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Large collections of annotated single-cell RNA sequencing (scRNA-seq) experiments
are being generated across different organs, conditions and organisms on different
platforms. The diversity, volume and complexity of this aggregated data requires new
analysis techniques to extract actionable knowledge. Fundamental to most analysis
are key abilities such as: identification of similar cells across different experiments and
transferring annotations from an annotated dataset to an unannotated one. There have
been many strategies explored in achieving these goals, and they focuses primarily
on aligning and re-clustering datasets of interest. In this work, we are interested in
exploring the applicability of deep metric learning methods as a form of distance
function to capture similarity between cells and facilitate the transfer of cell type
annotation for similar cells across different experiments. Toward this aim, we developed
MapCell, a few-shot training approach using Siamese Neural Networks (SNNs) to learn
a generalizable distance metric that can differentiate between single cell types. Requiring
only a small training set, we demonstrated that SNN derived distance metric can perform
accurate transfer of annotation across different scRNA-seq platforms, batches, species
and also aid in flagging novel cell types.

Keywords: single cell RNA seq, neural network, machine learning, deep metric learning, Siamese architecture

INTRODUCTION

The field of single cell analysis has evolved rapidly over the last few years primarily driven
by the development of single cell RNA sequencing (scRNA-seq) which has led to community
efforts like the Human Cell Atlas (Regev et al., 2017) to enable a better appreciation of
heterogeneity in complex tissues. This is paving the way for a better understanding of normal
and pathological developmental programs. Many community tools have been developed that
categorize heterogeneous populations of cells, based on their gene expression, into types and states
(Kiselev et al., 2018; Aran et al., 2019; Barkas et al., 2019; Deng et al., 2019; Tan and Cahan, 2019;
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Zhang et al., 2019). Much of the effort conducted by these studies,
involves careful clustering of cells and using reference markers
to annotate cell types and states. This is often a time-consuming
process and the reliance on a clustering process can be subjective
(Aran et al., 2019). A neural network approach could address
these challenges but standard deep learning techniques require
large numbers of training examples to develop robust models. It
is often not possible to obtain sufficient training examples to learn
models for rare cell-types or disease cell states.

In this work, we are interested in exploring deep metric
learning methods to train models that map cells into an
embedded space where distances in this space preserves cell-cell
similarity. Unlike a cell type classification objective, deep metric
learning, seek to not only maximize inter cell type distance but
also to minimize intra cell type distance and in so doing achieve
a precise function for capturing the similarities/dissimilarities
between two cells. Toward this aim, we developed MapCell, a
deep metric learning based method for classifying cell types at the
single-cell level by identifying similar cells, transfer annotation
from labeled cell types and also facilitate the discovery of
previous unseen cell types. We employed few-shot learning
with a Siamese Neural Network (SNN) architecture, to learn a
model that differentiate between pairs of cells using their gene
expression profiles as input. Few-shot learning is a classification
task where one or very few examples of each class is used to
train a model to make predictions of many unknown examples.
SNNs is a popular architecture that has been developed for this
task because it benefits from joint learning of both a feature
representation space and a distance metric, requiring few training
examples to generate robust models. Siamese networks have been
used in areas like signature verification (Bromley et al., 1993),
image recognition (Koch et al., 2015) and facial recognition
(Taigman et al., 2014), where the number of training examples
for each individual class is limited and the number of classes is
dynamically changing. This makes data collection and retraining
costly. We find an analogous challenge in distinguishing cell
types and states which can exist along a continuum and
finding sufficient training examples for each state is difficult for
standard architectures.

