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Abstract

We recognise familiar faces irrespective of their expression. This ability, crucial for social

interactions, is a fundamental feature of face perception. We ask whether this constancy of

facial identity may be compromised by changes in expression. This, in turn, addresses the issue

of whether facial identity and expression are processed separately or interact. Using an

identification task, participants learned the identities of two actors from naturalistic (so-called

ambient) face images taken from movies. Training was either with neutral images or their

expressive counterparts, perceived expressiveness having been determined experimentally.

Expressive training responses were slower and more erroneous than neutral training responses.

When tested with novel images of the actors that varied in expressiveness, neutrally trained

participants gave slower and less accurate responses to images of high compared with low

expressiveness. These findings clearly demonstrate that facial expressions impede the

processing and learning of facial identity. Because this expression dependence is consistent with

a late bifurcation model of face processing, in which changeable facial aspects and identity are

coded in a common framework, it suggests that expressions are a part of facial identity

representation.
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Constancy of facial identity is a fundamental ability of our face processing system, enabling
us to recognise familiar faces over a variety of different appearances (Bruce, 1982). This
feature is paralleled in the object recognition literature by the concept of object constancy,
which concerns how we are able to recognise objects across varying retinal descriptions.
Maintaining constancy, whether of objects or facial identity, is computationally
demanding and requires our visual system to balance conflicting demands. It must achieve
the specificity necessary to recognise categories whilst simultaneously generalising when
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appearance varies substantially – caused by, for example, lighting, position, size and
viewpoint. Facial identity constancy is additionally challenged by facial expressions.

Explaining how identity constancy is achieved has been influential in shaping models of
face perception because constancy is determined by the relationship between how we process
invariant and changeable aspects of faces: Is their processing separate, or separable? The
polar positions in this debate are, on the one hand, dual-route theories that advocate
functionally independent processing (e.g. Bruce & Young, 1986; Haxby, Hoffman, &
Gobbini, 2002, 2000); and on the other hand, models proposing that the streams
processing invariant and changeable face aspects bifurcate at a later stage (e.g. Calder,
2011). Late bifurcation models thereby permit that expressions can be a part of facial
identity and can predict the interaction of these facial properties. They suggest that we are
able to process identity and changeable aspects separately, but that interactions between the
two may arise (Calder, 2011). In contrast, dual-route theories do not readily predict such
interactions.

The consensus emerging from this field is of a more complex relationship between
changeable aspects and identity processing than dual-route models propose (Calder &
Young, 2005; Johnston & Edmonds, 2009). Evidence weighs in favour of functional
asymmetry (Calder, 2011), with expressions more dependent on identity (e.g. Fox, Oruç, &
Barton, 2008). This asymmetry is perhaps because, as Calder and Young (2005) suggest,
expression processing relies more on integrative mechanisms – since changeable facial cues
are inherently linked with perceptual dimensions such as motion and vocalisations. This is
not the only view, however, and some studies suggest a more symmetric interaction (e.g.
Fisher, Towler, & Eimer, 2016).

A related debate concerns the nature of the stored representation of an individual’s facial
identity. One theoretical position is that our representation is akin to a central tendency, or
prototype, which is developed and refined over successive viewings of that individual’s face
(e.g. Burton, Jenkins, Hancock, & White, 2005). An alternative suggestion is that our
representation comprises a series of stored examples of an individual’s face, and
recognition is achieved when a perceived face is a close match to a stored example (e.g.
Longmore, Liu, & Young, 2008). Distinguishing between these two explanations has
proved challenging because they make similar predictions (Burton, Jenkins, &
Schweinberger, 2011).

