
plants

Article

Water Spectral Patterns Reveals Similarities and Differences in
Rice Germination and Induced Degenerated
Callus Development

Zoltan Kovacs 1,* , Jelena Muncan 2 , Nobuko Ohmido 3, George Bazar 4 and Roumiana Tsenkova 2,*

����������
�������

Citation: Kovacs, Z.; Muncan, J.;

Ohmido, N.; Bazar, G.; Tsenkova, R.

Water Spectral Patterns Reveals

Similarities and Differences in Rice

Germination and Induced

Degenerated Callus Development.

Plants 2021, 10, 1832. https://

doi.org/10.3390/plants10091832

Academic Editor: Alberto Gianinetti

Received: 31 July 2021

Accepted: 30 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Measurements and Process Control, Institute of Food Science and Technology, Hungarian
University of Agriculture and Life Sciences, Somlói út 14-16, 1118 Budapest, Hungary

2 Biomeasurement Technology Laboratory, Graduate School of Agricultural Science, Kobe University,
1-1 Rokkodai, Nada-ku, Kobe 657-8501, Hyogo, Japan; jmuncan@people.kobe-u.ac.jp

3 Department of Human Environmental Science, Graduate School of Human Development and Environment,
Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Hyogo, Japan; ohmido@kobe-u.ac.jp

4 ADEXGO Ltd., Lapostelki u. 13, 8230 Balatonfüred, Hungary; bazar@agrilab.hu
* Correspondence: kovacs.zoltan.food@uni-mate.hu (Z.K.); rtsen@kobe-u.ac.jp (R.T.)

Abstract: In vivo monitoring of rice (Oryza sativa L.) seed germination and seedling growth under
general conditions in closed Petri dishes containing agar base medium at room temperature (tem-
perature = 24.5 ± 1 ◦C, relative humidity = 76 ± 7% (average ± standard deviation)), and induced
degenerated callus formation with plant growth regulator, were performed using short-wavelength
near-infrared spectroscopy and aquaphotomics over A period of 26 days. The results of spectral
analysis suggest changes in water absorbances due to the production of common metabolites, as well
as increases in biomass and the sizes of the samples. Quantitative models built to predict the day of
the development provided better accuracy for rice seedlings growth compared to callus formation.
Eight common water bands were identified as presenting prominent changes in the absorbance pat-
tern. The water matrix of only rice seedlings showed three developmental stages: firstly expressing a
predominantly weakly hydrogen-bonded state, then a more strongly hydrogen-bonded state, and
then, again, a weakly hydrogen-bonded state at the end. In rice callus induction and proliferation,
no similar change in water absorbance pattern was observed. The presented findings indicate the
potential of aquaphotomics for the in vivo detection of degeneration in cell development.

Keywords: rice; callus proliferation; in vivo monitoring; cell development; near infrared
spectroscopy; aquaphotomics

1. Introduction

All living organs are made of cells, which are small membrane-bound compartments
filled with a concentrated aqueous solution of metabolic components. Investigations of
cell development are of importance not only for a better understanding of cell biology, but
for practical applications as well. A number of biochemical and morphogenetic studies
have been carried out to explore the basics of growth and development in plant cells.
These studies have mainly been concerned with the detection of changes in concentra-
tions of biochemical components, nucleic acid content, protein synthesis and/or other
biomolecules [1–4]. Despite making valuable contributions, the current state of the art tech-
nologies for plant cell development research rely on destructive methods of investigation,
and laboratory analyses are performed in vitro on single isolated compounds. The use of
non-destructive spectroscopy methods for in vivo investigation, without any disruption of
the system dynamics, could lead to a better understanding of the complexity of the cell
development process. Apart from bringing new insights to developmental biology, this
provides a new non-invasive tool for growth and development monitoring and control.
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In this regard, near-infrared (NIR) spectroscopy is a powerful, non-destructive and
rapid technique, which has been used for decades in the agricultural industry to monitor
the composition of plant tissues [5] and can proffer a very useful new modality for studying
plant cell development as well. Visible–NIR spectroscopy applies the visible and near-
infrared light (400–2500 nm) of the electromagnetic spectrum as a probe to measure various
physical and chemical parameters of the sample of interest in a completely nondestructive
way [6]. It is a quick and highly accurate analytical technique developed to measure
the qualitative and quantitative parameters of various products [7]. Although direct
association with certain components is difficult because of the overlapping overtones in this
region, the technique is beneficial for monitoring and functional studies. Combined with
chemometrics, it gives the option for qualitative and quantitative analysis [8]. The excellent
performance of NIR spectroscopy in various analytical tasks, such as the quantification of
a wide variety of chemicals in plant tissues, for example proteins, lipids, carbohydrates,
moisture and amino acids, among many others, has been extensively demonstrated [9–14].