To demonstrate the use of SNN for single cell analysis, we
focused on a comprehensively labeled dataset which cataloged
single cell data of myeloid cells originating from matched
peripheral blood and tumors of seven non-small-cell lung cancer
(NSCLC) patients (Zilionis et al., 2019). We trained the SNN
using 30 training examples per cell type. The process of training,
deployment and validation of SNN distance metric on scRNA-
seq expression data generates a reduced dimension embedding
space that we used to visualize the similarities between cells.
We observed that cells from types which are not represented
in the training data result in consistently large distances during
when compared pairwise with cell types represented in the
training data, a signature which we subsequently explored for
novel cell type detection. We also showed that the learned
distance metric is generalizable. This is reflected when cells
from cell types not represented in the training set can be
distinguished from each other by projecting into the embedding
space. Further refinement of the model can thus be performed

by adding new reference cell-types into the embedding space
without additional re-training of the model. We also demonstrate
the ease of training new models by training embedding spaces
for each patient in the dataset. The patient specific embedding
space serves as a form of a digital twin that captures the
personalized information of cell types or states. When using
different patient derived models to annotate cell from a
single reference patient, these patient derived models were
consistent in annotating common cell types and differences only
arise when particular cell types are missing from the patient
specific models.

Deep metric learning methods can also scale beyond the
number of cell types present in a single tissue and aid in the
transfer of annotation from large scale reference atlases. We
showed that a model derived from Human Cell Landscape (HCL)
dataset (Guo et al., 2018) which consists of a wider survey of
843 cell types from 60 human tissue types was consistent in
annotating cell types of peripheral blood when compared to a
model trained primarily on peripheral blood cell data. Lastly,
we demonstrated the generalizability of the cell type annotation
process across different species (mouse vs. human). By using
orthologous genes between mouse and human as the features, it
is possible to annotate cell types of single cell mouse data using a
model trained from human data.

RESULTS

A Siamese Neural Network Architecture
for Single Cell Gene Expression
The network architecture employed in this study is illustrated
in Figure 1. Our SNN consists of two identical subnetworks
with shared weights. This subnetwork consists of a 3-layer
neural networks with 512, 512, and 32 nodes, respectively.
Dropout layers are introduced between layers to improve the
generalizability of the embedding space.

To prepare the inputs for training, the counts of the most
highly expressed gene is used to scale all other genes to ensure
that input values are scaled between [0, 1]. Pairs of cells across
cell types were fed into one of two identical subnetworks and
optimization was performed using a contrastive loss function.
The training process can be visualized by examining the output of
the last layer composed of 32 neurons using heatmap and UMAP
dimension reduction visualization (Supplementary Figure 1).
The NSCLC (Zilionis et al., 2019) training set contains the
same cell types originating from different tissues: peripheral
blood and tumor. In the initial training epochs, cells from
different cell types are already differentiated in the final neural
net layer. Similar cell types found in different tissues were
resolved as training further progressed. For example, B-cells
from peripheral blood and tumor, were clustered together in
epoch 1 but subsequently resolved in epoch 9 (Supplementary
Figure 1A). Similarly, in the embedding space, tumor NK and
T cell were more similar to each other than their peripheral
counterparts in epoch 9 but subsequently resolved by epoch 100
(Supplementary Figure 1A). We can also observe the firing
patterns of the neural network using a heatmap representation
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FIGURE 1 | Architecture of MapCell Siamese Neural Network (SNN). (A) (Top) SNN architecture (Bottom) Low-dimensional representation of embedding space.
(B) SNN inference: Each cell in the sample set is compared using the SNN metric to a set of reference cells used in the learning stage. The assignment is made to
the closest reference type. Cells that do not meet the threshold are flagged as novel cell types. These novel types can be reincorporated into the training set to
generate a new SNN or included in the reference set without training.

(Supplementary Figure 1B). We see that firing patterns become
more discrete as training progresses. The heatmap also reflects
the complexity of the learned neural network. The number
of unused nodes (blue squares in Supplementary Figure 1B)
suggests a less complex network could be employed for further
performance optimization.

Employing MapCell for Cell-Type
Annotation
To illustrate the generalizability of using SNN distance, we used
the aforementioned model trained on the inDrop scRNA-SEQ
platform (Klein et al., 2015) to annotate a PBMC10K dataset
generated by the 10X Chromium system, a different scRNA-seq
droplet platform (10X Genomics). The 10X Chromium dataset
included simultaneous cell surface protein measurements using
oligonucleotide-tagged antibodies that provide an orthogonal
validation of cell identity.

