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With the world population projected to grow significantly over the next few decades,

and in the presence of additional stress caused by climate change and urbanization,

securing the essential resources of food, energy, and water is one of the most pressing

challenges that the world faces today. There is an increasing priority placed by the United

Nations (UN) and US federal agencies on efforts to ensure the security of these critical

resources, understand their interactions, and address common underlying challenges.

At the heart of the technological challenge is data science applied to environmental

data. The aim of this special publication is the focus on big data science for food,

energy, and water systems (FEWSs). We describe a research methodology to frame in

the FEWS context, including decision tools to aid policy makers and non-governmental

organizations (NGOs) to tackle specific UN Sustainable Development Goals (SDGs).

Through this exercise, we aim to improve the “supply chain” of FEWS research, from

gathering and analyzing data to decision tools supporting policy makers in addressing

FEWS issues in specific contexts. We discuss prior research in each of the segments to

highlight shortcomings as well as future research directions.

Keywords: FEWs, GIS, sustainability, decision support systems models, ecosystems

INTRODUCTION

Human sustainability is one of the most pressing issues of the 21st century. Humans alter the
ecological, hydrological, and thermal characteristics of their environment through deforestation,
urbanization, transportation, modifications to landform and vegetation cover, and many other
infrastructure activities, resulting in an inextricable coupling of human and natural systems.
Continued population growth, climate change, and development have increased the intensities of
natural resource use and environmental degradation to levels that threaten the stability and security
of food, energy, and water system (FEWS) services. Unsustainable resource use leads to biodiversity
loss and natural resource degradation, with significant impacts on vulnerable populations.

The Food, Energy, Water Nexus is a UN1 framework emphasizing the interdependence between
food, water, and energy. Pressures or development in one area will affect the others (Biggs et al.,
2015; Leck et al., 2015; Smajgl et al., 2016). The study of FEWS’s interactivity is increasingly adopted
as a framework for research, technology, and policy to address ongoing sustainability concerns
that require multidisciplinary understanding of feedback loops and interactions between human

1http://www.unwater.org/water-facts/water-food-and-energy
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and natural systems (Hussey and Pittock, 2012; Ringler et al.,
2013). FEWS studies demand new and innovative scientific
approaches from complexity science that can address the
integrative, complex, and multi-scale interdependencies across
space and time and the dynamics of their interactions (Ostrom,
2007, 2009; Bazilian et al., 2011). FEWS research focuses on
understanding the interconnections among each system to derive
a comprehensive understanding of the causes and consequences
of changes within and across aspects of those systems. If the goal
is to generate a sustainable system, the FEWS nexus represents
points of overlap or conflict among the elements of those
systems necessary to create those outputs, with the ultimate
orientation toward “increasing efficiency, reducing trade-offs,
building synergies and improving governance” across the systems
(Hoff, 2011). The nexus approach seeks to identify mutually
beneficial options (i.e., “win–wins”) across various stakeholders,
including different human-use sectors, management bodies, civic
groups, and public–private partnerships.

Zaidi et al. describe two general techniques to modeling and
analyzing FEW systems: process based and data driven (Zaidi
et al., 2018). Process-based approaches rely on well-defined
mathematical relationships between known variables within a
system. Process-based models were historically favored when
a relationship was well-known between variables, but there
may be a lack of data availability. Hydrological models, for
example, frequently rely on physics laws of water movement (Jain
and Singh, 2017). By contrast, data-driven approaches do not
typically rely on underlying assumptions between variables but
do require a substantial amount of data as inputs, which may
be of limited availability depending on geography or context.
Typically, data-driven approaches are also quicker to develop and
less prone to error and uncertainty often found in process-based
models (Jain and Singh, 2017).

Only in recent years have data quality and availability
increased sufficiently enough to apply rigorous data-driven
analytics methods to more accurately understand the FEWS
nexus, making this a big data problem. Further, a comprehensive
analysis depends on knowledge and integration of several
different data types and sources. These include dynamic
georeferenced datasets, and ecological, economic, and social
processes based onmulti-scale, multi-temporal, andmulti-source
data. Remote sensing has become one of the most reliable and
consistent data sources for addressing societal problems in the
past decades.

With the use of quantitative approaches, the data can inform
models of ecosystem service flows and trade-offs to demonstrate
what is lost and what is gained under decision-making scenarios.
FEWS scenarios effectively allows for more accurate “what if ”
analyses. Moreover, modeled trade-offs can be projected over
space and time, providing essential information to guide long-
term sustainability analysis and planning. For example, what is
the impact of three different dam construction configurations on
fish migration and fish biomass in a time span of 5 years? The
trade-off analysis may enable the decision maker to choose the
dam configuration with the least reduction in fish biomass traded
off against the total number of fish species impacted over a 5-
year period. The scenario analysis has to be presented using the

right decision tools by way of visualizations. Despite the need for
this systems-level understanding, the collection, integration, and
synthesis of data pose challenges owing to different resolutions,
coverage, accuracy, and standards. Other practical challenges are
that FEWS policies have to service various stakeholders, leading
to a need for decision support systems requiring expertise in
translating science into policy and action.

As a case study in applications, this paper highlights our
ongoing work in Southeast (SE) Asia framed in the FEWS
context. SE Asia is a densely populated region consisting of
11 countries occupying 3.6% of the total land area of the
Earth, with around 9% of the world’s population. More than
one half of the population is rural, where agriculture and
aquaculture are primary occupations for more than one-third
of the total population of this region. SE Asia produces 9.5% of
the global market value of agricultural and fishery products. It
dominates global palm-oil production (>85%), fisheries (19%),
and aquaculture (14%) (Hishamunda et al., 2009; FAO, 2018).
In the last two decades, SE Asia has experienced massive
deforestation and land transformation owing to overexploitation,
agricultural expansion, and conversion to aquaculture. FEWS
concerns in SE Asia require an understanding and modeling of
systems-level interactions at many spatial scales. In this region,
water is at the heart of FEWS, critical to both food (agricultural
productivity and fisheries) and energy (hydropower generation,
biofuel crop productivity, and cooling in thermo-power stations).
Both water quality and supply are mainly dependent on forest
ecosystem services as well as climate (precipitation).

