag = (aij) = aG is thus

the vector of the additive components of the genotypic

values, often called the breeding values.

The solution of regression (3) can be obtained from its

normal equation (Kempthorne 1957) as we recapitulate in

‘‘Appendix A’’ for completeness. From that solution (18),

we have obtained the genetic effects explicitly, as a linear

function of the genotypic values. To do so we have fac-

tored the vector G as:

ag ¼ ðNTPdiagNÞ�1NTPdiagðI� 1PT
GÞ

� �
G; ð4Þ

where I is the identity matrix of dimension n 9 n,

PG ¼ p11 p12 p22 p13 . . . prrð ÞT, Pdiag = Diag(PG),

‘‘Diag’’ of a vector generates a diagonal matrix with that vector

in the diagonal and the superscript ‘‘T’’ stands for the

transposition operation. We can thus rewrite expression (4) as:

ag ¼ AG: ð5Þ

The additive genetic effects are just subtractions of the allelic

effects in ag, aij = aj - ai (we justify the use of these

superscripts in ‘‘Appendix B’’). Therefore, it is possible to

operate from matrix A to obtain these genetic effects, which are

the additive-related rows of the inverse genetic-effect design

matrix S-1. We build an operator B adding a column filled with

-1 to the left of an identity matrix so that we can obtain the

additive genetic effects as BAG. This product provides (r - 1)

genetic additive effects, the remaining ones being easily

retrieved from them (cf. multiallelic functional genetic-effect

design matrices in Yang and Álvarez-Castro 2008).

We need two additional easy-to-build matrix operators

for constructing the inverse genetic-effect design matrix

S-1. The first operator, C, places the rows of BA in the

appropriate positions of an inverse genetic-effect design

matrix S-1. The other operator, Sld, adds the rows with the

appropriate values that define the mean and dominance

deviations in S-1. We refer to ‘‘Appendix B’’ for a detailed

definition of the three operators and we define:

S�1 ¼ CBAþ Sld: ð6Þ

Finally, the inverse of this full-rank matrix is the

genetic-effect design matrix S and we can obtain the

desired statistical decomposition of genotypic values

through the expression G = SE.

Allelic effects from genetic effects

Vectors of genetic effects can be obtained, for instance, as the

output of a typical QTL analysis of a line-cross experiment

(see e.g. Zeng et al. 2005). With only two alleles, it is

straightforward to obtain the additive (average) effects of the

alleles from the statistical formulation G = SE. This

expression entails the decomposition of genetic values, from

which the additive (average) effects can be computed just as

ai = (�) aii, i = 1,…, r (in general, aij = ai ? aj). How-

ever, in the multiallelic case, the additive contributions and

the dominance deviations are the summation of several

products of scalars from S and genetic effects from E. Thus,

we here provide an automated procedure for obtaining the

additive (average) effects and average excesses from vectors

of genetic effects, E. Expressions (4–6) straightforwardly

provide such a procedure. Indeed, combining expression (5)

with formulations of the type G = SE it follows:

ag ¼ ASE; ð7Þ

The statistical decomposition of the genotypic values,

G = SE (1, 6), enables us to express each genotypic value

as Gij = l?aij ? dij, as in expression (3). Cancelling out

the coefficients of the mean and the additive effects in S

leads to the removal of the terms l and aij in this

expression, thereby leaving the dominance effects dij alone.

We thus express that column vector dG = (dij) as:

dG ¼ SDiag Dið ÞE; ð8Þ

where (Di)i=1,…,n is a vector of index variables for domi-

nance-related columns of S, which coincide with the

positions of the dominance effects in the vector E (an

automated algorithm to obtain this vector of indexes is

provided in ‘‘Appendix B’’).

Hardy–Weinberg equilibrium

Under the Hardy–Weinberg proportions, the expressions

within the matrices of the statistical formulation can be

more easily illustrated than in the general (non-equilib-

rium) case. In particular, the matrix A for three alleles can

be expressed as:

A ¼
p1ðp2 þ p3Þ p2ð1� 2p1Þ �p2

2 p3ð1� 2p1Þ �2p2p3 �p2
3

�p2
1 p1ð1� 2p2Þ p2ðp1 þ p3Þ �2p1p3 p3ð1� 2p2Þ �p2

3

�p2
1 �2p1p2 �p2

2 p1ð1� 2p3Þ p2ð1� 2p3Þ p3ðp1 þ p2Þ

0
@

1
A: ð9Þ
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Using (7) and (27), the three-allele statistical formula-

tion under Hardy–Weinberg proportions, E = S-1G, is

expanded to:

As a check, we get G = SE as:

In ‘‘Appendix B’’, we justify the notation of the scalars

within the E vector in expressions (10, 11). Expressions (9–

11) are, as expected, equivalent to previous expressions of

multiallelic genetic effects under the Hardy–Weinberg

proportions (Kempthorne 1957; Wang and Zeng 2006,

2009). We here provide them using matrix notation as a

particular case of a general formulation including also

HWD—expressions (4–6).

The decomposition of the genetic variance

In expressions (4–8), we have formulated statistical multi-

allelic genetic effects as explicit functions of the genotypic

values. Hereafter we use that formulation for the decompo-

sition of the variance components. We indeed derive a

method that provides the classical decomposition of the

genetic variance of a trait in a population with the additional

advantage of enabling a straightforward extension to genetic

systems with multiple epistatic loci under LE, while allow-

ing arbitrary numbers of alleles and arbitrary departures from

the Hardy–Weinberg proportions at all loci.

The average excess of one allele, a�i , is the difference by

which the average of genotypes carrying that allele exceeds

the average of genotypes carrying the alternative alleles

(Fisher 1941). A common way to obtain the additive variance

under HWD involves both the allelic additive (average)

effects and average excesses of alleles (see e.g. Lynch and

Walsh (1998) and (23) in ‘‘Appendix A’’). From that

expression, but using just vectors, the additive variance can

be expressed as VA ¼ 2PT
g ag � a�g

� �
, where a�g ¼ ða�i Þ, Pg is

the column vector of the gene frequencies and ‘‘�’’ is the

Hadamard product (just the pairwise product of the elements

at the same position in the two vectors). It is also possible to

compute the additive variance with HWD without the need

of the use of the average excesses (see e.g. Bürger 2000).