Evidence suggests that simultaneously processing both social and identity information
should not compromise identity processing. Although a bias to attend to expressive faces
has been detected (Palermo & Rhodes, 2007), the literature indicates that expressions
facilitate identification (Gallegos & Tranel, 2005) and face discrimination learning
(Lorenzino & Caudek, 2015), and do not distract judgements of facial identity (Baudouin,
Martin, Tiberghien, Verlut, & Franck, 2002; Spangler, Schwarzer, Korell, & Maier-Karius,
2010). Indeed, Bruce (1994) suggests that expressions may actually facilitate identity
discriminations by helping a system to distinguish relevant variations between individuals
from irrelevant variations within individuals. Variation may give rise to stability by defining
boundaries (Vernon, 1952) and could prove critical to how our recognition system maintains
identity constancy. Therefore investigating variation, rather than controlling it, is essential if
we are to understand how we recognise people (Burton, 2013). For this reason, we developed
‘ambient’ images for use in this study. These are unmanipulated photographs of real faces
taken from the environment that capture a wide range of within-person variability (Burton,
2013; Jenkins, White, Van Montfort, & Burton, 2011).

We address the issue of whether facial identity and expression are processed separately or
whether they interact, by asking whether our constancy of facial identity may be
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compromised by changes in expression. The evidence we present, of expression-dependent
performance, suggests inter-related processing of identity and expression.

Experiment 1

Method

Overview of experimental design. Idiosyncratic variability is fundamental to learning facial
identities (Kramer, Ritchie, & Burton, 2015), an idea supported by face learning studies
(e.g. Andrews, Jenkins, Cursiter, & Burton, 2015; Dowsett, Sandford, & Burton, 2016;
Murphy, Ipser, Gaigg, & Cook, 2015). We developed and used a database of ‘ambient’
face images incorporating extensive within-person variation. We specifically included
images of facial expressions, varying extensively in emotional affect and intensity.

The experiment comprised training and test phases, separated by a filler task. Participants
were randomly assigned to one of two training conditions: expressive or neutral. Training
involved presentations of multiple images from our database of two unfamiliar identities, but
conditions differed: neutral training used images rated ‘low’ in perceived expressiveness
(i.e. <50%) and expressive training used images perceived as ‘high’ (>50%) in expressiveness.

The training phase provided face learning; however, Blocks 2 to 4 repeated the images
used in the initial training block. Therefore, simply remembering the responses to repeat
images could explain any improvement. To address this confound, the test phase used
novel images of the learnt identities. Testing was the same for all participants irrespective
of training condition, thereby enabling us to directly compare performance outcomes of the
two training regimes.

Participants. Of the 53 naı̈ve participants tested, 3 were excluded from analysis (see Data
analysis section). Of the remaining 50, mean age was 20 years (range 18–46 years, 11
male). With the exception of one voluntary postgraduate, all were undergraduates who
received course credit for their time. None were familiar with the database actors,
confirmed during debrief. Prior to this study, approval was obtained from the University’s
Research Ethics Committee, and participants provided informed written consent.

Stimuli and equipment. Our database comprised 546 ambient facial images of two Italian
actors, Luigi Lo Cascio and Fabrizio Gifuni, selected because their prolific film and
television careers in Italy provided a wide source of photographic material while neither is
well known in the UK.

Developing the image database. Images were obtained from screenshots from YouTube clips
and the DVDs of 13 movies made between the years 2002 and 2014. As per the method used
by Jenkins et al. (2011), images exceeded 150 pixels in height, showed faces free of occlusion,
were cropped to portrait dimensions of 4:5 and sized to 320� 400 pixels. All showed the face
from frontal or partial view. Importantly, images were collected in ‘Image Groups’. These are
sets of two to nine face images from the same scene, camera and position. This ensured that
properties particular to the actors (e.g. facial hair, age) as well as properties specific to the
filmed scene (e.g. lighting, camera) were kept largely constant within each set and differed
only in expression. Images cannot be reproduced here because of copyright restrictions;
however, an illustrative example of a typical Image Group is shown in Figure 1.

To determine image expressiveness, we collected ratings from 40 participants unfamiliar
with the faces. They were given the 546 images printed as laminated cards and asked to place
each card into one of five boxes labelled from 1 [‘neutral’] to 5 (very expressive). The number
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of the box in which the image was placed was recorded as the score, so images placed in Box 1
were scored as 1, in Box 2 scored as 2, and so forth. The scores from all 40 participants
were then summed. This gave us a total score for each image, within the range 40
(i.e. all 40 participants allocating that image to the 1 [‘neutral’] box) to 200 (40 scores of 5
‘very expressive). For ease of use, we rescaled the range from 40 to 200 to 0 to 100, so that
each image expressiveness score was expressed as a percentage, ranging 6.25% to 100%
across the database. Participants were instructed to use their judgment and told to put as
many or as few images into each box as they wanted. Furthermore, they were given no
definition of expressiveness or neutrality; therefore, these terms should be understood in
the context of a layperson’s terminology.