The MapCell inference process compares each cell in the
PBMC10K evaluation set to 20 reference cells used in the
training set. The cell type with the closest average distance is
assigned (Figure 2A). Five major cell-types labels (bT cells, bB
cells, bMonocytes, bNK, and tPlasma cells) from the reference
dataset were mapped onto the evaluation data (Figure 2B). The
corresponding annotated cells clusters exhibited the canonical
cell surface makers as illustrated by overlaying protein expression
levels onto cells in the RNA defined t-SNE space (Figure 2C).
The protein boundaries between cell clusters agree with the cell

type boundaries annotated by the MapCell. Notably, for T Cells, B
Cells, Monocytes and NK cells, the PBMC10K cells were mapped
to the corresponding blood-derived cell types rather than the
tumor-derived cell types. All plasma cells were mapped to tumor-
derived plasma cells because the reference contained only this
source of plasma cells.

Next we trained a model based on PBMC data generated by
the HCL (Guo et al., 2018) using a Microwell-seq platform to
annotate a set of PBMC data generated on seven different scRNA-
seq platforms (Ding et al., 2019; Figure 2D). First the data was
processed using the SCTransform batch correction function in
Seurat (Stuart et al., 2019). For illustration, we highlighted the B
cell cluster after batch correction (Figure 2D). Notably, platform-
specific B cell clusters were observed before batch correction
(Figure 2E). Despite this, we found that MapCell, which takes
scaled raw cell counts as input, was batch invariant and able
to identify B cells across different scRNA-seq platforms. On a
desktop with a GPU, MapCell takes∼30 s to annotate 10,000 cells
(Supplementary Figure 2).

Siamese Neural Network Distance Is a
Better Contrastive Distance Metric Than
Cosine and Euclidean Distances
We contrasted the SNN distance metric against commonly used
Euclidean and cosine distance metrics using the NSCLC (Zilionis
et al., 2019) model. Twenty cells from each independently
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FIGURE 2 | Workflow of the annotation of cell types using MapCell. (A) Each cell to be annotated (10X Genomics sample) is compared to 20 cells from each
reference cell type using the learned MapCell model. The reference cell type with the closest average distance is assigned to the cell. (B) t-SNE plot of Siamese
Neural Network (SNN) annotated scRNA-seq data from 10X genomics. (C) Cell surface protein expression mapped onto the respective cells in the same t-SNE
space. Protein markers exhibit similar boundaries as the predicted annotations by SNN model. (D) (Left) Annotating a set of collated PBMC single-cell RNA data
generated from with seven different methods using a SNN model trained on the Microwell-seq HCL PBMC dataset. (Middle) UMAP of combined data after
SCTransform. Annotation was provided by Seurat. (Right) UMAP highlighting B Cell cluster after SCTransform. (E) (Left) UMAP of combined data before
SCTransform. (Middle) UMAP highlighting B cell annotated cells before SCTransform. Indicated are clusters representing platform-specific batch effects (Right)
UMAP highlighting SNN annotation of the B cell clusters before SCTransform.
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annotated cell type were compared pairwise against twenty
cells across other cell types (Figures 3A–C). For cosine and
Euclidean distance metrics, we picked the top 1,000 and 10,000
most variable genes while for SNN, all genes were used. We
evaluate SNN’s ability to resolve cell types by the average distance
between pairs of identical cell types and pairs of dissimilar
cell types. We found that SNN distances for similar cell pairs
were much smaller than the next dissimilar cell pair. This drop
off is consistently observed for SNN distance metric across
cell types. We quantified this using a signal-to-noise statistic
(Figure 3D). The gain in signal is most pronounced when
comparing red blood cells (RBC) across all other cell types
(Figures 3B,D). As RBCs are biologically distinct from the other
white blood cell types, we see a much smaller distance for RBC-
RBC comparisons in contrast to other cell types. This is also
reflected in the lower signal-to-noise ratio for similar cell types.
This is especially evident for T and NK cells. While cosine and
Euclidean distances were unable to unambiguously distinguish
between T and NK cells types, SNN defined a clear demarcation
between the two cell types while still ranking them as the
two closest cell types (Figures 3A,D). We also found that for
Euclidean and cosine distance metrics, the number of variable
genes pick can impact cell type identification. For example,
when 10,000 genes were used, the Euclidean distance metric
failed to distinguish bNK from bT cells. This demonstrates the
advantages of SNN where careful feature selection is unnecessary
for optimal performance. This is important for use cases where
cell types or states present may have different number of
expressed genes. We also found that this feature of SNN was
useful for distinguishing different cell states. It is known that
lymphocytes that infiltrate the tumor have a distinct cell state
from lymphocytes found in peripheral blood (Gentles et al.,
2015). With both Euclidean and Cosine distance, tumor B-cells
(tB cells) were not well-distinguished from peripheral B cells (bB
cells) while SNN distance clearly distinguished tB cells from bB
cells (Supplementary Figure 3). Taken together, we have shown
that SNN distance is a robust metric for both cell type and cell
state comparisons.