Short-wave NIR (SWNIR) spectroscopy utilizes light of the 700–1000 nm wavelength
to probe the samples, which is very suitable for in vivo studies since these frequencies offer
a better penetration depth (up to 10 mm) [15]. This technique has been widely used in
various studies for different quantification purposes, such as the quality evaluation of fruits
and vegetables [16–19], or for the estimation of internal quality [20–23]. In addition, SWNIR
spectroscopy has been proven to be an excellent tool for the estimation of various quality
parameters in seeds and grain, such as the identification and discrimination of damage in
kernels due to heat and frost [24], while numerous recent studies have achieved excellent
results in the assessment of seed viability or vitality with this tool [25–30]. Studies showed
the successful application of visible (Vis) and NIR spectroscopy for the non-destructive
and rapid determination of the moisture contents of rice grains [31,32]. NIR spectroscopy
also proved to be applicable for the prediction of protein content in rice samples, which
shows the applicability of the technique in supporting the digital phenotyping of rice [33].
Vis/NIR-based hyperspectral spectroscopy has been found useful for non-destructive deter-
mination of several grain quality properties and phenotyping of rice [34]. NIR spectroscopy
combined with different chemometric classification techniques could be also applied for
the rapid and accurate authentication of rice [35].

Aquaphotomics [8], as an advanced scientific field, has furthered the application of
near-infrared spectroscopy for the exploration of aqueous and biological systems through
the rapid and comprehensive analysis of water–light interaction [8]. In this framework,
water absorbance bands and water absorbance patterns provide information about the
state of the analyzed system, shaped by all of its components and environmental influences,
which all leave a characteristic imprint on its intrinsic water matrix. This is the basis
of the so-called aquaphotomics water-mirror approach [8,36,37]. NIR spectroscopy and
aquaphotomics have been successfully applied in diverse life science applications [37]. In
microbiology, for instance, aquaphotomics has allowed the classification and identification
of different bacteria cells, as well as a better understanding of their functionality [38–40],
while in plant biology aquaphotomics was successful in the early diagnosis of virus in-
fection [41], as well as the detection and better understanding of how plants cope with
abiotic stress on a molecular level [42,43]. All this was obtained from the water signal,
entirely in vivo, without any influence on the physiology of the samples, and in a non-
invasive manner [44]. These studies have deepened the understanding of developments
made during the living process, with regards to changes in the hydrogen bonding of the
water in the respective living systems, thus providing a rationale to further aquaphotomics
inquiries to other systems and other processes, such as cell development, germination and
plant growth.

To the authors’ knowledge, these techniques have not yet been applied to describe
the water structural changes occurring in a living system during plant cell development in
order to discover the relationship between water species and their functionality. With this
research, we aimed to examine the process of development during rice germination and
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seedling growth and callus proliferation by in vivo monitoring using SWNIR spectroscopy
and aquaphotomics. The comparison of normal seed growth and callus formation would
provide insights into the differences between the two when described in terms of water
molecular changes. Therefore, the objective of this research was to investigate the ability
of aquaphotomics SWNIR transmittance spectroscopy to detect and describe normal and
abnormal cell development, using rice seeds as an experimental material.

2. Results and Discussion

The daily average spectra and 2nd derivative spectra of callus and rice seeds were
calculated and plotted (Figure 1) to examine the spectral changes that occurred during the
26 days of seedling growth, and to find the wavelength ranges showing the largest variation.
A relatively sharp and dominant peak was observed at 890 nm in the spectra of both callus
and rice seed samples (Figure 1a,b). This region is known as the 3rd overtone of CH and
CH2 bonds [45,46]. Since both cultures were grown in carbohydrate-rich media, this band
at 890 nm can be attributed to sugars, i.e., it has no relevance to the samples investigated.
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Pronounced changes can be observed in the regions between 720 and 780 nm and 800
and 870 nm, corresponding to the 3rd overtone of the OH stretching and OH combination
region of water, respectively [47]. The second derivative spectra of rice seedlings (Figure 1d)
exhibited more downward peaks in the regions of 720–780 nm and 800–870 nm, in contrast
to those of the callus samples (Figure 1c).

Preliminary principal component analysis (PCA) analysis was used as the next step of
evaluation to discover the multidimensional patterns of the spectral data and to identify
outliers, as explained in detail in the Materials and Methods section. The outliers found
with PCA—approximately 30% of the original number of spectra—were eliminated, and
quantitative models were built using Partial Least Squares Regression (PLSR) to examine
the relationship between the number of days of growth and the spectral data. The regression
models were validated using one-seed-out validation, as described in more detail in the
Materials and Methods section. The PLSR results can also provide information about the
wavelength regions that are most important in the regression model, thus revealing which
absorbance bands are most important with respect to growing time.