Stimuli selection. From this database, we selected three image sets: neutral and expressive
training sets of 70 images each, and a test set of 208 images (see Table 1).

To create the training sets, we selected 70 image pairs (35 for each actor), from Image
Groups with the highest range of expressiveness. In each pair, one image was low in
expressiveness, the other high. We split the 70 pairs into 2 training sets: a neutral set
comprising the low-expressiveness images and an expressive set, their high-scoring
counterparts. Figure 2 shows illustrative examples.

Figure 1. Example of a typical Image Group, featuring the actor Sterling Hayden, taken from the public

domain movie ‘Suddenly’ (Bassler & Allen, 1954). Expressiveness ratings, gathered from 40 participants as

part of a separate study, are (from left) 42.5%, 58.1%, 54.4% and 66.9%. These images, not used in this study,

are for illustrative purposes only.

Table 1. Expressiveness of Images per Condition and Number of Times Presented.

Number of images tested Expressiveness %

Block 1 Block 2 Block 3 Block 4

Total

trials Min. Max. Mean (�SD)

Phase 1 70 images seen� 4 times

Neutral training 70 70 70 70 280 9.34 49.34 22.64 (9.18)

Expressive training 70 70 70 70 280 53.75 100 79.22 (11.18)

Phase 2 208 novel images seen� 1 time

Testing 208 – – – 208 6.25 100 42.08 (19.52)
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Figure 2. Example illustration of ‘neutral’ (left column) and ‘expressive’ (right column) counterpart images

of actors in the motion picture ‘Suddenly’ (Bassler & Allen, 1954). Top images are of Frank Sinatra; lower

images are of Sterling Hayden. Each pair comes from a different Image Group. Expressiveness ratings are (left

to right, from top) 17.5%, 77.9%, 14.4%, 77.5%, 29.4%, 89.4%, 48.1% and 70%. These images, not used in this

study, are for illustrative purposes only.
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When selecting the image pairs, we viewed the images themselves, not just their
expressiveness scores, so that we could ensure inclusion of all six universal expressions
(Ekman & Friesen, 1971) in the expressive training set. We similarly viewed the images
during this selection process to ensure as equal a balance as possible between positive (48/
70 images) and negative affect expressions (22/70 images), whilst simultaneously selecting
pairs that fulfilled the high- and low-scoring counterpart criterion.

The test phase used a further 104 images of each actor, ranging widely in perceived
expressiveness. These 208 images were taken from different Image Groups than were the
training sets to ensure they did not closely resemble training images.

Equipment. Stimuli were presented on a computer monitor with screen resolution of
1280� 1024 and a refresh rate of 85Hz. Stimuli were displayed centrally embedded in
a 39.3 cd/m2 background. There was no fixation point. From the viewing distance of
�100 cm, stimuli occupied 5.6� � 7.0�. Responses were given on a Microsoft
SideWinder gamepad. For training only, feedback was given after each trial; this
consisted of either a black tick or cross in the screen centre for 1,000ms. The
experiment was written in MATLAB using the Psychophysics Toolbox extensions
(Brainard, 1997; Pelli, 1997).

Procedure. The experiment was conducted in a quiet darkened room. For the training
phase, the computerised task was to respond quickly and accurately to each face image by
making a right key press for ‘Rob’ images and left to indicate ‘Louis’. This phase required
responses to 280 trials comprising 4 viewings of 70 different face images, with opportunities
for breaks. To avoid the possibility of the same image being presented sequentially, we
randomised the pack as follows: For each participant, the set was randomly assigned to
Half-set A or Half-set B, each half-set containing 17 images of one actor and 18 of the
other. The half-sets were shown in the order, ABABABAB, and image order was
randomised within each instantiation of each half-set. This ensured a minimum of 35
images between 2 presentations of an image. After training, participants did a word search
followed by the test phase.