Figure 1 shows the FEWS framework for SE Asia. Energy
production impacts water quality and quantity, whereas
availability of water impacts food production and food
production impacts energy production. The connections
between the three elements of FEWS require systems approach.
The goal is to design and implement a methodology to utilize
freely available data, set up systems models, and provide tools for
FEWS decision for a variety of stakeholders. We further discuss
how the approach can easily be generalized to other regions
facing similar FEWS problems.

APPROACH AND METHODS

Understanding FEWS nexus depends on knowledge and
integration of several different data types and sources. The
resulting “big data” is characterized by the 5V’s: velocity, volume,
value, variety, and veracity (see Figure 2). With the use of
quantitative approaches, these data inform models of ecosystem
service flows and trade-offs to demonstrate what is lost and what
is gained under alternative decision-making FEWS scenarios.
Moreover, modeled trade-offs can be projected over space
and time, providing essential information to guide Sustainable
Development Goals and policy decisions.

With the opening of the Landsat archive in 2008 and the
continuation of Landsat and Landsat-like missions (i.e., Landsat
8 and Sentinel-2), we now have access to more observations at
moderate resolutions than at any time in the past. As a result,
we are now able to explore and more fully utilize the temporal
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FIGURE 1 | The FEWS (Food, Energy, Water Securities) framework for SE Asia.

FIGURE 2 | “Big data” is characterized by the 5V’s-Velocity, Volume, Value, Variety, and Veracity.

Frontiers in Big Data | www.frontiersin.org 3 April 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Pitts et al. Spatial Decision FEWS

FIGURE 3 | The general framework for FEWS studies in SE Asia.

dimension of Landsat data for characterizing surface conditions,
allowing us to detect more subtle kinds of environmental
change more reliably as well as concurrently as it is occurring.
Comprehensive histories of land cover can now be constructed
at the full range of spatial extents, ranging from local to global.
Specific National Aeronautics and Space Administration (NASA)
products related to FEWS include crop models, biophysical
models, groundwater, deforestation, carbon sequestration, and
climate scenario modeling that provide a wealth of data and

analytical products that can aid in transformative and resilient
policy and decision making.

There are many challenges in using earth science datasets
for understanding andmonitoring the food–energy–water nexus.
These include the following:

1. Challenges that arise owing to the inherent properties
associated with this data class, for example, diversity in
the type and characteristics of data due to different modes
of acquisition.

2. Specialized tools and techniques are needed to process large
quantities of data and distill the essential info that can be used
in systems modeling.

3. FEWS analysis has to service various stakeholders via user
decision support systems requiring expertise in knowing how
to translate science into policy and action.

4. FEWS studies need data relating to land cover, hydrology,
biodiversity, fish and agricultural food systems, energy
production, and economic, social and demographic data in

order to build the various scenarios; challenges that arise in
developing methods to combine these data types.

5. Expertise is needed to perform the initial data collection,
validation, and feature selection to choose the most relevant
data to FEWS. The general framework for our approach to
FEWS studies in SE Asia is shown in Figure 3, consisting of
geospatial data collection and integration, data and analysis,
and FEWS policy and decision making.

These challenges and limitations are explored at length in related
publications (Eftelioglu et al., 2016).

Data Types and Inputs
FEWS requires different types of data related to both natural and
human systems. Natural system data includes climate, hydrology,
soils, land cover, natural hazards, and other terrestrial processes
that are captured at a variety of spatial scales. To access these data,
there are a number of free data portal tools such as United States
Geological Survey (USGS) FEWS NET Data Portal2, Thematic
Exploitation Platform (TEP) European Space Agency (ESA)3,
and National Oceanic and Atmospheric Administration (NOAA)
View Global Data Explorer4 that can guide any user in the
selection of relevant imagery from extensive and publicly
available data collections (e.g., NASA EarthData). These data

2https://earlywarning.usgs.gov/fews
3https://tep.eo.esa.int/
4https://www.nnvl.noaa.gov/view/globaldata.html
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TABLE 1 | Satellite data sources utilized for the study.

Sensor(s) Dates of coverage Spatial resolution

Landsat 1–3 MSS 1972–1983 80 m

Landsat 4 and 5 Landsat TM 1982–2013 30m (120-m thermal band)

Landsat 7 Landsat ETM+ 1999–present 15m panchromatic, 30m multispectral, 60m

thermal

Landsat 8 (LDCM) Operational Land Imager (OLI), Thermal

Infrared Sensor (TIRS)

2013–present 15m panchromatic, 30m multispectral, 100m

thermal

Terra, Aqua MODerate Resolution Imaging

Spectroradiometer

2000–present 250–5,600 m

Terra ASTER (VNIR and TIR) SWIR 2000–present

2000–2008

15-m VNIR; 90-m TIR; 30-m SWIR

EO-1 Hyperion, Advanced Land Imager (ALI) 2000–present 10–30 m

Suomi NPP Visible Infrared Imager Radiometer Suite (VIIRS) 2013–present 375–750 m

Space Shuttle Endeavor Shuttle Radar Topography Mission (SRTM) 2000 30m (1 Arc-Second Global)

portals assist in the selection of satellite time series for the analysis
of a range of applications including agriculture, deforestation,
fires, land conversion, renewable energy production, and water
availability. Geospatial data including GIS, socioeconomic,
irrigation, land holding, fishing communities, forestry, and trade)
and other data can be obtained from the World Bank and
US/European State Department reports and related sites (e.g.,
Open Development, Cambodia). FEWS studies benefit from
utilizing the full spatial, temporal, and spectral domains of
Landsat, MODIS, and other sensors and NASA data products
to reveal the status and dynamics of human sustainability
through the patterns and sequences of land cover change in
two countries. FEWS studies can be facilitated through the use
of cloud-powered analytical capabilities of Google Earth Engine
(GEE) and several space agencies [NASA, NOAA, ESA, Japanese
Aerospace Exploration Agency (JAXA), etc.] data products
and tools.