The results of the PLSR modeling, performed using time as a dependent variable
and smoothed, standard normal variate (SNV)-transformed and linear detrend-corrected
spectra in the spectral range between 720 and 955 nm, are shown in Figure 2.

The fitting and the quality parameters of the regression models showed better fitting
in the case of rice seedlings (Figure 2c) compared to the callus (Figure 2a): the coefficients
of determination (R2) were found to be 0.89 and 0.80, respectively. The models present
relatively high R2 values and low prediction errors, confirming that spectral variation can
be used to determine the general change in growth, despite the large within-days variation
of the callus and rice seedlings. The Y-fit plots (Figure 2a,c), which compare the actual day
of growth versus the predicted day of growth of callus and rice, respectively, both show
deviations of linearity, but in the case of the rice callus model, a sharp break in linearity is
especially evident around the 14th and 22nd days of monitoring. The regression vectors
of the PLSR models (Figure 2b,d) for callus and rice seedling growth appear to be similar.
Some differences could be observed in the 770–780 nm, 830–840 nm and 860–870 nm
regions, where the regression vector of the PLSR model of the rice samples illustrated more
dominant peaks, implying the greater intensity of changes in the somatic cells compared
to the callus cells during the monitored period of germination and seedling growth. It is
also interesting to note that the regression coefficients in the regression vector of the PLSR
model built for somatic rice seed development were nearly double the values of those
for callus rice, which speaks of the higher influence of all variables in the former model.
This implies that the water matrix in the seeds was more susceptible to changes as time
progressed. Based on the above detailed results of the PCA and PLSR analyses of the entire
wavelength region (720–955 nm), the wavelength region between 730 and 870 nm was
subjected to more detailed evaluation.

The range above 870 nm was removed to avoid the possible negative influence of
the bands found to be related to the growing medium around 890 nm. The wavelength
interval below 730 nm did not show a clear tendency in the transformed average spectra,
but it showed an unexpectedly high weight in the PLSR models, which can be a sign
of overfitting caused by the noisy region of the spectrum; therefore, the truncation was
further extended. This truncation of the ranges containing non-relevant signals offers the
opportunity to better explore the wavelength range found to be important to the changes
related only to cell development.

Hence, PCA evaluation was performed again in the spectral range 730 to 870 nm, on
the smoothed and SNV- and linear detrend-corrected spectra. The PCA models of callus
rice and rice seedlings samples show about 90% and 95% of the spectral variation in the
first three principal components (PCs), respectively (Figure 3a,c). The score plot of the rice
seedlings presents higher and more consistent variation, explained by the PC1, but PC2
and PC3 presented more prominent differences for callus rice and rice seedling samples;
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therefore, the data are not shown for PC1 scores, but they are presented in Figure 3a,c for
PC2 and PC3.
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Figure 2. PLSR analysis using time as a dependent variable (the day of development) performed on the preprocessed
(smoothing, SNV and linear detrend) transmittance spectra in the spectral range between 720 and 955 nm of (a) 28 callus
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circles indicate the calibration and red circles the cross-validation data points; blue dashed lines indicate the calibration Y-fit
and red dashed lines the cross-validation Y-fit, while black continuous lines show the Y-fit of ideal prediction).

The loading plots of the PCA models (Figure 3b,d) demonstrate the contributions
of the different wavelengths in the first three PCs. The first loading, which explained
the highest variation in both cases (59.95% in callus samples and 75.71% in seedlings
samples), showed one common dominant feature at 835 nm, which could be attributed
to water [48]. The shape of the first loading vector closely resembles the shape of raw
spectral profiles, indicating that the majority of variations were due to the baseline shift.
In the NIR wavelength range, the baseline of the sample absorption spectra was strongly
influenced by changes in the sample temperature [49–51], which, in the second overtone
region of water, manifested as a vertical shift [52]. From the corresponding score plots,
the large spreading of scores could be seen along the direction of PC1. In this region
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(830–840 nm), both water and carbohydrates display absorption [6], but considering that
water is a major component of cells (~70%) and hence the dominant absorber [23,53], it is
more likely that this feature arises from the water in the samples. Miyamoto and Kitano
found that wavelengths close to this particular band (835 nm) are highly correlated with
sample temperature [54]. Similarly, the band at 794 nm, which in our case could be detected
as a subtle shoulder in the PC1 loading vectors, was also found to be highly correlated
with sample temperature [54]. Numerous studies reported similar bands to be absorbance
bands of water, which are most affected by temperature: 838 nm [55]; 841 nm [56]; 796 nm
and 836 nm [57], and 837.5 nm [58].
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Since both these features are present in the loadings of the first PC, it can be concluded
that the variation in scores along the PC1 axis was due to the differences in the temper-
ature’s effects on the water matrix of the samples during spectral measurements, which
were highly possible given that, in the experimental setup, the seeds were in close contact
with the light-emitting probe, and it was not possible to ensure same temperature condi-
tions. Furthermore, the spectra were acquired consecutively, and in this case, the spectral
changes resembling temperature-induced spectral patterns are due to the repeated light
exposure [59]. It is interesting to note here that this factor, in the case of the callus samples,
explained a significantly smaller portion of the total variation (only ~60% compared to
~76% in the seedlings). This difference in variation in the water matrix between the two
types of samples may indicate that the water in the rice seeds, in contrast to the callus, was
more responsive to temperature perturbation. The differences in the response of the water
matrix of the samples to temperature variations indicate differences in the hydrogen bond
network as a result of differences in the biochemical composition [60–63].