This can be done by using instead the additive genotypic

components, often called the breeding values (25 in

‘‘Appendix A’’). This way of computing the additive vari-

ance can also be expressed through just vectors as:

VA ¼ PT
G aG � aGð Þ; ð12Þ

where aG = (aij) = Nag is the vector of the additive

components of the genotypic values. Similarly, from

expression (24) in ‘‘Appendix A’’ the dominance

variance can also be expressed as:

VD ¼ PT
G dG � dGð Þ: ð13Þ

Now we provide a way to compute expressions (12, 13)

simultaneously, which will conveniently have a

straightforward extension to multiple loci. We first provide

the decomposition of the genotypic values in matrix form as:

Gdec ¼ SDiag(EÞH; ð14Þ

where H is an operator that sums the additive-related and

the dominance-related columns of the matrix to the left of

l
a12

d12

a13

d13

d23

0
BBBBBB@

1
CCCCCCA
¼

p2
1 2p1p2 p2

2 2p1p3 2p2p3 p2
3

�p1 p1 � p2 p2 �p3 p3 0

�1=2 1 �1=2 0 0 0

�p1 �p2 0 p1 � p3 p2 p3

�1=2 0 0 1 0 �1=2
0 0 �1=2 0 1 �1=2

0
BBBBBB@

1
CCCCCCA
�

G11

G12

G22

G13

G23

G33

0
BBBBBB@

1
CCCCCCA
; ð10Þ

G11

G12

G22

G13

G23

G33

0
BBBBBB@

1
CCCCCCA
¼

1 �2p2 �2ð1� p1Þp2 �2p3 �2ð1� p1Þp3 2p2p3

1 1� 2p2 2p1p2 þ p3 �2p3 2p1p3 � p3 2p2p3 � p3

1 2ðp1 þ p3Þ �2p1ð1� p2Þ �2p3 2p1p3 �2ð1� p2Þp3

1 �2p2 2p1p2 � p2 1� 2p3 2p1p3 þ p2 2p2p3 � p2

1 1� 2p2 2p1p2 � p1 1� 2p3 2p1p3 � p1 2p2p3 þ p1

1 �2p2 2p1p2 2ðp1 þ p2Þ �2p1ð1� p3Þ �2p2ð1� p3Þ

0
BBBBBB@

1
CCCCCCA
�

l
a12

d12

a13

d13

d23

0
BBBBBB@

1
CCCCCCA
: ð11Þ
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it. Therefore, with only two alleles, H is just the identity

matrix (see ‘‘Appendix B’’ for details).

The three columns of Gdec give, respectively, the mean

and the additive and dominance components of the geno-

typic values. This decomposition (14) is meant to be the one

referred to in expression (3) and, thus, the second and third

columns of the matrix Gdec are the vectors of additive and

dominance effects, aG = Nag and dG respectively. Using

this information about expression (14) and expressions (12,

13), it is easy to see that the two components of the genetic

variance can be obtained simultaneously, just as:

V ¼ PT
G Gdec �Gdecð Þ: ð15Þ

The first scalar of V is actually the squared population

mean, being the remaining two scalars the additive and the

dominance variances, i.e. V = (l2,VA,VD).

The properties of the statistical models of genetic effects

for multiple alleles are not exactly the same as the ones of the

two-allele case. With only two alleles, all genetic effects are

orghogonal, despite HWD (Álvarez-Castro and Carlborg

2007; Yang 2004; Cockerham 1954). With three or more

alleles there are several genetic effects accounting for addi-

tive (average) effects of allele substitutions. Since the effect

of each allele substitution depends on the frequencies of all

other alleles present in that locus, those additive parameters

are dependent on each other. We want our parameters to

reflect effects of substitutions and some of them will thus not

be orthogonal to each other, even without HWD.

We can explain the same fact mathematically. The multi-

allelic genetic effects come from a multiple regression (3) and

some of them will necessarily be statistically dependent on each

other. Indeed, the statistical formulation of NOIA for multiple

alleles (5) is not fully orthogonal. It is nevertheless orthogonal

by blocks that gather effects of the same type (additive- or

dominant-related effects) for different pairs of alleles, as

illustrated in ‘‘Appendix A’’ (26). Therefore, the decomposition

of genotypic values given by (14) is not fully orthogonal, but

again orthogonal by blocks of effect-types. Conveniently,

though, the variance decomposition performed from expres-

sion (15) is fully orthogonal. This is so because the components

of variance are computed using the effects within each of the

orthogonal blocks of the statistical formulation of NOIA. Thus,

the variance decomposition provided by the NOIA model (15)

is orthogonal even under departures from the Hardy–Weinberg

proportions. Furthermore, expression (15) can be straightfor-

wardly extended to an arbitrary number of loci with arbitrary

numbers of alleles and arbitrary HWD, under LE.

Multiple loci

The NOIA formulations can conveniently allow for

straightforward extensions to multiple loci under LE. To

distinguish the expressions of each of the locus, we

implement the notation used so far with appropriate indi-

cators for each locus name and number of alleles. We do

this using subscripts and superscripts, respectively, in all

matrices and vectors. For a locus A with three alleles, for

instance, we enunciate the statistical formulation as:

G
ð3Þ
A ¼ S

ð3Þ
A E

ð3Þ
A . We now consider a two-locus genetic

system in which there is, in addition, a locus B with two

alleles. Assuming LE between the two loci, we use the

Kronecker product of the one-locus genetic-effect design

matrices (as in Álvarez-Castro and Carlborg 2007),

S
ð3;2Þ
AB ¼ S

ð2Þ
B � S

ð3Þ
A , to obtain the two-locus statistical for-

mulation as G
ð3;2Þ
AB ¼ S

ð3;2Þ
AB E

ð3;2Þ
AB . The equivalent expression

E
ð3;2Þ
AB ¼ S

ð3;2Þ
AB

� ��1

G
ð3;2Þ
AB can be obtained by computing the

inverse of the two-locus genetic-effect design matrix S
ð3;2Þ
AB ,

or equivalently using the inverses of the one-locus matrices

as S
ð3;2Þ
AB

� ��1

¼ S
ð2Þ
B

� ��1

� S
ð3Þ
A

� ��1

. Either way, this

entails the extension of the solution to Eq. (4) to multiple

loci under LE. The general expression to obtain the sta-

tistical genetic-effect design matrix for an arbitrary number

of loci, l, is: �
1

k¼l
S
ðrkÞ
Lk

� �
, where rk is the number of alleles at

locus Lk.

Once the multiallelic S matrix has been obtained, the

decomposition of the genetic variance through expressions

(14, 15) naturally holds for multiple loci. The multilocus

operator H can be built from the single-locus ones as

�
1

k¼l
H
ðrkÞ
Lk

� �
, to account for the additional (due to interac-

tions among loci) variance components. Applying expres-

sions (14, 15) to the system of loci A and B leads to a vector

of variance components V
ð3;2Þ
AB in which the order of the

variance components is the same as the one of the genetic

effects in the vector E for two alleles (Álvarez-Castro and

Carlborg 2007).