Identifying Novel Cell Types
As larger surveys of single-cell experiments are performed,
we need to account for cell types and states that are not
present in the training data set. For the purpose of refining
the annotations and MapCell model, it is more desirable to
flag these novel cells rather than assign them to the closest
cell type found in the training set. We examined whether the
SNN distance metric can be used in novelty detection. We
selected cells from a patient with three cell types (Type II
cells, endothelial cells, and patient-4 specific cells) that were
not present in the training set and compared them against the
reference cell types in the training data (Figures 4A,B). Predicted
cell types were largely in agreement with human annotations
(Figure 4C). We defined a novelty filter that will flag a cell as
novel when the minimum distance computed across all cells
is <2 standard deviation from the rest of comparisons. We
found five regions that contained a high number of novel cell
types. Expectedly, three of the five regions contained cell types

not seen in the training set (black boundary, Figure 4D). The
other two regions were found in the MoMacDC and T-cell
clusters (green boundary, Figure 4D). Upon closer examination,
we found that the MoMacDC cluster was comprised of clusters
of subtypes (Zilionis et al., 2019) that were under-represented
in the training set. As a result, the network did not recognize
these cells as belonging to the MoMacDC cluster. We trained a
new network that used the subtype labels to generate additional
pairs of cells from these subtypes for training. This resulted in
a more comprehensive training set and a better classification
result (Figure 4E). The MoMacDC and T-cell clusters were
no longer flagged as novel while the unseen training examples
remained flagged as novel (Figure 4F). We used an alluvial
plot to visualize the change in mapping of cell annotations
after subtype training (Supplmentary Figure 4A). In agreement
with the UMAP visualization, we see that after training on the
new training set, we find a better mapping of the tMoMacDCs
and tT cells (Supplementary Figure 4B). This demonstrates a
process where a novel cell type can be automatically flagged
by the MapCell for human inspection. This cell type can then
be incorporated into the reference database for futher training.
We did also observe, however, that a minority of the tTcells
which were classified correctly before, were misannotated to
a different cell type. This could reflect the quality of the
underlying published sub cell type annotation or insufficient
sampling of training examples from the subtypes that led to
overfitting of the model.