The significance of Landsat, MODIS, and ASTER is
instrumental in FEWS analysis. Landsat documents the status
and dynamics of the Earth’s surface, building a continuous
time series of space-based reflectance data. Landsat imagery has
been used for a multitude of sustainability-relevant applications,
including classifying land cover at scales from regional to
national and global (e.g., Vogelmann et al., 1998; Townshend
et al., 2012), detecting periodic changes in land cover (Hansen
and Loveland, 2012), and aiding in understanding social,
economic, and ecological processes (e.g., Masek et al., 2000;
Cohen and Goward, 2004). In addition to Landsat, FEWS
studies can use other publicly available satellite data sources
with historical records (from 2000 to present) such as Terra-
Aqua MODIS, Terra ASTER, and EO-1 ALI/Hyperion. The
JAXA has been engaged since 2009 in producing yearly global
datasets of forested and non-forested areas at a spatial resolution
of 25m. These are products generated from JAXA’s ALOS-1
PALSAR (2006–20011) and ALOS-2 PALSAR (2014 to present)
imagery and are publicly available. Other geospatial datasets
include the recently released Shuttle Radar Topographic Mission
(SRTM) 1-Arc Second Global Digital Elevation Model (DEM)

with improved spatial resolution (30m) at no cost. Table 1 shows
the satellite data sources for this FEWS study.

Methods
Our FEWS data study for Cambodia includes three products
useful for policy and decision making: land cover classification
and mapping, coupled systems modeling of hydrological flows
over a 30-year period, and estimating FEWS metrics for
provinces of Cambodia. Each relies on approaches that are well-
suited to problems of big data. Some of these methods are
highlighted below.

Data Fusion
“Data fusion” represents many different approaches to linking
data sources by a common attribute or feature. Because FEWS
models are primarily geospatial, the common attribute is often
the specific location (e.g., zip code in the USA). Other FEWS
data may be only tangentially related to the primary attribute. For
example, we include the cost to construct a hydroelectric dam,
which we can link to dam locations but does not itself include a
spatial component.

Data fusion of satellite images is relevant in land use and
land cover classification, environmental monitoring, emergency
response, and change analysis. Typically, any single satellite
sensor is insufficient to provide all of the benefits offered by
combining different sensors (e.g., high spatial but low spectral
resolution vs. low spatial but high spectral, and optical vs.
SAR). Prior research (Zhang, 2010; Joshi et al., 2016) has
explored various methods to optimally fuse these images and
evaluate the quality of the image fusion by using clustering
to categorize regions in the fused images and comparing the
accuracies of the resulting categorization maps. These prior
research further discusses how improved results have been
achieved by combining principal component analysis (PCA) for
multi-resolution images and wavelet transformation to generate
multi-resolution representations and information injection. This
approach allows for dimensionality reduction to assist with
processing tasks and data integration as part of the input used
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in the Multiscale Model of Ecosystem Services (MIMES) model
(Dam Construction Impacts on Fisheries in the Tonle Sap) as well
as land cover change detection (Land Cover Change Detection—
Urbanization in Siem Reap). Prior research elaborates on further
description and applications of these methods.

We have linked our datasets by common attributes including
geospatial coordinates (e.g., lat and long), species, descriptive
location (e.g., wetland), and time period. In general, our corpus
of fused data is stored in a combination of PostgreSQL and flat
files for rapid access across platforms and is able to be handled by
Google Cloud Services as well as processed locally as needed.

Land Cover Classification
The primary objective of land cover classification is to create
spatial maps of the extent of land cover types, for example, forests,
water, and croplands, in a given region of study across time. Land
cover classification is essential for monitoring the dynamics of
diverse ecosystem resources, for example, forests, surface water,
and agricultural expanse. However, there are several challenges
in developing land cover classification algorithms that can work
with heterogeneous remote sensing datasets at multiple spatial
and temporal resolutions.

To overcome the challenge of land cover classification using
multi-scale data, multi-view learning offers a promising solution
because it naturally considers bags of instances as basic units of
classification, and every such bag of instances has an associated
class label (Dietterich and Flann, 1997). The objective of multi-
instance learning is to assign a single label for an entire bag of
instances, instead of assigning individual label to every instance,
even though features are being observed at the level of instances.

We rely on prior work, which explored variants of
multi-instance learning methods for distinguishing informal
settlements (slums) from formal urban settlements using very
high resolution (VHR) remote sensing datasets (Vatsavai, 2013;
Vatsavai et al., 2013). It is essential to use land cover classification
approaches that can leverage different views of the data, collected
from multiple sensor sources with varying data types and
characteristics, for comprehensive monitoring of ecosystem
resources. It is worth highlighting that even though ground-
truth labels are scarce in some land cover classification problems,
there is often an abundance of unlabeled data instances because
remote sensing observations are readily available across large
geographic regions and over long temporal periods. Several
further approaches for multi-view learning have been explored
in the existing literature (Sun, 2013; Xu et al., 2013).

Change Detection
Change detection (Singh, 1989; Lu et al., 2004; Radke et al., 2005;
Canty, 2014) is widely used for rapid assessment of the land
use and land cover changes (e.g., deforestation), policy impacts
(e.g., energy crops for biofuel development), and changes due to
adverse conditions (e.g., forest fires, flood damages to cropland
plant, or crop diseases). Most change detection techniques work
by comparing observations at the same location (typically a pixel)
from pre-event and post-event dates.

Each land cover has unique physical characteristics such
as albedo, emissivity, roughness, photosynthetic capacity, and

transpiration that significantly influence its spectral reflectance.
Information from Landsat’s seven spectral bands allows
discrimination among many human-dominated and natural
land cover types, essentially mapping the status of a study area at
any single point in time. Spectral information has been used in
its most basic form (i.e., surface reflectance in individual bands),
as well as in a variety of band combinations that enhance the
discernibility of specific features of interest. An example is the
normalized difference vegetation index (NDVI), used to identify
vegetated features. Over the last few decades, interest has shifted
to exploring the temporal and spatial dimensions of Landsat
data. The alteration of spectral properties of the land surface
can be identified in Landsat imagery, and many approaches
to change detection have been developed (Masek et al., 2000;
Hansen and Loveland, 2012).