Data analysis. With the reaction time (RT) data, we analysed the means of the trimmed RT
distributions for correct responses. Trimmed means were calculated by taking the untrimmed
means and associated standard deviations, and then averaging RTs within two standard
deviations of the untrimmed means.

Three participants’ data were excluded from the analyses: one had test phase performance
of only 24% suggesting that they had muddled the response keys; and two had proportion-
correct z-scores lower than �2 in the training phase final block (proportions correct were
62.3% and 71.0%), indicating some difficulty in learning the faces. Consequently, we
recruited an additional three participants, all of whom achieved above-threshold
performance.

Initial analysis of mean RT data showed that the homogeneity of variance assumption was
compromised; consequently, our analyses are performed on inverse-transformed mean RTs.
In our graphs, RTs are transformed back for ease of interpretation.

Results

Training phase. Figure 3 shows the training phase results, overall (upper panel) and by training
block (lower panel). Note that in our graphs, we plot both RTs and error rates to
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demonstrate that RTs are not driven by a speed-accuracy trade-off. Figure 3 (upper panel)
suggests that performance was poorer for the expressive training group, and this was
supported by the statistical analysis. We conducted a 2� 4 mixed-design ANOVA of the
RT data, with a between-subjects factor of training condition (neutral, expressive) and a
within-subjects factor of training block (1, 2, 3, 4). This analysis (Greenhouse-Geisser
corrected) revealed the relative superiority of neutral over expressive condition
performance, with a significant main effect of training condition, F(1, 48)¼ 5.77, p¼ .020,
�2p¼ .107. There was also a significant main effect of training block, F(2.28, 109.49)¼ 49.75,
p< .001, �2p¼ .509. There was no interaction between training condition and block, F(2.28,
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109.49)¼ 1.39, p¼ .250, �2p¼ .028, which is consistent with performance improving under
both training regimes.

For both training conditions, we measured the correlation between image
expressiveness rating and the mean RT of responses to those images. We did this
analysis for the Block 1 responses only, so as to avoid the potential confound of
memory for specific images, which may occur because of the repetition of image
presentations in Blocks 2 to 4. For the neutral training condition, there was a weak
but significant correlation between image expressiveness and mean RTs for those
images, r(68)¼�.29, p¼ .014. Although negative, this correlation is with inverse-
transformed data, and therefore indicates that RTs are slower when images are more
expressive. This contrasts with the correlation between image expressiveness and the
expressive training images, r(68)¼ .27, p¼ .025, which indicates that RTs are faster as
image expressiveness increases. Considered together, these correlations suggest that
expressiveness has a U-shaped effect on performance; expressiveness correlates with
deteriorating performance but at the extreme levels, can be beneficial, perhaps because
highly expressive faces can enhance idiosyncrasies, thereby facilitating differentiation.
Indeed, this is consistent with Bruce and Young’s (1986, p. 310) suggestion that
‘characteristic expressions’ are perhaps important in face recognition. Figure 4 shows
the Block 1 mean RTs for images in the neutral and expressive training conditions,
plotted by image expressiveness.

Test phase. To measure learning, the test phase was the same for all participants irrespective
of training condition. Since test images were presented only once, were novel, and came from
different Image Groups than the training images, this phase specifically investigated how well
identities had been learned.
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We analysed results by training condition (Figure 5, upper panel) and their time course
(Figure 5, lower panel), by means of a 2� 4 mixed-design ANOVA of the RT data, with a
between-subjects factor of training condition (neutral, expressive) and a within-subjects
factor of time quartile (1, 2, 3, 4). The analysis (Greenhouse–Geisser corrected) revealed a
significant main effect of time quartile, F(2.09, 100.20)¼ 10.89, p< .001, �2p¼ .185,
demonstrating that participants were continuing to learn during this phase. There was a
marginal effect of training condition, F(1, 48)¼ 3.32, p¼ .075, �2p¼ .065, and a borderline
interaction between training condition and time quartile where �2p indicated a small effect size,
F(2.09, 100.20)¼ 2.52, p¼ .084, �2p¼ .050.
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For the interaction, follow-up analyses of the simple main effects enabled us to gauge
effectiveness of the training regimes for learning by comparing RTs from the first quartile,
since performance in these initial trials would be less conflated with the effects of on-going
learning. For the first quartile, expressive-trained participants performed significantly worse
than the neutral-training group, indicating that expressive training was the inferior regime for
face learning, F(1, 48)¼ 5.31, p¼ .026, �2p¼ .100.