Siamese Network Derived Embedding
Space Can Distinguish Unseen Cell
Types
Requiring a retraining process is a computationally intensive
process. We explored whether the contrastive nature of Siamese
network learns a general function that can be applied to new
cell types without re-training. The intuition is that if sufficient
diversity of gene expression measurements across different cell
types are seen, the network would learn to weigh different sets
of genes representing pathways. These would enable new cell
types, which have different combinations of pathways expressed,
to be compared. Since there are unique cell types to particular
patient groups in the Zilionis study (Zilionis et al., 2019),
we trained on one patient set (Supplementary Figure 5A)
and projected cell types that the network was not trained
on into the SNN-derived embedded space (Supplementary
Figure 5B). We observed that the learned embedded space
retains a general capacity to distinguish previously unseen cell
types during training into separate clusters. To further validate
the generalizability of the feature vectors in this embedding
space, we generated a K nearest neighbor graph network
using 20 cells from the trained cell types. We added to this
graph the novel cell types that were not previously used
for training and showed that distinct new cell types formed
new clusters (Type II cells, Endothelial cells, Fibroblasts). In
contrast, enucleated RBC from tissue or peripheral fraction
were indistinguishable reflecting their biological similarity
(Supplementary Figure 5C).
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FIGURE 3 | Contrasting Cosine and Euclidean against Siamese Neural Network (SNN) distance for T-cells, RBC, and NK cells. (A–C) Boxplots showing distribution
of pairwise distance scores between each annotated cell type from the test set against annotated cell type from the training set. For cosine and euclidean distances,
the top 1,000 and 10,000 most variable genes were used to calculate pairwise distance scores. For SNN, all genes were used as input to neural network. The x-axis
is ordered from left to right by the SNN distance values in ascending order. Colored red box indicates the reference cell type with the average closest distance.
(D) Boxplot showing the distibution of signal-to-noise values for each predicted cell type.

Scaling MapCell From Small to Large
Models
Each patient profiled in the lung cancer dataset (Zilionis et al.,
2019) contained different numbers and diversity of cell types.
To test the robustness of MapCell models, we trained a unique
model for each patient, leaving one patient out for validation.
We treated each individually trained model as a pseudo-
digital twin of the original patient. An alluvial plot is used to
visualize the consistency and differences in annotations using
personalized embedding spaces (Figure 5). We compared these
small personalized models against a large model developed with
a generalized embedding space that is capable of contrasting
a large diversity of cell types. The HCL (Guo et al., 2018)
comprises a wide survey of cell types derived from about 50
different tissues. There are close to 700,000 cells in the data
with 384 cell types and we sampled cells from cell types that
are represented by at least 30 cells. The sampled cells were used
to generate pairs of contrasting cells for training. We used this
HCL model to annotate the held-out sample. This demonstrated
the scalability of the MapCell architecture and its capability in
accommodating cell types numbers on the order of an entire
human cell atlas. Concordance of the major cell types were
observed when comparing the annotations from the patient’s
model as well as the HCL model. We also observed that the HCL
model did not distinguish between T-cells of blood and tumor
origin likely because these contrasting cell types were absent in
the HCL dataset.

Generalizing MapCell for Interspecies
Annotation Transfer
While the availability of single-cell genomics makes it possible to
profile cells form different organisms, it is still a costly endeavor
to generate atlases for multiple non-model organisms. Next we
tested whether the MapCell can be used to transfer annotation to
a related species. Mouse genes were mapped to human orthologs
and MapCell prediction was performed on single-cell RNA-seq
data of PBMC from a healthy mouse using a human reference.
We showed that we could successfully annotate the mouse sample
using the MapCell trained from human data (Figure 6).

DISCUSSION

We demonstrated the application of Siamese networks as a
similarity function and demonstrated its usage in annotating
cell types from single-cell RNASeq experiments. Training with
this neural architecture requires only a small number of
representative cells (30 in this study), making it ideal for
learning of cell features of potentially rare cell types or transient
states. Despite the small training set, we demonstrated that
the MapCell can perform predictions across different scRNA-
seq platforms, identify novel cell types and transfer annotations
across species. Our SNN-derived distance metric is robust
compared to Euclidean and cosine distance. It can serve as a
generalized metric for making comparisons for cell-types not
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FIGURE 4 | Using Siamese Neural Network (SNN) distance for novelty detection. (A) TSNE plot of single-cell RNA-seq NSCLC sample colored by cell types. Cell
types not present in the training data set are labeled in boxes (tRBC, patient-4 specific cells, endothelial cells, Type II cells). (B) TSNE plot of the same data.
Highlighted in blue and red are the cells which were classified as cell types found and not found in the training set, respectively. (C) TSNE plot colored by SNN
predicted cell types. (D) TSNE plot colored by SNN novelty filter. Cells marked by black outline are flagged as novel cells not seen in training set. Cells marked by
green lines are flagged as novel cells seen in training set. Callout box are the MoMacDC cluster colored by annotated subtypes. (E) TSNE plot colored by cell-type
classification after re-training to include different sub-celltypes from MoMacDC cluster. (F) TSNE plot color by SNN novelty filter after re-training with sub-celltype
MoMacDC examples.
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FIGURE 5 | Alluvial plot of a single patient sample annotated using individually trained models derived from other patients and the Human Cell Landscape (HCL)
model. Each column reflects the annotation of patient 1 data by various trained models using the SNN architecture. The leftmost column reflects annotations by
Siamese Neural Network (SNN)-Human Cell Landscape model. The second column represents the original annotation for patient 1. The remaining columns
represents annotations by models trained with different patient data (p2, p4, p5, p6, p7, p8). Cell Types are colored with respect to p1 (ground truth) annotations.