Random forest classifier is widely used in the classification
of remote sensing image (Pal, 2005; Gislason et al., 2006).
The method is robust and has been shown to produce good
results for ecological mapping and provides better classification
results and faster processing (Pal, 2005; Gislason et al., 2006;
Corcoran et al., 2013; Du et al., 2015). The random forest
algorithm is a combination of decision tree predictors generated
based on random vectors sampled independently from the input
vector (Breiman, 2001). The algorithm uses a bagging method
to generate a training dataset by randomly drawing with n
replacement, where n is the number of features in the original
training set. Each decision tree uses binary recursive partitioning
to split the input features into heterogeneous groups on the
basis of the input variables. The decision tree models are then
combined into a “forest” using a voting system. The input
features are assigned to the most popular class produced by the
forest. This process allows the classification to have significant
improvements of accuracy.

Google Earth Engine in Food, Energy, and Water

System Studies
GEE provides a cloud-based platform for petabyte-scale scientific
analysis and visualization of geospatial datasets (Gorelick et al.,
2017) and is highly relevant in the FEWS context. A collection
of well-documented classification methods was utilized on the
GEE platform for imagery analysis. GEE in FEWS studies shifts
the burden of data acquisition, data storage, and data processing
away from researchers, which allows them to focus on what they
do best: research. It may be computationally expensive to ingest
external data into GEE. However, many existing algorithms can
be implemented in GEE to facilitate more convenient access
to computing, storage, and processing. A recent study also
supports that GEE can be capable of “big data” processing as
well as classification of multi-temporal satellite imagery for crop
mapping shortly (Shelestov et al., 2017). The GEE also provides a
set of the state-of-the-art classifiers for pixel-based classification
for crop mapping, including a neural network.

Self-Organizing Maps for Clustering
Self-organizing map (SOM) (Kohonen, 1990) is a popular
tool for mapping and clustering high-dimensional data in

Frontiers in Big Data | www.frontiersin.org 6 April 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Pitts et al. Spatial Decision FEWS

spatial and ecological sciences (Gopal et al., 2019). SOMs
make no assumptions related to distributions of variables or
correlations between those variables (Giraudel and Lek, 2001)
and hence are suited to FEWS mapping. SOM can incorporate
spatial neighborhood and spatial autocorrelation effects that
are commonly encountered in GIS and spatial analysis. The
clustering method is fast, robust, and visually efficient (in R). We
use SOM for denoting the classification of FEWS given an input
of food, water, and energy variables.

Process-Based Modeling (MIMES)
The Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES, 2019) is the intergovernmental
body that assesses the state of biodiversity and of the ecosystem
services provided to society. This agency has listed three
ecosystem service models in response to requests from decision
makers: Integrated Valuation of Ecosystem Services and Trade-
offs (InVEST), ARtificial Intelligence for Ecosystem Services
(ARIES), and our model from prior work, MIMES, which is a
spatially explicit, dynamic model of ecosystem service flows and
trade-offs, used in this paper. MIMES is written in the coding
language, Simile (produced by Simulistics Inc.), and has a design
and architecture that consists of compartments for “spheres” such
as biosphere and atmosphere and compartments for ecosystem
services defined within a location (Boumans et al., 2015).
Materials, people, services, and locations are modeled through
input–output linkages. This architecture provides forecasting in
a novel model for the Tonle Sap Lake in Cambodia. MIMES
enables us to conduct simulations that are essential to assess
various dynamics of interventions or policies in across scenarios
(such as “3S dam construction” or climate change).

Decision Support Tool (Modeling Integrated Decision

Analysis System)
Although not a method in the strictest sense, we have created
a web interface tool used by stakeholders around the world
to dynamically interact with our analysis and models. This
provides for decision support by allowing users to make trade-off
decisions and explore different scenarios resulting from our other
methods. For example, Modeling Integrated Decision Analysis
System (MIDAS) allows for easy construction and modification
of simulated water levels, such that additional “what if ” scenarios
can easily be run through Tonle Sap MIMES. Detailed discussion
of the MIDAS tool is outside the scope of this publication.

ANALYSIS AND RESULTS

A FEWS study must be relevant to stakeholders and policy
makers to empower decision making. For example, the
stakeholders we engage with in SE Asia are interested in (1)
FEW decisions, such as siting of dams, forecasting food, or fish
production; (2) trade-off analysis to select among alternatives;
and (3) estimating FEWSmetrics to plan for the future. Discussed
below are FEWS products that we developed to aid stakeholders
to make specific decisions. First is a scenario trade-off analysis
to analyze impacts on fish with proposed dam construction on
the Mekong. The trade-off analysis shows that dam construction

in the Tonle Sap impacts fisheries and water. Second, we
discuss land cover change detection applied to the urbanization
effects around world historical sites near Siem Reap, Cambodia.
Finally, we discuss FEWS assessment metrics that provides
stakeholders a specific estimate of FEWS metrics in Cambodia
using available data. The first uses a system, process-based model
to aid in scenario and trade-off analysis between fish, water,
and energy (hydroelectric). The second product uses machine
learning classification methods to study land use changes over
time. The last product uses data-driven models and machine
learning to classify and quantify FEWS risks for provinces
of Cambodia.

Dam Construction Impacts on Fisheries in
the Tonle Sap
One of the largest threats to FEWS outlook in Cambodia in
the last decade is the development of hydroelectric dams along
the Mekong, in the 3-S river system, and Tonle Sap basin (in
Cambodia). These dams threaten the sustained production and
delivery of FEWS services, especially to the rural poor who
depend upon them most. Furthermore, land cover and land
use in Cambodia have changed over the past decades (Davis
et al., 2015), impacting its food and water index, economic
development, and outlook (Shrestha et al., 2018).

Figure 3 shows our FEWS approach with input data captured
in the left set of boxes. Changes in hydrology are drastically
reducing the natural productivity of long-migration fish species,
including the commercially crucial (pangasiid) catfishes and that
portion of the trey riel catch composed of young-of-year long-
distance and medium-distance migratory species. Changes in
hydrology are resulting in a major loss of freshwater flooded
forest habitat, severely reducing the productivity of resident
and short-migration species. Fish monitoring data over the
last 7 years is used as input data into our FEWS model with
hydrological and climate data. NASA products such as catchment
hydrology modeling (VMOD and SWAT-MODFLOW), Landsat
Global InlandWater, JRC Global Surface Water Mapping Layers,
Global Satellite Mapping of Precipitation, HYCOM, Ocean Color
SMI, and PERSIANN-CDR are utilized along with fisheries and
other data in a system model to examine trade-offs between
hydropower (building dams) and fisheries, as well as climate
change and fisheries. We utilize a process model called MIMES,
as described in Process-Based Modeling (MIMES). Model outputs
and analytics include end products for our users such as (1)
FEWS risk scenarios, (2) flood pulse in the river during dry and
wet season, (3) climate change forecasts into next 10 years, and
(4) trade-offs between fishing and dam construction and climate
change (see Figure 4).