For the multilocus genetic systems, it is possible to test

for orthogonality in the same way as shown for the one-

locus case at the end of ‘‘Appendix A’’. By doing so at the

system of loci A and B considered just above, we have

obtained a matrix with nine independent non-zero blocks

for the mean, additive effect of locus A, additive effects of

locus B, dominance effect of locus A, dominance effects of

locus B, and the additive-by-additive, additive-by-domi-

nance, dominance-by-additive and dominance-by-domi-

nance interactions—i.e. an analogous matrix to (26),

although larger and having more independent blocks (not

shown). These separate blocks reflect the orthogonality of

all the variance components. Thus, expressions (14, 15)

comprise a straightforward routine to perform orthogonal

decomposition of variance from the NOIA model for

Genetica (2011) 139:1119–1134 1123

123



genetic systems of arbitrary numbers of alleles at multiple

epistatic loci under LE.

Applications

Here we show a graphical interpretation of the decompo-

sition of the genotypic values for a three-allele case under

HWD and we make an analysis of real data on the human

ACP1 polymorphism.

Graphical interpretation

Álvarez-Castro and Carlborg (2007, Figures 2 and 3A)

have represented graphically the biallelic statistical for-

mulation of NOIA, although here we point out a misprint in

that representation—there lacks a factor 2 adjacent to every

ai, which also applies to every ai in Figures 2 and 3B of

that article. On the other hand, Kempthorne (1957) has

provided a graphical interpretation of the statistical

decomposition of the genotypic values for the one-locus

three-allele case. Although Kempthorne (1957) illustrated

his graphical interpretation under the Hardy–Weinberg

proportions, an analogous interpretation holds when, like in

the case we are dealing with here, there are departures from

these proportions. In Fig. 1 we actually provide a graphical

interpretation that fits this case, based on the formulation of

the NOIA model for non-equilibrium populations (6).

Figure 1 is produced using the one-locus three-allele

example taken from Yang and Álvarez-Castro (2008)

where the genotypic values G = (10, 30, 50, 36, 46, 42)T

and the genotypic frequencies P = (0.12, 0.06, 0.195, 0.1,

0.15, 0.375). The genotypic values are represented by

globes whose sizes are in accordance with their genotypic

frequencies. The decomposition of the genotypic value

G11 = l?a11 ? d11 is marked by vertical grey arrows that

represent the additive expectation a11 (from the mean to the

value predicted by the regression plane) and the dominance

deviation d11 (the departure between the multilinear pre-

diction and the true genotypic value). The genotypic values

are expressed as functions from the two-dimensional

domain defined by the axis of the gene content of alleles

A2 and A3, G(c2,c3), and so it is the regression plane,

Ĝðc2; c3Þ ¼ 18:3
_

c2 þ 15c3 þ 13. The intercept in this

regression, 13, is the predicted value for the genotype A1A1,

a11—for which the allele contents of the alleles A2 and A3

are zero. Under the Hardy–Weinberg proportions, the

predictions of the regression plane are the breeding values.

In Fig. 1 it is possible to observe that, although only the

genotypic value of the heterozygote A1A3 lies outside the

midpoint of the two flanking homozygotes, the regression

plane does not meet, for instance, the genotypic value G12.

In other words, the presence of functional dominance

interaction at one only heterozygote suffices to cause non

zero dominance deviations, dij, for all genotypes—as

already noted by Yang and Álvarez-Castro (2008).

Analysis of the ACP1 polymorphism

The acid phosphatase multiallelic polymorphism, ACP1,

has been discovered in Europe almost half of a century ago

(Hopkinson et al. 1963) and extensively studied ever since.

Three alleles were found at different frequencies in

northern European populations, ACP1*A, ACP1*B and

ACP1*C (hereafter A, B and C, respectively), for which no

significant deviations from an additive inheritance of

enzyme activity have been found (Spencer et al. 1964;

Greene et al. 2000; Eze et al. 1974). Indeed, taking a vector

of genotypic values, Gac, from Greene et al. (2000,

reproduced in our Table 1), and using the multiallelic

functional formulation of NOIA (Yang and Álvarez-Castro

2008), we obtain functional genetic effects from the ref-

erence of the genotype AA, Eac
AA, showing that dominance

effects are very small compared to the additive effects

Fig. 1 Graphical interpretation of the statistical decomposition of the

genotypic values as a function of the content of alleles ‘‘2’’ and ‘‘3’’,

G(c2,c3), for the one-locus three-allele example given by the

genotypic values G = (10, 30, 50, 36, 46, 42)T and the genotypic

frequencies P = (0.12, 0.06, 0.195, 0.1, 0.15, 0.375), which is one of

the instances we have considered in a previous publication (Yang and

Álvarez-Castro 2008). The genotypic values are represented by

globes whose sizes are in accordance with their genotypic frequen-

cies. The decomposition of the genotypic value G11 = l?a11 ? d11

is marked by vertical grey arrows that represent the additive

expectation a11 (from the mean to the value predicted by the

regression plane) and the dominance deviation d11 (the departure

between the multilinear prediction and the true genotypic value)
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(Table 2). The transformation tool of NOIA (2) enables us

to obtain a vector of statistical genetic effects from a

functional one (Álvarez-Castro and Carlborg 2007). Any

statistical genetic effects are associated to certain popula-

tion frequencies. We take them from a study with a sample

of 7059 individuals from a German population (Brinkmann

et al. 1971, see our Table 1). Using these frequencies

(referred to as the observed frequencies hereafter) we

obtain the vector of genetic effects, Eac
l , (Table 2). From

this vector and (15) we obtain the following variance

decomposition: VA = 658.43, VD = 0.97, VA/VG =

0.999, showing the very small contribution of the domi-

nance effects of this trait to the genetic variance.

The high proportion of additive variance indicates that

directional selection on ACP1 activity would have a high

response of the trait in this population, which would

actually lead to the fixation of one of the alleles.