The loading vectors of PC2 indicate differences between the two cultures in the regions
750 to 800 nm and 830 to 860 nm. The first region was previously found to be important for
the differentiation of types of bacteria based on the metabolites they produce [64], as well
as other microorganisms [65]. It may also be the case here that this region of the spectra
captures the information related to either differences in metabolites produced by different
cell types (callus versus somatic), or simply their different structures.

The second mentioned region is probably related to the increase in the path length
of the samples, related to the change in size due to the growth, which is captured during
measurements. Miyamoto and Kawano found that, in this region, the absorbance at
a wavelength of 840 nm became stronger with the increase in path length [54]. This
explanation seems probable, since the measurements were performed during a period of
time when, naturally, due to the growth, the sample size changes, and additionally, these
differences may have occurred due to different positions of seeds during measurements,
resulting in different optical path lengths.

From the score plot of callus samples presented in Figure 3a, a certain trend could be
observed along PC3 with respect to the time of monitoring. In rice seedlings (Figure 3c),
during the first days of monitoring, the scores were be located in the positive part of PC3,
but moved to the negative part as the time progressed. Although there was a fluctuation
in scores on days 16 and 18, there was agreement with the deviations from the linear
relationship with time seen in the previous regression analysis. The major feature of the
PC3 loading vector was a positive peak at 810 nm. In the case of callus samples, scores at
the beginning of monitoring were located in the positive part of PC3, and moved towards
zero with time progression, but this came to a halt after the 14th day, with only slight
variations afterwards. This also agreed with what was observed when the relationship
with time was modeled in the regression analysis. The major feature of the PC3 loading
vector in this case was also a positive peak located at 810 nm. This result means that, for
both rice seedlings and callus samples, the absorbance at 810 nm decreases with time, with
the exception that in callus, around day 14, this trend stops.

The absorbance band at 810 nm was connected in several research studies with the
oxidative metabolism and the state of cytochrome C oxidase (unit IV of the mitochondrial
respiratory chain) in various cell types, as well as cell proliferation [66–70]. Since the peak
at 810 nm is the common, dominant feature of both PC3 loading vectors, PC3 captures the
variance related to the cell mass density during the monitoring period, i.e. the proliferation
of cells.

The differences in the patterns of scores between somatic and callus suggest differences
in the growth rate and overall development of the two types of cells; in particular, in the
case of callus cells, the fact that there was no change in the scores after 14 days suggests that
the cells stopped proliferating. Differences in the PC3 loading vectors for callus and rice
seedlings could be observed in the regions 736–738 nm and 830–870 nm. Both regions have
previously been found to be important for the prediction of rotting degree [21,22]. In the
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case of our samples, particular care was taken in the sterilization and isolation of cultures
to prevent contamination; however, browning did occur in some of the samples. The fact
that the loading vectors between seeds and callus differ in this might be an indication that
after day 14, the callus cells stopped growing, and were actually dying (rotting). In both
spectral regions, there were vibrational bands of water: the first one could be related to the
third overtone of OH stretching vibration (3ν1 + ν3), while the second one to the second
overtone of the combination of stretching and bending vibration (2ν1 + ν2 + ν3) [71,72].
In these two regions, numerous specific water molecular species can absorb: at ~738 nm,
hydroxyl ion H3O2- (3rd overtone) [73]; at 829, 837, 841, 854 862 and 869 nm, various forms
of small protonated clusters (+H(H2O), +H(H2O)2), +H(H2O)4, +H(H2O)6, [74–77]; while at
around 848, 856 and 871 nm, different forms of superoxide hydrates (-O2(H2O), -O2(H2O)2,
-O2(H2O)4) [78]. The protonated species are considered to be of particular importance for
biomolecular reactions in biological systems, while the superoxide ion O2- is one of the
most important diatomic anions in nature, with a central role in physiological processes,
such as aging and inflammation.