The hydrology (flood pulse), climate data, land use,
population, and fisheries data are input into the model. As
this model represents a process-based approach, it utilizes
separate data inputs and thus does not require a comprehensive
data fusion as described in Data Fusion. For example, the
fisheries “sphere” of the model has definitions, processes, inputs,
and outputs specific to fisheries. This has relationships to the
“sphere” of the model, population, which has its own definitions,
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FIGURE 4 | Observed baseline and simulated baseline 1982–2013. Simulated baseline of water levels based on annual and ENSO-like harmonic identified in Fournier

analysis.

processes, inputs, and outputs. This is further described in prior
work (Boumans et al., 2015).

The total data size for inputs was about 16GB compressed
and about 10× this size uncompressed. We ran subsets of the
data on subsections of the model in order to optimize and test.
Typical desktop hardware was able to run a full simulation in
4–20 h depending on the complexity of the question asked. We
utilized cluster resources at BostonUniversity (and later, Amazon
Web Services) to run the many simulations in parallel. This was
eventually required as we needed to achieve more rapid feedback
from our stakeholders and update our outputs.

Simulating Lake Pulse in MIMES
MIMES models system dynamics building on prior empirical
modeling in the Mekong (Inomata and Fukami, 2008; Arias
et al., 2012, 2013). We use habitat groups based on flood
regime, physiognomic patterns, and human activity based on
prior work (Arias et al., 2012, 2013): open water, gallery forest,
seasonally flooded habitats, transitional habitats, agricultural
fields, floating rice, and lowland grasslands in 30 hydrological
basins. “What if ” scenarios in Tonle Sap MIMES are designed
to explore the impacts of dams and climate change in this
system. Dam impacts include two factors associated with the
construction and operation of dams—a reduction in annual flood
pulse and the presence of fish migration barriers. These are
considered as independent factors within the scenario design.
First, dams are expected to reduce the annual flood cycle in this
system. For Tonle Sap Lake, this will result in an increase in
water levels and the area of permanent flood zone during the
dry season and a decrease in the water levels and permanent
flood zone during the wet season (on average). To explore this
factor, “what if ” scenarios that include dam impacts rely on a
simulated time series of water levels that reduce the amplitude
of the annual flood cycle by 25% (a percentage, which is in the
range of the Definite Future dam scenario characterized by the
Mekong River Commission, 2015).

Climate change impacts are also evaluated through selected
scenarios, such as the expectation that global warming will

increase the intensity of the El Niño–Southern Oscillation
(ENSO) cycle. The ENSO cycle consists of El Nino and Southern
Oscillation impacting precipitation and stream discharge
regionally. Prior studies have investigated the connection
between ENSO and stream discharge (Enfield et al., 2001; Zhang
et al., 2007; Ward et al., 2010). In MIMES, our scenarios evaluate
the potential changes in ENSO, which are explored by increasing
the amplitude of the ENSO-like cycle associated with the
simulated water level input time series. This model and results
are further described (Altman et al., 2014; Boumans et al., 2015).
One input that drives the model is a time series of water levels,
which sets the conditions for the annual flood pulse driving
many production processes across the system. In developing
and verifying the model, a time series based on observed levels
was used, thus allowing for outputs associated with production
flows to be compared with available observations of this system.
The complexity of outputs can be challenging to understand
(Petty, 2014). The model is being validated by stakeholders and
researchers in workshops conducted in Cambodia by examining
expected outcomes in different scenarios. In contrast, when
developing scenarios to explore potential future impacts on
hydrology and other factors, a time series of simulated water
levels is used. This approach allows us to isolate hydrological
factors of critical interest and also to remove sources of
unexplained variability in the hydrological cycle. Stakeholders
are able to explore these factors though our MIDAS tool
discussed in Decision Support Tool (Modeling Integrated Decision
Analysis System).

Fourier analysis was used on MIMES outputs to extract
harmonic information around time series data—such as
amplitude and phase angle—in order to characterize the
maximum effect and the time of effect of El Nino on river
discharge. Fourier analysis is applied to observed water levels
over 30 years on the basis of observed flow in one station on
the Tonle Sap. A subset of results is displayed in the Table 2

showing 10 of the top harmonics (52 harmonics were identified
in total). We focus on just two harmonics (the ones highlighted)
to produce a lake pulse time series for running the model. The
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TABLE 2 | Subset of harmonics.

Period Frequency Angular frequency Sine Cosine Periodogram Spectral density

370 0.003 0.017 −2.13 −1.93 33,535 2,565

353 0.003 0.018 1.22 0.9 9,333 2,077

387 0.003 0.016 −0.62 −0.42 2,262 793

339 0.003 0.019 0.43 0.54 1,958 283

406 0.002 0.015 −0.49 −0.44 1,755 131

325 0.003 0.019 0.31 0.39 989 93

2032 0.000 0.003 −0.02 −0.65 1,707 72

428 0.002 0.015 −0.44 −0.1 816 69

313 0.003 0.020 0.41 0.11 721 54

2710 0.000 0.002 −0.09 −0.19 181 44

TABLE 3 | Total urban and built area in km2, total urban and built area change in

km2, and average annual growth index in km2 for urban and built.

1979 1991 2000 2006 2010 2015

Area 1.83 8.67 23.81 35.44 50.27 64.72

Change area – 6.85 15.13 11.64 14.83 14.45

Average annual growth index – 0.57 1.68 1.94 3.71 2.89

The change area and the average annual growth index were calculated in time periods

1979∼1991, 1992∼2000, 2001∼2006, 2007∼2010, and 2011∼2015.

first harmonic highlighted represents the dynamics of annual
flooding in this system, typically produced by regional monsoons.
The second harmonic is a signal that occurs at an interannual
scale (about every 5 years) and corresponds roughly to the
pattern of greater-than-average flooding followed by drought
events that together are often referred to as an ENSO cycle.
Using these two harmonics, we produce a simulated time series
of water levels—we refer to this as the “simulated baseline”
(or just “baseline”), and to which we compare subsequent
“what if ” scenarios. Figure 4 compares the simulated baseline
(produced using only the two harmonics highlighted) to the
observed baseline. (The observed baseline was used to develop
the model initially including verification and calibration steps
using observed data from the system).