Sensabaugh and Golden (1978) inspected whether the

maintenance of the polymorphism could be explained by a

different trait—the inhibition of ACP1 by folic acid. The

genotypic values obtained for this trait, Gin, and their

standard deviations are shown in Table 1. From them we

computed the functional and statistical genetic effects, Ein
AA

and Ein
l , which are again largely additive (Table 2). The

dominance effects are actually not significantly different

from zero. From the observed frequencies, the decompo-

sition of the genetic variance for this trait is: VA = 44.54,

VD = 1.15, VA/VG = 0.997. To determine the significance

of the genetic effects, we have computed 95% confidence

intervals of these estimates (Table 2). These just come

from transforming the standard errors of the genotypic

values into the standard errors of the genetic effects (Le

Rouzic and Álvarez-Castro 2008). Then we have inspected

Table 1 Genotypic values for the traits ‘‘ACP1 enzyme activity’’ and ‘‘ACP1 enzyme inhibition’’, observed frequencies used in our analyses and

results obtained for the different geontypes—fixation indexes, fitness values minimizing VA/VG and equilibrium frequencies of these fitnesses

ACP1 genotypes

AA AB BB AC BC CC

ACP1 activitya, Gac 122.4 153.9 188.3 183.6 212.3 240.0

ACP1 inhibitionb, Gin 41.2 37.9 34.4 58.7 53.1 76.0

SD of ACP1 inhibitionb 4.3 5.2 5.2 8.3 3.8 15.5

Observed frequenciesc, pij 0.1242 0.4139 0.3349 0.0445 0.0799 0.0025

Observed fixation indexes, Fij -0.003 -0.006 -0.015 0.028 -0.061 -0.027

Fitness values, xij 0.9303 1 0.9667 1.0465 0.9658 0.5832

Equilibrium frequencies, p�ij 0.1115 0.4323 0.3766 0.0295 0.0491 0.0001

a Greene et al. (2000). Expressed as lmol of p-niotrophenol liberated in 0.5 h at 37�C per g hemoglobin
b Sensabaugh and Golden (1978). Enzyme inhibition by 0.1 folic acid, expressed as lmol of p-niotrophenol liberated
c Brinkmann et al. (1971)

Table 2 Genetic effects for the traits ‘‘ACP1 enzyme activity’’ (ac), ‘‘ACP1 enzyme inhibition’’ (in, with confidence intervals, CI) and for the

stabilizing (st) genotype-fitness (GF) map of fitnesses minimizing the ratio VA/VG. Genotypic values, fitness values and observed frequencies as

in Table 1

Reference point and genetic effectsa

R aAB aAC aBC dAB dAC dBC

Enzyme activity, Eac
AA 122.4 35.95 58.80 -23.85 -1.45 2.40 -1.85

Enzyme activity, Eac
l 167.7 33.00 59.19 26.19 -1.45 2.40 -1.85

Enzyme inhibition, Ein
AA

41.2 -3.4 17.4 20.8 0.1 0.1 -2.1

CI for Ein
AA

±1.99 ±0.85 ±5.87 ±5.72 ±2.30 ±10.56 ±7.58

Enzyme inhibition, Ein
l

39.4 -3.57 16.05 19.62 0.1 0.1 -2.1

Stabilizing GF map, Est
AA

0.930 0.018 -0.174 -0.192 0.052 0.290 0.191

Stabilizing GF map, Est
l 0.978 0.000b 0.000b 0.000b 0.052 0.290 0.191

a We use only Latin letters in the headings just for simplicity. It is understood that statistical genetic effects are named with the corresponding

Greek letters, a instead of a, d instead of d and l instead of R
b These values are zero to eight decimal places
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whether the proportion of additive variance varies signifi-

cantly for parameter values within the confidence intervals

of the estimates—we have used the theory provided in this

communication (4–6, 14, 15) to plot the ratio VA/VG within

those intervals. We have obtained that at least three esti-

mates have to reach values at the edges of their intervals

for the ratio VA/VG to be lower than 0.7 (Fig. 2). We can

therefore conclude that this genotype-phenotype map is

largely additive and that directional selection on the phe-

notype would lead to fixation of one of the alleles.

Alternatively, we have computed the fixation indexes of

the observed frequencies (Weir 1996), which are shown in

Table 1. These fixation indexes reflect HWD with a defi-

ciency of all homozygotes and heterozygote AC and an

excess of heterozygotes AB and BC. According to the

observations of Alvarez (2008), it is possible that the

observed frequencies are equilibrium frequencies under

viability selection acting on the ACP1 locus. However, this

selection pressure cannot be directional selection acting

either on enzyme activity or on inhibition by folic acid,

which in the absence of significant dominance interactions

would lead to fixation of one of the alleles—as illustrated

above. In fact, Greene et al. (2000) suggested that this

polymorphism could instead be maintained by stabilizing

selection due to the balance of two forces. On the one hand,

ACP1 genotypes with high enzyme-activity (particularly

genotype CC) would not be well adapted to cold environ-

ments and therefore they could be selected against in

BC 5.72 BC 19.62 BC 5.72

AC 5.87
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Fig. 2 Contour plots of the ratio VA/VG for ACP1 activity (from Greene et al. 2000) with the observed frequencies (from Brinkmann et al. 1971)

for the less accurate genetic effects estimates ranging within their confidence intervals
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Northern Europe. On the other hand, phenotypes with the

lowest enzyme activity levels (particularly genotype AA)

were found to be associated with risk of macrosomia and

adult obesity. Genotypes showing intermediate enzyme

activities would thus in average perform better than the

most extreme ones.

Selection acts on the fitnesses of the different genotypes

present in a population. With directional selection on the

trait value, the fitnesses of the individuals with a particular

genotype directly reflect their phenotypes—their genotypic

values. This is why the decomposition of the genetic var-

iance of a trait is informative about the response of that

trait to directional selection (e.g. Falconer and MacKay

1996). This does however not hold for other selection

regimes. With stabilizing selection the genotype-phenotype

map is not a linear transformation of the genotype-fitness

map and thus the former one cannot be used in substitution

of the latest one, as it was the case for directional selection.

Therefore, we hereafter address the variance decomposi-

tion of stabilizing genotype-fitness maps to analyze the

effect of stabilizing selection on the ACP1 polymorphism.

First, we have considered several ad-hoc genotype-fit-

ness maps in accordance with the verbal model by Greene

et al. (2000). In particular, we have fixed the fitness of the

CC genotype at xCC = 0.6 relative to the fitness of AB,

xAB = 1, and considered a variety of values for the fit-

nesses of the other genotypes. Then we have inspected

whether they could explain the maintenance of the ACP1

equilibrium. To do so, we have plotted the ratio VA/VG for

those genotype-fitness maps, using the observed

Fig. 3 Contour plots of the ratio VA/VG for various fitness values in accordance with the verbal model by Greene et al. (2000) with the observed

frequencies (from Brinkmann et al. 1971). For all panels, xAB = 1 and xCC = 0.6
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frequencies. These results are shown in Fig. 3, where there

appear many regions with very low ratios VA/VG. These

ratios leave very little room for selection to act. Therefore,

they point us to sets of fitness values that could maintain

the ACP1 equilibrium at frequencies similar to the

observed ones.