FIGURE 6 | Inter-species annotation transfer. (A) Transfer annotation from human to mouse. Mouse genes were mapped to human orthologs and MapCell
prediction was performed on mouse scRNA-seq data using the NSCLC model. (B) (Left) Published annotation of mouse scRNA-seq data (Right) SNN predicted cell
types using human reference.

seen in the training set. This allows the inclusion of cell-types
in the reference database without the need for re-training.
Furthermore, the SNN distance metric can be integrated with
other machine learning algorithms that employ distance metrics
such as K-Nearest Neighbor (KNN) for rapid deployment. In our
work, we have deployed models comparing different patients as
a means to detect private cell types. It is conceivable that such an
approach can be applied for a single patient comparing multiple
timepoints against a baseline model. Such a baseline model can be

thought of as a digital twin of the patient capturing the diversity
of the patient cell types and states in the trained embedding space.

While we tried to demonstrate a breadth of possible single
cell analytical scenarios possible within the Siamese framework,
we recognize there is a limitation in our exploration. There
remains many other similar architecture types such as the triplet
network and a wide range of loss functions e.g., Quadruple
Loss, Structured Loss, N-paired Loss. These other networks
can also be paired with a variety of different sample selection
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scheme for even more efficient training. Nevertheless, we believe
that our characterization with a relatively straight forward
implementation of Siamese based neural network have validated
the potential for greater exploration of using one-shot deep
metric learning approaches toward understanding single cell
sequencing data. In our future work, we foresee advances in single
cell technologies that allows for simultaneous measurements
of different data modality from a single cell such as protein
marker expression, chromatin occupancy and DNA mutations.
This diversity in single cell data results will result in novel
situations and we believe deep metric learning approaches
can help extract knowledge from the volume, diversity, and
complexity of such datasets.

MATERIALS AND METHODS

Siamese Network Architecture and
Training
Architecture
The architecture of the Siamese network as its name implies
has two inputs vectors X1, X2 that feeds into a common neural
network that shares the same weights W. This dense fully
connected neural network consists of an input layer with 33,694
nodes, each corresponding to a specific gene, followed by 2 fully
connected layers each with 512 hidden nodes and a final 32 nodes
output layer. The final output layer represents a 32-dimension
feature space that is intended for separation of different cell
types. A custom distance layer takes the transformed vectors and
calculates the Euclidean distance in this embedded space:

Dw (X1, X2) =
2

√√√√ 32∑
i = 1

(X1 − X2)
2

Generalizability
Between each fully connected layer, an additional dropout layer
at a rate of 0.5 is implemented during training to ensure
generalizability of the network during implementation. This
network is implemented and trained using Keras and TensorFlow
in both R and python environments.

Training With Contrastive Loss
Thirty cells are randomly selected from each cell type. Selected
cells are split into training (20 cells per type) and validation sets
(10 cells per type). Across the selected 20 cells of each types, pairs
are generated: pairs originating from same cell type are labeled as
1 and pairs of cells from different cell types are labeled as 0. Gene
counts of each cell are normalized by scaling with the maximum
gene count of the cell. The binary cell labels Y, and Euclidean
distance of the two-feature vector derived above Dw is fed into
the contrastive loss function:

Lw (Y, Dw) = (1− Y)
1
2
(Dw)2

+
1
2
{

max
(
0, margin− Dw

)}2

This loss was back-propagated to calculate the gradient and
RMSprop (Hinton et al., 2012) was used to update the weights.