MIMES also allows for exploration of fishmigratory pathways,
because dams are expected to have major impacts on the ability
of migratory fish species to move freely between spawning and
growing areas. MIMES models different fish species on the basis
of their migration: periodic long distance and short distance
migrators, opportunistic lateral and short distancemigrators, and
equilibrium migrators. This phase of modeling is being validated
by our team.

Land Cover Change
Detection—Urbanization in Siem Reap
Cambodian forest cover declined from 73% in 1993 to between
55% and 60% in 20155. Much of this forest loss is the conversion
of forest to urban and agriculture land use. We investigate
the rapid urbanization of the area around Siem Reap using

5Trends, F. (2015). Conversion timber, forest monitoring, and land-use

governance in Cambodia. Forest Trends Report Series.

Landsat database. Angkor Sites, nominated as United Nations
Educational, Scientific, and Cultural Organization (UNESCO)
World Heritage in 1992, is located at Siem Reap and draws
millions of tourists each year. Prior studies (such as Gaughan
et al., 2009) have focused on deforestation from the perspective
of tourism and increasing urbanization, whereas others (Evans
and Traviglia, 2012) have investigated logging for fuelwood as a
major driver for deforestation (Jiao et al., 2015). Decision makers
need information on the dynamics of land cover change as well as
understand the implications of urbanization. Hence, we utilized
a long time series of Landsat data to examine land cover change
as well as provide landscape metrics to characterize the nature
and magnitude of change. We provide the following products
on the basis of relevant metrics: maps and analysis of land
cover change, urbanization metrics to characterize the growth,
and morphology.

In this study, by using time series Landsat images from 1979
to 2015, we detect and monitor the land use and cover change,
and we analyze the spatial–temporal characteristics of the urban
morphology and the effects of urbanization on the spatial–
temporal distribution of croplands and forest in Siem Reap on
the basis of remote sensing and GIS techniques.

We selected six images (1979–2015) from Landsat MSS,
Landsat TM, and Landsat OLI (located in WRS II path 127,
row 51), ensuring that images have precise radiometric and
atmospheric calibration or normalization, similar phonological
states, and same spatial and spectral resolution images to
facilitate comparison across multi-temporal images. All images
were collected during the dry season from December to March
to reduce the influence of phonology and were cloud free.
The images were ordered from The USGS Earth Resources
Observation and Science (EROS) Center Science Processing
Architecture (ESPA) and had already been radiometrically
calibrated. In order to use directly on classification processes,
image registration, layer stacking, and atmosphere correction
were applied to the original data using ENVI. The administration
map was gathered from Open Development Cambodia (ODC)
website. We stacked the satellite images and district boundary
data on the basis of the same coordinate system and clipped by
district boundary.

We utilized data fusion approaches as discussed in Data
Fusion to link data by key attributes, including latitude and

Frontiers in Big Data | www.frontiersin.org 9 April 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Pitts et al. Spatial Decision FEWS

longitude. Table 1 shows the data sources used for this study.
Although we utilize a small fraction of total images for Cambodia
from the large corpus of satellite data, we have to process
significant data in order to select and crop the areas of interest.
For example, for Landsat 4 and 5, we have 7,028 images from
December 2, 1987, to November 13, 2013. There are seven
bands (roughly 6,900 pixels by 7,700 pixels) in int16 data type.
Thus, the entire Landsat 4 and 5 archive utilized is around
5.22TB. For Landsat 8, there is 17.67GB of raw data for every
5 days of coverage. Estimated total data processed each cycle
is between 100TB and 200TB. The data storage requirements
and processing were achieved on GIS Boston University Cluster
resources, and owing to the size of the data involved and the
time required to process, it is likely not possible on today’s typical
consumer desktop hardware. Similar resources, such as Amazon
Web Services Elastic storage and Elastic Compute, can be used in
place of our cluster resources.

Land Cover Classification and Accuracy Assessment
We use multi-instance learning discussed in Land Cover
Classification with random forests discussed in Change Detection
to accomplish the classification. We applied the random forest
classification method to classify the six images based on
randomForest Package from R (Liaw and Wiener, 2002). The
training data for our study were collected from corresponding
high-resolution Google Earth imagery. All training data were
imported into R, and codes were written to implement random
forest classification. We identified four land cover classes: forest,
cropland, urban built-up area, and others. We drew stratified
random training samples on the basis of Cochran’s stratified
random sampling scheme when “simple random sampling is
taken in each stratum” (Cochran, 1977, p. 89). Strata in our case
represent the four land cover classes. Cochran’s equation:

n = (

∑

wisi

S(ṕ)
)
2

where the wi is the stratum weight, si is the standard error
for stratum i, and S(p) is the target standard error of the
classification. We set the target standard error to 5% to derive
a total of 385 random samples (n). Time series of the high-
resolution satellite images from Google Earth were used as
reference data of ground truth; however, owing to the limitation
of the date of the images, only classification maps in 2010
and 2015 were assessed for accuracy. The overall accuracy of
2010 is 82.6% and of 2015 is 85.5%, whereas the corresponding
kappa coefficient values are 75.2% and 78.9%. We next applied
several metrics to describe the urban sprawl dynamics and
expansion distribution.

Growth Index
The average annual growth index Gij product describes the
average area growth of one type of landscape:

Gij =
1Uij

1T

where 1Uij is the total area growth in period i to j and 1T is the
time period from i to j in years. This index gives direct statistical

description of landscape area change per year and indirectly
reflects the speed of change.