In summary, what the PCA results revealed is that the first two PCs capture variation
due to the optical path length, i.e., differences in the physical characteristics of the samples.
In addition to differences in path length, which are related to the growth of samples, the
second PC might also be related to the metabolic compounds produced by cells. The
third PC is related to the time progression and the increase in the number of cells, i.e.,
proliferation and possible rotting of the seed coat tissue.

Next, the same truncated spectral region (730–870 nm) was used to build PLSR models
to regress on the growing time based on the spectral data. The model fitting and quality
parameters of the models, similarly to the evaluation performed on the wider spectral
range, resulted in better fitting for the rice seedlings (Figure 4a) compared to the results for
callus (Figure 4c). The coefficients of determination in the model validation step, using one-
seed-out cross-validation, were 0.7461 and 0.8798 for the prediction of callus and somatic
rice seeds, respectively, which provided slightly better fitting compared to the modeling
over a wider spectral range. The regression vectors of the PLSR models (Figure 4b,d)
presented the largest differences between the models of callus and somatic rice growth,
around the 730–750 nm, 760–800 nm and 830–870 nm regions, similarly to the results of
PCA. It is interesting to note that in both models (Figure 4a,c), the Y-fit plots, showing
agreement between the actual and predicted days of growing, display some breaking of
the linear trend after two weeks of monitoring, and in the last two days of monitoring.

In the results of both the PCA and PLSR analyses, high deviations in the scores were
observed. As suggested earlier, this was probably a result of the different temperatures of
the samples during measurement, differences in the path length due to the geometry or
shape, as well as the size of the samples, which was not only different initially, but was also
constantly changing due to the growth over the monitoring time. This last phenomenon
was observed visually as well.

For this reason, both the callus’ and rice seeds’ spectra were subjected to hierarchical
cluster analyses (HCA) to group the data based on their similarities. This analysis was
performed on spectra collected for each day separately, which resulted in the repeated
identification of three clusters for both somatic and callus samples (Figure 5 is an example
of three clusters detected in the spectra collected on the 10th day of monitoring). This result
shows that at least three clusters existed in both callus and rice seedlings samples, which
showed differences (physically and chemically—different growing speed, different size,
shape, etc.) during the monitoring period.

For each of the identified clusters, the average spectra and their second derivatives
were calculated in order to explore the differences in the clusters found within the callus
and rice seeds (Figure 5c–f). The average spectra showed subtle differences in the baseline
for both callus and rice seeds, and the spectral region from 730 to 800 nm brought out
differences between the clusters of biological replicates, which seemed especially different
for rice seeds. To better extract the absorbance bands related to these differences, second
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derivative transformation canceled out the differences in the baseline and improved the
resolution of the overlapped bands (Figure 5e,f).
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The second derivative spectra showed interesting features—despite differences in cultures,
callus and seeds, as well as the differences in biological replicates between different clusters,
for the most part, the spectra feature the same absorbance bands. The shapes of the band
differed slightly, or showed very small shifts. For instance, the one at 834 nm showed such
differences, but mainly, the differences between the somatic rice seeds and callus rice seeds,
and between the clusters within the same rice cultures, regard differences in intensity at almost
the same absorbance bands. These bands were identified as located at 734–736 nm, 738–740 nm,
748–750 nm, 754–756 nm, 759–761 nm, 764–766 nm, 770–773 nm, 776–778 nm, 782–783 nm,
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784–787 nm and 791–792 nm. The intensity and shape of the bands were different for different
clusters, and also between the rice seeds and the callus in general.
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Next, the spectra of the three clusters were used separately to calculate aquagrams
using the important wavelengths found in the third overtone region of water (720–780 nm)
during the qualitative and quantitative evaluation of the spectral data, i.e., the evaluation
of the raw and second derivative spectra, and PCA and PLSR evaluation (this region
excludes the wavelengths that contained information about the physical differences or
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temperature). Thus, six aquagrams were calculated: three for the three callus rice clusters
(Figure 6b–d) and three for the three rice seedlings clusters (Figure 6e–g), respectively. The
aquagrams showed changes in water molecular structure during the observation period of
cell development, represented by selected water absorbance bands.

1 
 

 