Next, assuming the observed frequencies, we have used

Mathematica (Wolfram_Research_Inc. 2010) to find a

minimum of the VA/VG ratio—which we have expressed

the as an explicit function of the fitness values using the

theory provided in this communication (4–6, 14, 15)—with

some constraints given by the observations of Greene et al.

(2000). We have in particular set the reference fitness as

xAB = 1 without loss of generality and imposed two

constraints: (1) the fitnesses reflect enzyme activity values

in the absence of macrosomia (xCC \ xBC \ xBB, xAC)

and (2) the extreme enzyme activities, particularly the

lowest one, perform worse than the reference fitness but not

extremely bad (0.5 \ xCC \ xAA \ xAB). The set of

minimizing fitnesses we have obtained using this procedure

(Table 1) leads to a ratio of VA/VG of virtually zero.

As a next step, we have checked that the minimizing

fitnesses we have obtained actually fulfill the necessary

conditions for the maintenance of the multiallelic equilib-

rium, derived by Lewontin et al. (1978). Since these are,

however, not sufficient conditions, we have run determin-

istic simulations in order to find out the outcome of the

genetic system—we have run recursions of selection

assuming random mating, no drift and non-overlapping

generations (see e.g. Li 1976)—using the minimizing fit-

nesses and starting from the observed frequencies. After

less than 1000 generations the population reaches a stable

equilibrium (the frequencies stay accurately constant to

five decimal places) with a set of frequencies close to the

observed ones (Table 1). We have then used the multiall-

elic NOIA (Yang and Álvarez-Castro 2008 and expression

(6) in this communication) to compute the functional and

statistical genetic effects for the genotype-fitness map

given by the minimizing fitnesses (Table 2). Additive and

dominance functional effects are similar whereas statistical

additive effects get to be virtually zero for the observed

frequencies, which is in accordance with having obtained

these fitnesses by minimizing the additive contribution in

the genetic variance for those frequencies.

Discussion

In this communication, we have provided algorithms for

multiallelic formulations of statistical genetic effects using

the G = SE matrix notation. This notation has the major

advantages of straightforwardly extending the models to

multiple independent loci and connecting formulations that

entail different meanings of the parameters. This makes it

possible to express the estimates of genetic effects detected

in a QTL mapping experiment as average effects over a

population of interest—with different genotypic frequen-

cies than the one under study—and, thus, to easily obtain

the decomposition of the genetic variance at that popula-

tion (Álvarez-Castro and Carlborg 2007). Those estimates

can also be expressed as effects of allele substitutions from

a reference genotype, which are appropriate to assist the

study of different evolutionary phenomena (Álvarez-Castro

et al. 2008; Besnier et al. 2010; Le Rouzic and Álvarez-

Castro 2008; Le Rouzic et al. 2008). Of course, the out-

come of these transformations will depend on how accurate

the estimates of genetic effects could be performed ini-

tially, e.g. how affected the genetic effects of the detected

QTL were by non-detected QTL (see e.g. Zeng et al. 2005).

Connecting formulations of genetic effects

There are two essential ways of parameterizing models of

genetic effects for diploid species. First, they can describe

the properties of the genotypes of the individuals through

the genotypic genetic effects (1, 11). Second, they can also

describe the properties of the haploid genotypes through

the allelic genetic effects (5). As noted by e.g. Templeton

(1987), this is needed for comprehensive genetic analyses

when diploid individuals pass on haploid gametes to their

offspring. We observe, however, that the genotypic fre-

quencies are implicit in the computation of the allelic

additive (average) effects under HWD. Therefore, inde-

pendently on whether focusing on diploid or haploid

genotypes, we deem all formulations of genetic effects—

the functional and the statistical formulations from any

reference point—to be genotype-based models whenever

applied to non-equilibrium populations. Indeed, using the

matrix notation, the parameters of all formulations are

visibly connected by linear transformations—expression

(2)—, which reflects that they share analogous properties.

There currently is no full consensus to name the dif-

ferent formulations of models of genetic effects. Here, we

are using the label ‘‘functional’’ following Hansen and

Wagner’s (2001) conceptualization of it. However, some

more recent uses of this label are restricted to reflect

interactions among particular molecules in a physiological

pathway (e.g. Boone et al. 2007). Indeed, following Phil-

lips’ (2008) classification of uses of epistasis, ‘‘functional

epistasis addresses the molecular interactions that proteins

(and other genetic elements) have with one another’’ and

NOIA’s functional formulation would instead fit to his

label ‘‘compositional’’. Whichever label is used, we concur

that it is crucial to typify and unify all uses of genetic

effects under a single perspective. NOIA has actually been

developed to achieve that task, with or without epistasis,
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via its different mathematical formulations and its trans-

formation tool (Álvarez-Castro and Carlborg 2007).

Variance decomposition

The general solution to the decomposition of the genotypic

values into statistical genetic effects—see expressions (3,

4)—has often been considered to be rather involved for the

general, multiallelic case (e.g. Lynch and Walsh 1998). We

have shown that the decomposition of the genetic effects

and the genotypic variance can be straightforwardly pro-

vided by the multiallelic statistical formulation here

developed, which can be obtained by performing simple

algebra with easy-to-build matrices. Thus, we have pro-

vided a new, convenient extension of genetic modelling to

multiple epistatic multiallelic loci with HWD, which

comprises both the decomposition of the genotypic values

and the variance decomposition, including all epistatic

components. In brief, we use matrix notation to merge the

models of genetic effects by Kempthorne (1954) and

Cockerham (1954), for we consider together arbitrary

numbers of alleles and loci, arbitrary epistasis and HWD.

As an example, this extension allows researchers to

easily perform thorough examinations of the portion of

genetic variance of a trait in a population that is due to

additive variance. We have illustrated this point through

the analysis of the ACP1 polymorphism. We note that,

although out of the scope of our current communication,

the theory we are presenting here can be used to inspect the

multilocus variance decomposition of genetic architectures

under more general situations than previously, which

enables researchers to assess the effect of HWD on the

variance components of multilocus epistatic systems.

QTL analysis

The advent of quantitative trait loci (QTL) analysis (e.g.

LANDER and BOTSTEIN 1989) has challenged the state of the

art of genetic modeling. QTL analysis pursues the aim of

determining the loci underlying heritable traits, for which it

unavoidably relies on models of genetic effects. These

models are used to infer the underlying genetics from the

phenotypes of individuals for which the genotypes at cer-

tain marker locations are known. Consequently, any con-

straints of the models of genetic effects instantly preclude

researchers to unravel any genetic architecture not fitting

those constraints. QTL analysis has motivated additional

developments in models of genetic effects. For instance,

the G = SE matrix notation has proven convenient for

QTL analysis, for it comprises an optimal way for imple-

menting models of genetic effects into QTL analyses using

the regression approach (see e.g. Álvarez-Castro and

Carlborg 2007; Álvarez-Castro et al. 2008; Zeng et al.