To explore performance in relation to image expressiveness, we divided test trials into
trials with low-expressiveness images, and those with high. We calculated a paired samples
t-test comparing RTs to low- and high-expressiveness images, t(49)¼ 1.92, p¼ .061, d¼ 0.33.
This clearly suggests that the high-expressiveness images are taking longer to process, but we
are unable to draw strong conclusions from a marginal result. Therefore, to investigate
whether or not this was the case, we repeated our experiment, but with the neutral
condition only since this was the superior training regime. Using the effect size calculated
from those data (d¼ 0.33) with alpha level of 0.05 and power of 0.8, we calculated our
required sample size of 74þ participants.

Experiment 2

Method

Participants. Anticipating attrition, we recruited 88 naı̈ve participants and excluded 6 from our
analysis (see later). Of the remaining 82 (12 males), mean age was 20 years (range 18–28
years). All were undergraduates who received course credit for their time. All were unfamiliar
with the database actors, confirmed during debrief. Prior to this, study approval was
obtained from the University’s Research Ethics Committee, and participants provided
informed written consent.

Procedure and data analysis. We tested in the neutral training condition only, procedure
otherwise resembling Experiment 1. We applied the same rejection criteria as for
Experiment 1 and excluded the data of one for close-to-chance performance in the test
phase (57%). We excluded the data of five for having proportion-correct z-scores lower
than �2 in the training phase final block (their proportion-correct scores were 73.5%,
66.2%, 75.8%, 73.9% and 60.0%).

Results

Training phase results followed the same pattern as those in Experiment 1, showing
improvements in RT and accuracy across blocks (Figure 6, upper panel). Measuring
performance in Block 1, there was a weak but significant correlation between image
expressiveness and mean RTs to those images, r(68)¼�.24, p¼ .047. Although negative,
this correlation is with inverse-transformed data, and therefore indicates that RTs slowed
as image expressiveness increased.

Test phase performance was analysed according to whether stimuli were low or high in
expressiveness (Figure 6, lower panel). The mean RT was 18ms slower in response to high-
expressive stimuli compared with low, paired-samples t-test t(81)¼ 4.87, p< .001, d¼ 0.55.
Further, mean proportion correct was 2% lower when stimuli were high compared with low
in expressiveness, paired-samples t-test, t(81)¼ 3.72, p< .001, d¼ 0.46. Both metrics indicate
that, consistent with our expectation, performance was inferior when images were of high
compared with low-perceived expressiveness.
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General Discussion

Our results show that neutral faces are processed more quickly and with fewer errors than
expressive faces, during training (Experiment 1) and at test (Experiment 2). We found,
however, some correlational evidence from the first training block of Experiment 1, that
recognition task performance for expressive faces improved as they increased in

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0

100

200

300

400

500

600

700

800

900

1000

1100

Block1 Block2 Block3 Block4

P
ro

po
rt

io
n 

of
 in

co
rr

ec
t r

es
po

ns
es

R
ea

ct
io

n 
ti

m
e 

in
 m

s

Training blocks

Mean RTs Error rate

0.00

0.05

0.10

0.15

0.20

650

675

700

725

750

775

800

825

hgiHwoL

P
ro

po
rt

io
n 

of
 in

co
rr

et
 r

es
po

ns
es

R
ea

ct
io

n 
ti

m
e 

in
 m

s

Mean RTs Error rate

Figure 6. Mean reaction times and accuracy Upper panel: Training phase data by block. Lower panel: Test
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expressiveness. We speculate that this could be attributable to the identities of such faces
being more differentiated as expressions become more extreme, due to the exaggeration of
idiosyncratic expressions. Performance at the recognition task was dependent on our
manipulation of the facial expressiveness of the stimuli.