Figure 6. (a) Aquagrams of pure water in the 3rd overtone region, at different temperatures, showing
fractions of weakly and strongly hydrogen-bonded water, respectively. The aquagram and water
fractions are presented for the easier interpretation of the experimental findings, and the numbers
in the legend present temperature in ◦C. Plots (b–g) present the aquagrams calculated for selected
wavelengths, showing the changes during cell development in the 3rd overtone region of water:
(b–d) for the three clusters of callus and (e–g), for the three clusters of rice seedlings.
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While it is difficult to provide exact assignments of particular water species in the
region of the third overtone of water, some general features are well-known. The maximum
absorption peak in this region for water vapor is located at 723 nm, while for liquid water
near boiling point it is located at 740 nm, for liquid water near freezing point it is at 770 nm,
and for ice it is at 800 nm [79]. This means that water species absorbing in the region around
740 nm could be considered to have weaker hydrogen bonds compared to those absorbing
around 770 nm, which would resemble more ice-like structures. In order to confirm which
species could be considered weakly, and which more strongly, hydrogen-bonded, one more
aquagram was calculated showing the changes in liquid water across the wide range of
temperatures described by the spectral pattern of changes at the same absorbance bands
found to be important for the study of rice development. This aquagram is presented at
the top of Figure 6 (Figure 6a), and shows clearly that the water species absorbing at 731,
736 and 745 nm, which are more represented in hot water, could be considered weakly
hydrogen bonded compared to those absorbing at 752, 761, 768, 772 and 775 nm, mainly
present in cold water, and are characterized by stronger hydrogen bonding. With this new
insight, the interpretation of changes in the water matrix of rice seeds and callus could be
explained in terms of changes in hydrogen bonding.

The spectral changes in the three clusters of rice seeds presented by the aquagrams
(Figure 6e–g) showed a clear tendency as a function of the growing time. A clear, consistent
pattern of changes was present in all three aquagrams, indicating common and consistent
changes in water molecular structure during the monitoring period, regardless of the
differences between the clusters of seeds. This suggests that during development, the water
in the somatic cells was probably being affected in a similar way, from the beginning of
monitoring up to the 16th day. The water was predominantly in a less hydrogen-bonded
state compared to in the period of the 16th day to the 20th, when it changed to a more
hydrogen-bonded state, before finally changing back to the weakly hydrogen bonded state
during the last days of monitoring. The differences in the state of water from the 4th to the
16th and the 16th to the 20th day, and then beyond, indicate that three different stages of
water molecular structure could be identified during the monitoring period of rice seeds.
This agrees with the results of PLSR analysis, which showed a deviation in the linear trend
in the same periods. The aquagrams of callus (Figure 6b–d) do not depict a clear tendency
of the spectral changes in relation to the time of growing. These results are consistent
with what was observed in the PCA analysis, where a clear time trend was observed for
seedlings, but not for callus samples. These phenomena suggest that the structural changes
of water seem more random during the cell development of callus, probably due to the fact
that they are undifferentiated, totipotent, unorganized cell masses, which can develop in
different directions (i.e., undergo somatic embryogenesis, or not) [3,80,81].

Our findings are also in agreement with several near-infrared imaging studies of em-
bryonic development in higher organisms, which have repeatedly shown that this process is
characterized by changes in the proportion of strongly and weakly hydrogen-bonded fractions
of water, which may be a consequence of structural changes in biomolecules [82–84].

The structural organization of water in a particular state was shown to be of impor-
tance in earlier aquaphotomics works related to plant survival. Keeping constant the ratio
of water species during dehydration, the drastic reduction of free water molecules and
the accumulation of water dimers in the completely desiccated state was shown to be a
characteristic of plant resurrection—specifically, in Haberlea rhodopensis, one of the rare
plant species that can survive extremely long periods without water. The cold resistance
ability of genetically modified soybean cultivars was found to be related to their ability to
retain water in their leaves when in the weakly hydrogen bonded state [42]. These previous
works, together with the current one, suggest that the state of the water molecular structure
in plant organs has a function, especially in survival. While in the current work, we cannot
say more about the function of the three identified stages of water structural organization,
the representation of changes in the water molecular matrix of callus and rice seeds, pre-
sented in aquagrams, clearly shows the existence of differences between degenerate cell
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and normal cell growth. While the aquagrams of rice seed clearly indicate the three stages
of water molecular structure during the growth of rice seeds, there were no such stages in
callus development, and no patterns of changes, indicating the absence of normal growth,
i.e., the degeneration and dying of the cells. In other words, using aquaphotomics, it was
possible to clearly detect the relation of the water matrix and the spectral pattern of normal
growth, and to detect abnormality and cell death. The unprecedented novelty of these
findings lies in the fact that this was achieved by utilizing only the spectral response of the
water molecular matrix of the cells, in a completely non-destructive way.

3. Materials and Methods
3.1. Plant Material

The experiment was conducted using mature seeds of rice (Nipponbare, Oryza sativa L.).
The seeds were dehusked manually and surface-sterilized with 70% ethanol for 5 min, followed
by a 5% commercial solution of sodium hypochlorite (NaOCl2), and then rinsed thoroughly
three times with sterile distilled water.