2005). Therefore, the extension of the NOIA formulations

to the multiallelic framework facilitates a versatile imple-

mentation of QTL analysis for multiallelic genetic systems.

The implementation of HWD is also significant in this

regard since models adapting to (being orthogonal at) the

empirical populations under study may assist the mapping

procedure both by speeding up the performance of esti-

mates of genetic effects and by facilitating model selection

strategies (see e.g. Kao and Zeng 2002; Yang 2004; Zeng

et al. 2005).

Recently, a variance component approach has been

proposed to detect segregation of multiple alleles in line-

cross experiments—the FIA method (Rönnegård et al.

2008, 2009). NOIA has already been used to perform

estimates of general genetic effects of biallelic loci detec-

ted by FIA (Besnier et al. 2010), and it can now be used for

the same task with multiallelic loci, which are the recurrent

output of variance component mapping methods in general.

As an example, this combination of tools may well aid the

genetic analysis of hybrid zones (Besnier et al. 2010).

Yang and Álvarez-Castro (2008) have shown that the

functional formulation of genetic effects fits a common

statistical testing procedure and that, therefore, it makes

sense to use it to obtain estimates of genetic effects in QTL

analysis. For the two-allele case, the statistical formulation

has also been proposed for this task due to two major

reasons. First, orthogonality facilitates the estimation and

in particular the model selection procedure. Second, the

statistical estimates are directly related to the decomposi-

tion of the genetic variance at the population or population

sample under study (e.g. Álvarez-Castro and Carlborg

2007; Yang 2004; Zeng et al. 2005). For the multiallelic

framework, we have shown in this communication that,

although the statistical formulation is not fully orthogonal,

it conveniently is orthogonal by blocks. This keeps on

conferring to it an advantage over non-orthogonal settings,

both for obtaining estimates in QTL analyses and for

automatically performing the orthogonal decomposition of

the genetic variance from those estimates whenever nec-

essary. In any case, whatever formulation is used to obtain

estimates, we recall that those are easily transferable

among formulations by expression (2), the transformation

tool (see also Álvarez-Castro and Carlborg 2007).

Analysis of the ACP1 polymorphism

We have shown that the flexibility of our theory makes it

easy to examine the values of an index of interest (e.g. VA/

VG) for a range of parameter values (e.g. for values within

the confidence intervals of the estimates of genetic effects).

Obtaining fitness values that explain polymorphisms at

biallelic loci is easy using the classical studies of equilib-

rium for these systems, but not when multiple alleles are
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present (see e.g. Li 1967). Using NOIA to express the ratio

VA/VG as an explicit function of the model parameters has

also enabled us to obtain a set of fitness values that are in

accordance with experimental observations (Greene et al.

2000) and explain the maintenance of the multiallelic

ACP1 polymorphism. To this aim, we have first set stabi-

lizing phenotype-fitness maps on top of the genotype-

phenotype map for enzyme activity, by following Greene

et al. (2000) empirical observations. Next, we have

checked that the resulting genotype-fitness maps under

those assumptions can lead to very low values for VA—i.e.

to very little room for selection to act. Finally, we have

obtained fitness values that actually minimize the ratio VA/

VG to virtually zero. Using this procedure, we have

obtained a set of fitnesses that can explain the maintenance

of the ACP1 polymorphism, particularly for one of the

populations studied in greater detail.

The equilibrium frequencies obtained using these fit-

nesses are very similar to the observed ones, although we

have checked statistically that the equilibrium and the

observed frequencies differ significantly (using a Chi-

square test). We do not deem the observed frequencies to

be the exact equilibrium frequencies because the fitness

values could have changed recently—cold exposure and

death by macrosomia are likely to have varied during the

latest generations—and migration events could also have

recently affected the observed polymorphism frequencies.

The main result of our analysis is that the polymorphism

can be explained by stabilizing selection, whether the fit-

nesses we have obtained by minimizing VA/VG are very

close to the real ones or not.

The C allele has also been interpreted as a recessive

deleterious allele that has not yet been removed by natural

selection (Wilder and Hammer 2004). This was argued by

pooling alleles A and B into cluster X and then noting a

significant excess of XC and a significant deficiency of CC,

but no significant departure of ‘‘genotype’’ XX from its

expected frequency under the Hardy–Weinberg propor-

tions. This fits with C being deleterious with respect to

‘‘allele’’ X. However, we note that this observation also fits

with a balance in XX between an excess of AB and defi-

ciencies of AA and BB, which is in accordance with sta-

bilizing selection favouring the heterozygotes over the

homozygotes. This is actually the case for the observed

frequencies we have used in our analysis. Therefore, we do

not find Wilder and Hammer’s (2004) argument to support

that the C allele is just deleterious.

How much additional complexity?

Achieving generality enables us to increase the explanatory

power of our models. Through the analysis of the ACP1

data, we have just recalled that the properties of a

multiallelic system cannot be explained by means of

reductionistic approaches using biallelic models. This fact

was noticed by geneticists long ago (Lewontin et al. 1978;

e.g. Kempthorne 1957). Multiallelic models acquire

emergent properties and it is thus not surprising that the

extension of NOIA to multiple alleles requires having to

take into account increasing numbers of parameters and

addressing new notation issues (see ‘‘Appendix B’’). The

absence of full orthogonality of the genetic effects is an

emergent fact of multiallelic models that does not preclude

us from obtaining an orthogonal decomposition of the

genetic variance. In any case, the variance decomposition

of the multiallelic system is not the sum of the variance

decompositions of all reduced biallelic systems. This is in

connection with another emergent fact we have already

noted in a previous publication—functional dominance

interaction between two alleles generates statistical domi-

nance deviations between all pairs of alleles (Yang and

Álvarez-Castro 2008). In that publication we also discussed

that in the multiallelic case redundant additive genetic

effects appear. These are missing in the E-vectors but can

easily be retrieved from the remaining ones.

We are aware that achieving generality comes at the cost

of increasing complexity. As an example, the dimension of

a genetic-effect design matrix for a non-equilibrium

genetic system of three loci with two, three and four alleles

and all levels of epistatic interactions is 180 9 180. Pro-

hibitive amounts of data would be necessary for obtaining

sound estimates of the 180 parameters within the genetic

effects vector of such a system. In any case, the complexity

of the general model cannot possibly be perceived in itself

as a disadvantage. Indeed, it is straightforward to reduce

the general model to fit any desired constraints, namely to

the absence of third order genetic interactions, to the same

kind of interactions among alleles of certain genes or to no

epistasis at all between certain pairs of loci (e.g. the

absence of epistatic interactions involving the third locus of

the example mentioned just above would reduce the

number of parameters from 180 to 28). Also the connection

of the general setting of NOIA to the more constrained

multilinear model has been described (Le Rouzic and

Álvarez-Castro 2008).