In our first experiment, we found test performance to be worse after expressive
training than after neutral training. One explanation for the poorer test performance of
the expressive group is that it was a consequence of not having attained the same level of
performance as the neutral group by the end of training. That this occurred as a result of a
difference in expressiveness may well be inconsequential; the direct cause of the test difference
may well not lie in expressiveness, but simply in the fact that the expressive test material
was less well learnt. From the current study, we cannot therefore assume a direct
connection between expressiveness of training material and subsequent recognition.
However, our experiments do tell us that expressiveness of the training set does modulate
training performance, and the expressiveness of the test set does modulate recognition
performance.

A convincing explanation for these findings comes from late bifurcation models, which
readily predict this task difficulty. They propose that the coding of both changeable and
invariant facial aspects occurs in a common framework before visual routes separate for
further processing of these characteristics (Calder, 2011). By this account, some aspects of
facial identity and expressions are processed by a shared mechanism, which permits the
incorporation of changeable facial aspects – such as expressions – into the visual
representation of facial identity. This approach is supported by studies reporting such
interactions (e.g. de Gelder, Frissen, Barton, & Hadjikhani, 2003; Levy & Bentin, 2008;
Van Den Stock & de Gelder, 2014), with evidence suggesting shared coding of identity and
expression (e.g. Rhodes et al., 2015), and with findings consistent with expressions being a
part of identity representation (e.g. Kaufmann & Schweinberger, 2004). Average-based
theories of face representation, in which facial identity representations resemble prototypes
that are abstracted from multiple perceptual instances of a face (Burton et al., 2005), are
compatible with shared coding and consistent with our findings.

We can propose an alternative explanation of our findings from independent processing
models such as Bruce and Young’s (1986) and Haxby et al.’s (2000, 2002). These models
propose that we recognise identity from processing structural, unchangeable facial aspects
separately from the processing of changeable, dynamic aspects such as expressions; and that
the bifurcation of facial information into these pathways occurs early. These models might
reasonably be extended to incorporate the idea that separating the expressive facial
information from the identity-specific structural information is more challenged when faces
are expressive. For example, we might suggest that expressions interfere with this process by
introducing noise; for example, expressions can alter the appearance of features – such as the
shape of the mouth from a smile or the wrinkling of a nose in disgust. By changing the retinal
description of the face in this way, expressiveness could slow the extraction of identity-
relevant facial information and lead to recognition errors. By this reasoning, these models
might explain our findings of expression dependence. However, this interpretation requires
some specification of the putative mechanism that separates invariant facial information from
changeable aspects.

Another approach to understanding these findings is that they can be explained by image
similarity. By this account, training with the expressive faces is slow because these images are
less homogenous than the neutral training faces; and when test phase images are expressive,
they take longer to respond to because of their dissimilarity to the neutral images with which
participants had been trained. Therefore, performance difference is driven by the decreased
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similarity of expressive images relative to neutral images, and not by image expressiveness per
se. Of course, image similarity and expressiveness are intrinsically interrelated. Expressiveness
is classified as a changeable aspect of faces (Haxby et al., 2000) and to make an expression we
necessarily distort our face; the stronger the expression, the more distorted the face.
Consequently, our experiments cannot distinguish whether it is the distortion or the
expressiveness itself that is driving the differences observed. What we can say with
certainty is that the facial distortion – that we classify as expressiveness – can impede both
the learning and recognition of facial identity.

In conclusion, this study demonstrates that facial expressiveness modulates identity
processing: it hinders identity discriminations of unfamiliar and newly learned faces and
impedes facial identity learning; and when the faces being learned are highly expressive,
then expressiveness may improve rather than impede performance, possibly by
enhancement of distinguishing facial features. By demonstrating expression dependence,
our results fit with the view that facial expressions are not disregarded or parsed out by
our identity-learning mechanism, but interact with it. Our findings contribute to the body of
evidence that refutes independent processing of identity and expressions. Moreover, these
results lend support to Calder’s (2011) late bifurcation model of face processing in which
changeable facial aspects and identity are coded in a common framework and, consequently,
are consistent with the concept that expressions form an integral part of facial identity
representation.
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