Spatio-Temporal Urban Expansion
Table 3 and Figure 5 are useful in characterizing urban growth
that aids in urban planning and policy. The explosive urban
growth in the nineties coincided with the nomination of the
Angkor Site as UNESCO World Heritage (in Figure 6), which
resulted in the expansion of tourism in the Siem Reap region.
Figure 7 shows the urban expansion in various time periods.
The spatial pattern of the land cover change into urban seems
dispersed but is mainly concentrated in the central and northern
Siem Reap region around Angkor Site. Between 1992 and
2000, the expansion of the urban and built land is east–west,
following the national highway. More recent changes show
a dispersed distribution of urbanization along central Siem
Reap. Urban planning can focus on constraining settlement
expansion along the highways or around the temples because
the seasonal variations of the groundwater table and excessive
groundwater depletion are causing the collapse of temple walls
(Chen et al., 2017).

We analyze the land cover change from 1979 to 2015 in
Figure 7. The overall drop in forest and the corresponding
increase in urban and croplands over the time period suggests
the increase in urbanization in this area.

Two landscape metrics were also incorporated in the study
in addition to temporal analysis: fractal dimension index (D)
and compactness index (C) that describe the urban patch
characteristics, useful in urban planning:

Dij = 2
ln

Pij
4

lnAij

Cij = 2

√

π
Aij

Pij

where Pij is the perimeter of patch ij and Aij is the area of patch ij.
Fractal dimension index Dij reflects the spatial-filling capacity

inside the patches and the complexity of the patches morphology
by a perimeter-area proportion (McGarigal et al., 2012). The
range of Dij is 1 to 2, and a larger value indicates that the
spatial-filling capacity inside the patches is weak, and thus, the
morphologic complexity is relatively high. When the value of
fractal dimension index is around 1.5, this indicates the form
of the patches is on the edge of “Brownian movement,” and the
closer the value is, the worse the stability is.

Compactness index Cij is used to quantitatively measure
the clustered nature of urban expansion over time. The city
expansion is characterized as being compact or being incompact
(Batty, 1991). The range of compactnessCij is 0 to 1, a larger value
represents a higher compactness of the patches, and a smaller
value close to 0 suggests the incompact shape of the patch.

The indices in all six time periods is shown in Table 4

and can be interpreted to understand urban expansion and its
spatial implications from the policy and planning perspectives.
Similarly, the fractal dimension is a low fractal dimension index,
suggesting a slow urban creep or sprawl in this region.

Frontiers in Big Data | www.frontiersin.org 10 April 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Pitts et al. Spatial Decision FEWS

FIGURE 5 | (Left) Area change of forest, cropland and urban and built land from 1979 to 2015. (Right) Components of new urban area. The y-axis is the total area of

urban and built land converted from the forest (F → U), cropland (C → U), and other (O → U) between two dates in km2.

FIGURE 6 | Urban and built land area and tourists population.

Food, Energy, and Water System
Assessment Metrics
Many agencies provide metrics to describe an integrated
summary of variables such as United Nations Development
Programme’s (UNDP’s) Human Development Index (HDI) or
the Center for Global Development (CGD) and Foreign Policy’s
(FP’s) Commitment to Development Index (CDI). Prior studies
have developed indices on the basis of the study objectives
with a focus on water (Daher and Mohtar, 2015; Endo et al.,
2015), resource use efficiency (Ringler et al., 2013), sustainable
development (Kurian, 2017), and trade-offs (Smajgl et al., 2016).
These measures are intuitive and straightforward and enable
users to conduct nontechnical comparisons between regions.
FEWS is a multidisciplinary issue, and assessments of any
measure or metric must incorporate knowledge and insights
from multiple disciplines. There is no one index that is likely
to be a “catch all,” and a combination of indices that cover

security in food, energy, and water concepts is more likely to
provide an accurate assessment in the study region. Our FEWS
framework is based on available relevant data weighted equally
at the province and commune levels (based on data availability).
Cambodia consists of 26 provinces and 1,621 communes; each
commune can consist of three to 30 villages. The equal weighting
of the water, food, and energy sectors is central to our analytical
rationale; approaches that bias the weighting of one specific
sector, for example, energy resources, tend to constrain analysis
to the connections of one or possibly two of the other sectors.
We use various input data (described below) and derive FEWS
clusters using SOM. Each cluster represents a different nonlinear
combination of input variables. Each index is discussed below;
each provides a measure of security and outlook, as described.

Food Index
The Census of Cambodia provides agricultural data at the
province level. The best data are available for the 2011–2013
period6. For food index measured at the commune level, we
utilize data for rice and maize production in provinces of
Cambodia7. Rice and maize (corn) are two important crops
in Cambodia. Rice (dry and wet season) are included in this
estimation of food index. We include fish catch into the
food index as well as family consumption patterns, fishing
consumption, number of small farmers, livestock, population
density, size of the household, and estimated vulnerability to
climate change. A higher food index indicates a larger quantity
and variety of food, a strong positive outlook over the next
decade, and minimal risks to the food supply chain.

6Note that Tboung Khmum became a province in 2013 when Kampong Cham

Province was split into two in 2013. Hence, some of the 2011 data for this province

are derived from Kampong Cham Province.
7Source: https://www.nis.gov.kh/nis/CAC2013/Final_Report_En.pdf
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FIGURE 7 | Spatial changes in Urban and Built-up land from 1979 to 2015.

TABLE 4 | Fractal dimension index and compactness index of urban and built

area in Siem Reap through 1979 to 2015.

Fractal dimension index Compactness index

1979 1.47 0.17

1991 1.50 0.13

2000 1.50 0.14

2006 1.48 0.17

2010 1.50 0.18

2015 1.49 0.19

Water Index
We adopted the water risk (index) from the World Resources
Institute product called the Aqueduct Water Risk Atlas8. This
includes 12 global indicators grouped into three categories of
risk and one overall score. Overall water risk identifies areas
with higher exposure to water-related risks and is an aggregated
measure of all selected indicators from the Physical Quantity,

8https://www.wri.org/sites/default/files/Aqueduct_Global_Maps_2.1.pdf

Quality and Regulatory, and Reputational Risk categories. We
utilize the overall score for each province of Cambodia derived
from World Resources Institute (WRI) global data. Details of
the indicators are described in a document as well as the
WRI website.

In Cambodia, most communes (located in provinces) have
low-to-medium and medium-to-high overall water risks. Koh
Kong has the lowest overall water risk value, whereas Svay Rieng
has the highest risk, with high risk in baseline water stress,
interannual variability, seasonal variability, and flood occurrence.
We normalize the values and present the metric.