Visualization of Training Process
Visualization of the training process begins with calling back
the weights of the neural networks across the training epochs.
Weights corresponding to each training epoch are loaded, and
each cell’s gene expression vector are passed through the network,
where the final output of the embedding layer of a vector
length 32 for each cell are collected and reduced into a two-
dimensional space using UMAP. Individual firing of each of
the 32 nodes in the final layer of neural networks are also
visualized using heatmaps using the R package ComplexHeatmap
(Gu et al., 2016).

Comparison of Siamese Neural Network
Distance With Euclidean and Cosine
Distance
Twenty cells are randomly selected from each of the annotated
cell clusters of reference patient data. Each of these cells are paired
with 20 other cells from the other annotated clusters. The distance
between the 20 pairs of cells across the different annotated cell
types are calculated using the SNN, Euclidean and cosine metric.
The resulting distance for the distance metric is visualized using
bar graphs in Figure 2. In order to quantitate the contrast in
distance between the exact match and second-best match in terms
of annotated cell types, we calculate the Signal to Noise Ratio
between the top two matches:

SNR =
|µ1 − µ2|

|σ1 + σ2|

where µ1 and µ2 represent the average distance of 20 cells for
each pair of cell type, respectively, and σ1 and σ2 represent the
standard deviation of the same 20 cells.

Validation of Siamese Neural Network
Distance Usage in Annotating External
Datasets
PBMC3K dataset was obtained from the 10X genomics.1

PBMCSCA data set was obtained from the SeuratData (Stuart
et al., 2019) distribution. The PBMC3K dataset contains both
gene expression and cell surface protein expression data from
single cells. Each cell gene expression vector is matched up
accordingly to the gene inputs that the Siamese model was trained
on. Each of the external single cell gene vector is then paired
against the trained reference cell types and fed into the Siamese
network to obtain the SNN distance. The cell type of the reference
cell group that correspond to the lowest SNN distance is then
used to annotate the cell.

Validation of Siamese Neural Network
Distance Usage in Annotating Different
Species
Single cell gene expression data from mouse samples in the same
study was mapped to orthologous human genes using Mouse

1https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/
5k_pbmc_v3
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Genome Informatics (MGI).2 Human genes with no known
mouse orthologs are set to zero. This transformed input is then
paired against the trained reference cell types and fed into the
Siamese network to obtain the SNN distance. The cell type of the
reference cell group that correspond to the lowest SNN distance
is then used to annotate the cell.

Generalizability of Siamese Trained
Embedding Space in Distinguishing Cell
Types
Single cell gene expression vector from cell types not used during
the training of the model were selected and embedded using
the prior trained embedding neural net. KNN is then performed
on the feature vectors to generate a KNN graph network.
Visualization of separations in the novel cell clusters within the
network is achieved by using Fruchterman-Reingold force layout.

Generation and Annotation Using Human
Cell Landscape Atlas as a Reference
Raw data was obtained from the HCL portal3. Using the cell
annotations provided, we tallied the different cell types within
each tissue type. Only cell types, within each tissue, that have
at least 30 cells were used for training. Twenty cells are sampled
from each cell type to generate pairs for training. The remaining
10 cells are used for validation. A binary indicator vector of same
length to the number pairs is also generated where 1 indicates the
pair of cells are drawn from the same cell type and 0 otherwise.
The prepared data of cell pairs is fed into the SNN architecture as
defined earlier.