To sum up, from the theoretical perspective, we are

motivated to provide as general and unified as possible

formalizations of genetic effects, from which to eventually

consider more constrained cases. In other words, we pursue

the situation in which the available data—as opposed to the

developed theory—sets the constraints of a quantitative

analysis of genetic effects. In particular—although out of

the scope of this communication—imprinting and gene-by-

environment interactions could naturally be implemented

within the theoretical framework here presented. Also,

although significant achievements have been reported for
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considering linkage disequilibrium in genetic modelling

(e.g. Mao et al. 2006; Wang and Zeng 2006; Yang 2004),

this topic is to our view liable to further development.

Appendix A: Computations leading to the orthogonal

decompositions of the genotypic values and the genetic

variance

For simplicity, we abbreviate throughout this appendix the

notation of some of the subscripts. In particular, we use P

instead of Pdiag, a instead of ag, d instead of dG and a*

instead of a�g. The matrix N has as rows the vectors of the

gene content of alleles Ai, for the genotypes in the vector of

genotypic values, G:

N ¼

2 0 � � � 0

1 1 � � � 0

0 2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

0 0 � � � 2

0
BBBBBB@

1
CCCCCCA
: ð16Þ

The decomposition of the genotypic values

The least-squares solution to expression (3) is the set of

values that minimizes:

dTPd ¼ G� 1l� Nað ÞTP G� 1l� Nað Þ: ð17Þ

Thus, the solution comes from equalling to zero the

derivative of (17) respect to a, 2NTP(G - 1l - Na) = 0,

which leads to the normal equations of the system:

NTPN
� �

a ¼ NT P G� 1lð Þ: ð18Þ

We can rewrite (18) in terms of average excesses as:

ðNTPNÞa ¼ 2 PT
g � a�

� �
: ð19Þ

The decomposition of the genetic variance

The total genetic variance is:

VG ¼ GTPG� GTP1
� �2¼ GTPG� l2; ð20Þ

which can be partitioned into components due to the

additive and dominance effects given in (3). Indeed, from

(20) and (3):

VG ¼ 1lþ Naþ dð ÞTP 1lþ Naþ dð Þ � l2

¼ 1TP1l2 þ 1TPNalþ 1TPdlþ aTNTP1lþ dTP1l

þ Naþ dð ÞTP Naþ dð Þ � l2: ð21Þ

Now we consider separately several terms in this

expression:

1TP1 ¼
Xr

i¼1

Xr

j¼i

pij ¼ 1;

1TPNa ¼
Xr

i¼1

Xr

j¼i

pijðai þ ajÞ ¼
Xr

i¼1

Xr

j¼i

pijai

þ
Xr

j¼1

Xr

i¼j

pjiaj ¼
Xr

i¼1

piai þ
Xr

j¼1

pjaj ¼ 0;

1TPd ¼
Xr

i¼1

Xr

j¼i

pijdij ¼ 0;

aTNTP1 ¼ 1TPNa
� �T¼ 0 and

dTP1 ¼ 1TPd
� �T¼ 0;

which allows us to rewrite (21) as:

VG ¼ Naþ dð ÞTP Naþ dð Þ
¼ aTNTPNaþ aTNTPdþ dTPNaþ dTPd:

ð22Þ

Now we consider separately the four terms in this

expression, having in mind (18) and (19):

aTNTPNa ¼ aTNTPN NTPN
� ��1

NTPðG� 1lÞ

¼ aTNTPðG� 1lÞ ¼ 2
Xr

i¼1

piaia
�
i ¼ VA

ð23Þ

aTNTPd ¼ aTNTPðG� 1l� NaÞ ¼ aTNTPðG� 1lÞ
� aTNTPNa ¼ aTNTPðG� 1lÞ

� aTNTPN NTPN
� ��1

NTPðG� 1lÞ
¼ aTNTPðG� 1lÞ � aTNTPðG� 1lÞ ¼ 0:

dTPNa ¼ aTNTPd
� �T¼ 0:

dT Pd ¼
Xr

i¼1

Xr

j¼i

pijd
2
ij ¼ VD: ð24Þ

Thus, (22) provides the total variance as the sum of the

additive and the dominance variances, VG = VA ? VD,

which are defined by (23) and (24) respectively. Note that

(23) can also be expressed using the additive components

of the genotypic values, (aij) = Na as:

VA ¼ ðNaÞTPNa ¼
Xr

i¼1

Xr

j¼i

pija
2
ij: ð25Þ

Assessing orthogonality

We have expressed the decomposition of the genetic var-

iance from the NOIA statistical formulation (6) in accor-

dance to a proper decomposition of the genetic variance

(22), leading to only the additive (23, 25) and dominance

(24) summing terms being different from zero. Indeed, we

hereafter provide a proof for this claim using a standard
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method. We obtain matrix SS from expression (6) for the

three-locus case and change the order of its columns so that

the additive and the dominance effects are pooled toge-

ther—e.g. by just exchanging columns 3 and 4. We call SSr

to the resulting reordered matrix and inspect its orthogo-

nality by computing the following matrix product (see e.g.

Álvarez-Castro and Carlborg 2007):

ST
Sr � P � SSr

¼

1 0 0 0 0 0

0 f22ðpijÞ f23ðpijÞ 0 0 0

0 f23ðpijÞ f33ðpijÞ 0 0 0

0 0 0 f44ðpijÞ f45ðpijÞ f46ðpijÞ
0 0 0 f45ðpijÞ f55ðpijÞ f56ðpijÞ
0 0 0 f46ðpijÞ f56ðpijÞ f66ðpijÞ

0
BBBBBBBB@

1
CCCCCCCCA
;

ð26Þ

where fkl(pij) are functions of the genotypic frequencies.