Energy Index
We adopted statistics from International Energy Agency and
Electricité du Cambodge (EDC) for the year 2015 that shows the
breakup of energy data for Cambodia. Coal accounts for 37%,
hydro 38%, imports 22%, and fuel oil (2%), of generation by type
in 20159. A World Bank report10 notes that 97.6% of Cambodian

9http://www.edc.com.kh/images/Annual%20Report%202015%20Publish_

EnglishVersion.pdf
10World Bank (2018). Cambodia beyond connections: Energy access diagnostic

report, Washington DC, 15 March 2018. http://documents.worldbank.org/
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FIGURE 8 | Self-organizing Map (SOM) commune classifications and quality.

households have access to at least one source of electricity−71.5%
on the grid and 26.1% off the grid, mostly solar home systems and
rechargeable batteries.

The country has improved biofuels and has solar energy
potential in every province. We note that biofuel and solar
potential as well as planned hydroelectricity generation can
impact energy index in each province. We estimate the solar
potential for communes in each province using estimates solar
average irradiation 2007–2015 (kWh/m2/day11) provided by the
World Bank.

We trained our FEWS SOM using 3 × 3 hexagonal grid and
then examined the clustering of the communes in the resulting
nine clusters. Preprocessing was essential to allow the most
informative results for our stakeholders. The finest geographic
scale we aimed to achieve was a commune, the scale at which
many policy decisions are made in Cambodia. These communes
can then be aggregated into other geographic regions such as
province. There were approximately 1,600 communes utilized as
inputs into our SOM. Various dimensions (number of columns in
each vector) were explored, and eventually we included the SOM
as part of the postprocessing of MIMES and Land cover changes,
as it relied on food-related inputs, which were fish outputs
from Dam Construction Impacts on Fisheries in the Tonle Sap as
well as land cover details from Land Cover Change Detection—
Urbanization in Siem Reap. This model was run on consumer
desktop hardware but would need to be run on a compute cluster
if preprocessing is not performed on each vector input.

We considered all map units individually to produce
summaries—quantitative descriptions of data properties. It is
worth noting that the goal of SOM is not to find an optimal
clustering for the data but to get good insight into the cluster
structure of the data for data mining purposes. Figure 8 shows
the quality of SOM nodes and the number of communes in
each cluster. The best clusters (highest quality in Figure 8) pick

curated/en/141011521693254478/Cambodia-Beyond-connections-energy-

access-diagnostic-report-based-on-the-multi-tier-framework
11https://globalsolaratlas.info/

up the following trends. One cluster is dominated by rural,
agricultural areas with agricultural employment (for both males
and females) and no education or infrastructure. Another rural
cluster is characterized by rural working men, lack of electricity,
and poultry. The third cluster is dominated by secondary and
tertiary activities with educated workforce in urban areas such as
the capital city, Phnom Penh. The fourth cluster is dominated by
primary school educated men and women with small rice farms.
Another cluster is dominated by working women in rural areas.
SOM clustering shows spatial variation within provinces.

As discussed in Decision Support Tool (MIDAS), we provide
a user decision interface called MIDAS to ensure that users
visualize and analyze the FEWS challenges spatially, and to
support sustainable decision making in the region12. Our nexus
goal is to ensure that livelihood and well-being opportunities
are protected for Cambodians now and into the future. The
FEWS tool displays results from various model outputs that
enable users to scope and assess a specific problem. MIDAS
employs a machine learning segmentation algorithm to classify
factors related to FEWS. Each region (province or commune)
is segmented into one of nine classes on the basis of the
relationships between various FEWS inputs (Figure 8). Users
can assess similarities and differences between various regions in
terms of FEWS.

Our products described in this section demonstrate the depth
and breadth of FEWS analysis required for decision and policy
making. It should be emphasized that decision objective making
varies across different stakeholders. Although nongovernmental
organizations (NGOS) are interested in community livelihoods
and health, state and local governments have to consider about
sustainability in the future.

DISCUSSION

Our research methodology provides foundational support in the
application of big data science to ecosystem based-management

12http://45.55.215.153/midas/#
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decision making and design, yielding tools necessary to advance
FEW sustainability itself. New and faster data algorithms
developed will be generally applicable in other systems and
will be a useful tool to help local fishers/farmers, NGOS,
international development organizations, state, and federal
agencies to design and implement sustainable management
plans. The FEWS problem is set at the heart of our SE
Asia, which can be generalized to other areas and hence
work will speak to a wide variety of users. Our research may
have far-reaching impacts on how spatial data is accessed
and used by global citizenry. For example, non-profits and
international groups may use our decision support system
for sustaining livelihoods, promoting health and well-being,
conserving dynamic biodiversity, andmanaging sustainable land.
State and federal agencies can formulate sustainability plans and
make informed decisions on land cover change, biodiversity,
deforestation, and sustainable development.

Future Analysis and Scalability
FEWS approaches will increasingly adopt more “big data”
techniques to tackle societal problems in the coming decades.
For the MIMES modeling, we anticipate that future research will
allow more detailed modeling within the “spheres” of a process
model combined with more data available for input. These
advances will prohibit standard desktop hardware from being
utilized at all—requiring high availability cluster computing to
perform the simulations. However, process models are time
intensive to develop than is a data-driven model. As more
(and more accurate) data are available, we anticipate more
reliance on data-driven modeling, which are more scalable, both
algorithmically and with human resources. GIS processing and
remote sensing approaches discussed in Land Cover Change
Detection—Urbanization in Siem Reap suffer from fewer issues
of algorithmic scaling, as the algorithm is applied to one image
at a time. This means that the scaling issues are more around
data storage concern, as more images become available at regular
intervals. For SOM concerns in the future, a balance must
be struck between the size of the input vectors as well as

the preprocessing concerns. We elected to preprocess data to
produce summary metrics that then fed into the input vectors.
However, if different spatial scales are needed, such as if you
are looking at parcels in the United States, the number of
vectors would be many millions. And if preprocessing was not
performed, then input vectors could reach many thousands of
columns. It is not clear how well a SOM would perform under
these data conditions.
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