3.2. Culture Preparation

Twenty-eight seeds were prepared for each task—rice seedling growth and callus
induction. The seeds were placed in closed Petri dishes containing agar base medium
and kept at room temperature (temperature = 24.5 ± 1 ◦C, relative humidity = 76 ± 7%
(average ± standard deviation)) in a dark box throughout the experiment for the germina-
tion and rice seedling growth of the intact seeds. Callus formation was induced from seed
explants after seed sterilization and plating onto in vivo tissue culture medium containing
N6 basal salt with 3% sucrose, 2.88 g/L proline, 0.3 g/L casamino acid, 0.1 g/L mioinositol,
N6 vitamins, 4 g/L gelrite, and plant growth regulator at 2 mg/L 2,4-D to generate callus
cells from the mature embryo of rice.

3.3. Instrumentation and Spectral Measurements

A SAIKA instrument (SAIKA Technological Institute Foundation, Wakayama, Japan)
equipped with a silicon photodiode array detector attached to a fiber optic cable with a
2 mm diameter controlled by PureSpect Control software (ver. 1.0., SAIKA Technological
Institute Foundation, Wakayama, Japan) was used to monitor the growing of the seeds. The
transmittance spectra of the individual seeds were recorded for the entire spectral region
(660–960 nm) with 1 nm step (301 data points). The monitoring was performed from the
4th to the 26th day of development, by acquiring spectral every other day (12 time points).

Reference was taken once a day at the beginning of the experiment using blank air. The
signal of the detector (dark scan) was also acquired once a day before reference acquisition
by turning off the lamp and acquiring the baseline spectrum of the instrument.

The fiber probes of the instrument were fixed with a stand with a gap equivalent to the
height of the closed Petri dishes. The Petri dishes were placed on the stand and positioned
for the individual seeds one by one for the measurement. During the monitoring period,
scanning was repeated at the same positions marked on the first day of the experiment,
which provided the spectra of the mixture of the original seed and the different develop-
ing organs after the germination, as well as for the late phase of seedling growth. The
fiber transporting the light was attached from the bottom, while the fiber receiving the
transmitted light through the sample was attached to the top of the Petri dishes (Figure 7).
Every individual seed was scanned from four different directions, turning the Petri dish
three times by 90◦, and five consecutive scans were taken, resulting in 20 acquired spectra
for each seed at a given time point. The total number of acquired sample spectra was
13,440 (2 types of samples (rice seedling growth and rice callus formation) × 28 seeds
× 4 positions × 5 consecutive scans × 12 time points). The Petri dishes were kept closed
during the entire experiment to avoid any contamination of the cultures.
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The measured intensity values of the samples, the reference and the dark scan were
used to calculate absorbance values, as follows:

Ai =
Ri − D
S − D

where Ai is the processed absorbance spectrum of the i-th sample, R is the raw spectrum of
that sample, S is a reference, and D is dark.

3.4. Data Analysis

Preliminary spectra selection was performed based on the visualized absorbance
spectra, where the spectra observed to be obvious outliers due to the saturation of detector
or other artifacts (e.g., due to the misalignment of fibers) were eliminated. As the next
step, the average values of the consecutive scans were calculated at every wavelength. Due
to noise and the lower quality at the edges of the collected spectra, the spectral region
had to be trimmed to 720–955 nm for further evaluation. Pre-experiments with an empty
Petri dish showed that, although the spectra were collected through the polystyrene Petri
dish, in this spectral region, polystyrene does not have a characteristic absorption peak.
Several combinations of spectral pretreatment (e.g., smooth with different numbers of
points combined with multiplicative scatter correction (MSC), standard normal variate
transformation (SNV), detrend or derivation) were tested prior to the modeling and finally
the following combination was found to be optimal based on the results of the Partial
Least Squares Regression (PLSR) models. Smoothing of the spectra was performed using
a Savitzky–Golay smoothing filter [85,86] (2nd order polynomial and 31 data points).
Due to the differences in size and shape of the seeds, the resulting differences in light
path length and light scattering caused baseline and slope effects in the spectra of the
different seeds, which had to be corrected. Correction was performed using SNV [87] and
linear detrend transformation [88,89]. Every single spectrum was centered and scaled by
dividing each data point by the standard deviation of the respective spectrum for the SNV
transformation, while linear modeling of the baseline as a function of wavelength and a
subsequent subtraction of this function from each spectrum individually was performed
for the linear detrend transformation.