Since expression (26) does not necessarily lead to a

diagonal matrix, the formulation given by (6) is not com-

pletely orthogonal. More in detail, being f23(pij) = 0 in

(26) means that the additive effects are not orthogonal to

each other. The remaining non-zero functions outside the

diagonal of the matrix (26) mean that the dominance

effects are not either orthogonal to each other. Finally, and

interestingly, the upper-right and the bottom-left (3 9 3)-

blocks of zeros indicate that the dominance effects are

orthogonal to the additive effects and to the reference

point—which also holds for the additive effects and the

reference point. This fact indeed shows that the variance

due to the additive and the dominance effects are orthog-

onal—i.e. there is no covariance between them—, which

extends to higher numbers of alleles. Therefore, (26) shows

that the statistical formulation G = SE coming from (6)

leads to an orthogonal decomposition of the genetic vari-

ance. This result is a consequence of the additive and

dominance parameters having been implemented in this

formulation in accordance to expressions (3, 4).

Appendix B: Technical details of the NOIA multiallelic

formulation

Hereafter we provide detailed algorithms for some of the

steps outlined in the main text, including notation issues.

Matrix-operators for the multiallelic statistical

formulation

The multiallelic additive genetic effects of the vector of

statistical genetic effects ES are, as well as for the two-

allele case, subtractions of the additive (average) effects of

the alleles. Thus, we build an operator that performs those

subtractions, B ¼ �1r�1 Ir�1jð Þ where 1r-1 is a column-

vector of (r - 1) unities and Ir-1 is the identity matrix with

dimension (r - 1) (r - 1). The dimension of B is thus

(r - 1)r. Now we can express the statistical additive

genetic effects of the E vector as Bag, not to be confused

with aG = Nag (see comments on notation issues below).

Equivalently, we can also express it from the genotypic

values using (5) as BAG. We note here that the vector

Bag—as well as the E vector—does not include parameters

for all the possible additive genetic effects since some of

the genotypes are not represented. Both vectors include an

independent set of these parameters from which the rest

can be retrieved in the same way as for the analogous

additive parameters of the multiallelic functional formu-

lation of genetic effects (see Yang and Álvarez-Castro

2008 for details).

The dimension of BA is n(r - 1), which in the two-

allele case equals 3 9 1. In order to build the inverse

genetic-effect design matrix for an arbitrary number of

alleles, we just need to place the rows of aG at the correct

position of a square matrix and to then add to it the rows

for the mean and the dominance effects. These rows are

actually the same as the ones in the functional formulation

of NOIA from the reference of l, (SF)-1 (see again Yang

and Álvarez-Castro 2008 for details). We substitute the

scalars of the rows for the additive effects in (SF)-1 by

zeros and call Sld to the resulting matrix. More explicitly,

Sld ¼ Diag Dl
ið ÞðSFÞ�1

, where Dl
ið Þ is a vector with a unity

in the first position and equal to (Di) otherwise (see details

on (Di) below).

Matrix C, of dimension (r - 1)n, is built with unities at

the positions ij, given that we want to place the ith row of

BA as the jth row of (SS)-1, and zeros otherwise. The

algorithm to build the matrix C can more precisely be

described recursively. Starting from the C matrix for two

alleles, (0, 1, 0)T, we perform two additions in each step

towards considering one more allele (r from r - 1). First,

we add on zeros below the existing columns up to getting

to have n rows. Finally, we add on a new column to the

right of the previous matrix, all positions in it holding zeros

except from the one corresponding to the first new row of

the new matrix, which must hold a unity.

We also note here that the matrix H needed for

expression (14) can be easily obtained from matrix C. In

fact, the second column of matrix H equals the sum of the

columns of matrix C. The first column of H is a unity

followed by zeros, and the remaining third column is such

that there is one only unity in each row of H. This third

column of H actually gives the vector (Di) for expression

(8). For instance, for r = 3 alleles and thus n = 6 geno-

types, the matrices B, C, H and Sld are simply:
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B ¼
�1 1 0

�1 0 1

� �
; C ¼

0 0

1 0

0 0

0 1

0 0

0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

H ¼

1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
;

Sld ¼

p11 p12 p22 p13 p23 p33

0 0 0 0 0 0

�1=2 1 �1=2 0 0 0

0 0 0 0 0 0

�1=2 0 0 1 0 �1=2

0 0 �1=2 0 1 �1=2

0
BBBBBBBB@

1
CCCCCCCCA
:

ð27Þ

A matter of notation

Here, we discuss the need of superscripts for genetic effects

with multiple alleles, in contrast with the case of two

alleles. The statistical formulation of genetic effects (6)

leads to the decomposition of each genotypic value in

terms of an additive contribution from the population mean

and a dominance deviation, Gij = l?aij ? dij, as in

expression (3). In the two-allele case (1), the values aij and

dij come from multiplying the corresponding scalar of the

second and third columns of the matrix S times the additive

and the dominance genetic effects of the E vector (a and d),

respectively. More to the point, the additive contribution is

aij = ai ? aj, which is, under random mating, the breeding

value of the genotype ij.

For considering the decomposition of the genotypic

values of a multiallelic genetic system, however, we have

to take into account that the E vector comprises more than

one additive and one dominance effects—it actually com-

prises the n dominance effects and (r - 1) of the existing

n additive genetic effects, the remaining (r - 1)(r - 2)/2

of them being linear combinations of these—for further

details see Yang and Álvarez-Castro (2008). Here we want

to stress that the additive and the dominance genetic effects

are properties of pairs of alleles, which is unnecessary to

make explicit in the notation for two alleles (since all

genetic effects are related to the same pair), but necessary

for more general formulations.

Now, the easiest way to denote the additive and domi-

nance genetic effects for a particular pair of alleles, e.g.

i and j, would probably be aij and dij, but this is actually the

way in which we are already denoting the breeding values

and the dominance deviations in the decomposition of the

genotypic values (3) in vectors aG = (aij) = Nag and

dG = (dij). Therefore, we denote the statistical additive and

dominance genetic effects in E using superscripts instead

of subscripts: aij and dij.
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genetic architecture of body weight in chicken reveals the impact

of epistasis on domestication traits. Genetics 179:1591–1599

Lewontin RC, Ginzburg LR, Tuljapurkar SD (1978) Heterosis as an

explanation for large amounts of genic polymorphism. Genetics

88(1):149–169

Li CC (1967) Genetic equilibrium under selection. Biometrics

23(3):397–484

Li CC (1976) First course in population genetics. The Boxwood Press,

Pacific Grove

Lynch M, Walsh B (1998) Genetic analysis of quantitative traits.

Sinauer, Sunderland

Mao Y, London NR, Ma L, Dvorkin D, Da Y (2006) Detection of

SNP epistasis effects of quantitative traits using an extended

Kempthorne model. Physiol Genomics 28(1):46–52. doi:

10.1152/physiolgenomics.00096.2006

Phillips PC (2008) Epistasis–the essential role of gene interactions in

the structure and evolution of genetic systems. Nat Rev Genet

9(11):855–867. doi:10.1038/nrg2452
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