For training the HCL dataset, the computational demand on
hardware memory necessitated running the training on an AWS
p2.large instance. All other training runs were performed on a
local desktop with a RTX-2080 GPU. Callbacks were made to
save the weights of the network at each epoch. To evaluate the
progress of the training, a Siamese accuracy metric defined by
arbitrarily setting the Euclidean distance at 0.5 where a distance
lower than 0.5 is deemed that the cells are derived from the same
cluster and conversely, distances greater than that are determined
to be cells from different cell cluster. Weights from the epoch
that gives the highest achievable training and validation accuracy
are retained for deployment during annotation phase. Using the
learned embedding from the network, the dimension reduced
vectors of these reference cell groups are used to generate a
reference KNN network. For the annotation phase, each of single
cell vector from the Zilionis dataset is projected into the same
space, and annotation is transferred using K nearest neighbor
with K set at 3.

Generation of Digital Twins via
Embedding Space of Siamese Neural
Network
Using the same process of training the HCA model, the process
is repeated across each of the patients in the Zilionis dataset.

2http://www.informatics.jax.org/downloads/reports/HMD_HumanPhenotype.rpt
3https://db.cngb.org/HCL/

A different embedding space is derived from each of the patient’s
trained network. Each of these embedding spaces is used to
annotate the same held-out patient test dataset. Comparisons
of the resulting cell type annotation from using the different
embedding schemes are visualized using alluvial plots in R using
ggalluvial package.

Interspecies Annotation Using Siamese
Neural Network
To use the human trained SNN model for mouse annotation,
we first obtained the mouse-human orthologs from MGI (see
text footnote 2). Single cell RNA-seq data from mouse with a
human orthologs are mapped to the same input using the SNN.
The rest of the human gene inputs with no corresponding mouse
orthologs are set to zero. The resulting inputs are compared to
the human reference cell with known annotations and the three
nearest reference human cells in the embedded space identified
by K nearest neighbor were used to annotate the mouse cell.

Code and Application Programming
Interface
Sample code and trained models described in this paper are
available for download at https://github.com/lianchye/mapcell.
We have also hosted the trained model on AWS and provided an
application programming interface (API)4 that abstracts away the
need for deployment for annotation. Each http GET request will
send a JSON formatted single cell gene vector to the API which
will annotate a single cell within 300 s, below the timeout limit
(900 s) of AWS lambda functions. While this cloud deployment
scheme, will be slower in deployment compared to a local server
model, we believe that a cloud deployment allows for much easier
access to the trained model and has the scalability to better serve
the wider community.
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Supplementary Figure 1 | Visualization of training phase of Siamese Neural
Network (SNN). (Top Row) Umap visualization of the embedding space projection
in the last neuronal output at different training epochs. Example cell types that are
better resolved, as measured by increased spatial separation in the embedding
space over increasing training epochs, are indicated with arrows. (Bottom Row)

Heatmap representation of the neural network firing pattern where each row is a
cell and each column a single neuron in the final output layer.

Supplementary Figure 2 | Annotation performance of MapCell. Speed of
MapCell annotation on a local desktop with a RTX-2080 GPU.

Supplementary Figure 3 | Contrasting Cosine and Euclidean against SNN
distances for distinguishing cell state. (A) Peripheral B cells (bB cells) and tumor
derived B cells (tB cells) from the test set are compared against the reference cell
types in the training set. (B) Boxplot showing the distibution of signal-to-noise
values for the different distant metrics for blood and tumor derived B-cells.

Supplementary Figure 4 | Alluvial plot depicting the switch in novelty status and
annotation status when incorporating left out subtypes during training of SNN
models. (A) Mapping of cell types based on SNN trained on major cell type
selected training examples. (B) Mapping of cell types based on SNN trained on
minor cell type selected training examples. Addition of omitted minor clusters of
cell types redirects the annotations from novel to identifiable, and each to its
respective expected human annotated states. The process depicts the capability
of the SNN network to be used as an novelty detector as well as the plasticity of
such a process to allow for subsequent update of novel classes.

Supplementary Figure 5 | Siamese derived embedding space. (A) K-nearest
neighbor (KNN) graph network of Siamese Network embedding space trained on
a single patient. (B) Projection of cell types not trained in the initial network onto
embedding space. (C) KNN graph network of Siamese Network embedding
space with new cell types incorporated.
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