After the above-described preprocessing, the spectral data of callus and rice seedling
samples were analyzed separately. The daily average of the preprocessed spectra and the
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2nd derivative spectra were used to examine the spectral changes, and to determine the
wavelength ranges wherein the largest changes occurred during the monitoring period.
Principal component analysis (PCA) [90] was used to describe multidimensional patterns
of the spectral data and to discover outliers. Outlier detection was performed by executing
boxplot analysis on the data from each day for each sample type for the first three PCs,
separately. The observations lying beyond the extremes of the whiskers defined as 1.5 times
the interquartile range from the median were detected as outliers. PLSR [87] was used
to examine the relationship between spectral data and the day of monitoring of callus
and rice seeds. The spectra were mean-centered prior to the creation of the models. The
PLSR models were evaluated by the coefficient of determination in calibration (R2tr), the
root mean squared error of calibration (RMSEC), the coefficient of determination in cross-
validation (R2cv) and the root mean squared error of cross-validation (RMSECV). The
maximum number of latent variables (LV) used in the regression models was chosen to be
equal to the day of growing in order to avoid overfitting. The PLSR models were validated
using one-seed-out validation. The dataset was split into training and test sets. The spectral
data of 27 seeds were used as the training set, and those of one seed left as the test set. This
process of data splitting was repeated 28 times to ensure that the data of all the seeds can
be included in the evaluation set once [91].

The analyzed seeds showed very high diversity and different growing rates. Hier-
archical cluster analyses (HCA) was used to discover any possible groupings among the
different seeds based on their naturally different growth rates. The HCA is an unsupervised
clustering technique [91] that groups the samples on the basis of distances without taking
into account the information about class membership. In this study, cluster analysis was
performed via Ward’s method using Euclidean distances [92]. HCA was performed in
steps using data separately obtained on each day of the experiment for callus rice and
somatic rice seeds, resulting in 12 cluster dendrograms each for both callus rice and somatic
rice. Each of the daily cluster dendrograms were grouped into three clusters, and the
appearance of the individual seeds in the different clusters were recorded. Finally, each
seed was assigned to one of the three clusters based on its most frequent appearance. The
purpose of this HCA analysis was to eliminate the high variations in the different growth
rates of the seed, making it possible to visualize their water spectral pattern using the
preprocessed averaged spectra, 2nd derivative-averaged spectra, and aquagrams.

The above-mentioned methods enabled the identification of wavelengths in the spectra
that showed the largest changes in absorbance during the development. Those wavelengths
were used to calculate and visualize aquagrams [89,93] in order to present cell growth
dynamics as a function of absorbance at particular water matrix coordinates (WAMACs) [8].
An aquagram is a star-chart that displays normalized and averaged absorbance at the
selected wavelengths corresponding to specific water absorbance bands [93], and it can be
a useful visualizing tool to better observe the dynamics of water structural changes along
some perturbation of interest [89]—in the case of this study, how the water structure in the
rice seedlings and callus cells changes during the monitoring period.

The calculation and visualization were performed in the R-project environment using
R Studio user interface [94,95].

4. Conclusions

Aquaphotomics coupled with SWNIR spectroscopy was applied to monitor the wa-
ter structural changes during callus formation and the proliferation of plant cells in the
germination and seedling growth of rice from the 4th to the 26th day of cell development.

The use of the aquaphotomics concept provided the possibility for the non-invasive,
real-time monitoring of the water molecular structure changes of callus and somatic rice
cells as integrative spectral markers for screening. Qualitative models revealed simi-
larities in the main water absorbance bands activated in cell development, and differ-
ences in the spectral patterns and dynamics between the developmental process of callus
and rice seedlings. PCA analysis revealed that absorbances at certain water absorbance
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bands and spectral regions can be related to the change in size of the samples, as well
as to an increase in the number of cells. Partial least squares regression (PLSR) results
showed that it was possible to predict the day of the development with better accuracy
for rice seedlings growth (R2cv = 0.88, RMSECV = 2.3 day) compared to callus formation
(R2cv = 0.75, RMSECV = 2.97 day). Aquagrams were used to visualize the spectral changes
occurring at the selected water absorbance bands during cell development. The aquagrams
of rice seedling growth clearly showed the direction of spectral changes as a function of the
growing time, but nothing similar was observed for callus formation. The results suggest
that structural changes in water are more random in non-differentiated callus cells, but
show a clear tendency in vegetative cells during cell development. Therefore, the tested
seedling growth period could clearly be described by three stages: the 4th to the 16th,
the 16th to the 22nd and the 22nd to the 26th days, which mark the transition from water
being in the weakly hydrogen-bonded state, to being strongly hydrogen-bonded, and then
again weakly hydrogen-bonded. These findings show clearly that, using aquaphotomics, it
was possible to detect differences between degenerate cell and normal cell growth. The
promising results of SWNIR spectroscopy coupled with aquaphotomics suggest the strong
potential of the technique for rice seed authentication and characterization, and beyond
that, for detection of abnormalities in growth and development, which may offer excellent
feedback for early warning systems. Based on the results of this preliminary investigation,
further and more robust studies will be initiated, which will test the possibilities for transfer
to in-field applications. Additionally, more in-depth studies with different plant species
are planned, with the goal of further inquiring into the role of water’s molecular structure
in seed germination, seedling growth and normal development.
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