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Abstract
Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component 
of the neurovasculature is the blood–brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular 
junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, 
the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth 
investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt 
to identify senescence-associated alterations within.

Keywords  Senescence · Blood–brain barrier · In vitro model · Aging · CNS diseases

Abbreviations
BBB	� Blood–brain barrier
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Introduction

Majorly composed of endothelial cells, the blood–brain 
barrier (BBB) plays a pivotal role in maintaining central 
nervous system homeostasis. Breakdown of the BBB is a 
key feature of neuroinflammatory conditions and associated 
with the influx of inflammatory cells, fluids and proteins, 
including complement and cytokines (Rubin and Staddon 
1999; D’Atri and Citi 2002; Förster 2008). When the BBB 
is compromised, homeostatic breakdown may occur, lead-
ing to degenerative effects on BBB function. In a disrupted 
BBB, molecules which do not usually permeate the bar-
rier, leak through it. This is majorly attributed to the loss of 
BBB integrity usually imparted by tight junctional sealing 
(Lockhead et al. 2020). Among the various regulators of 

barrier integrity is claudin-5, a major tight junction protein 
expressed in brain microvascular endothelial cells (Jia et al. 
2014; Luissint et al. 2012; Burek et al. 2010). In addition, 
adaptor proteins acting as cytoskeletal linkers such as zonula 
occludens-1 (ZO-1) are important components of the brain 
endothelial barrier and function as regulators of tight junc-
tion assembly (Zihni et al. 2016; Fanning and Anderson 
2009). Prior to formation of TJs, cell-to-cell contacts need 
to be initiated and this is carried out by adherens junctions 
(AJs). AJs play an important role in the control of vascu-
lar permeability (Giannotta et al. 2013). VE-Cadherin, the 
main integral membrane protein of endothelial AJs, links 
AJs to actin cytoskeleton as well as controls endothelial cell 
survival and stabilization of blood vessel assembly (Crosby 
et al. 2005; Carmeliet et al. 1999). Overall, it has been dem-
onstrated both in the lab and by computational simulations 
that mutational changes of BBB tight junction proteins and 
transporters bring about detrimental effects to the brain (Shi-
tyakov and Förster 2018).

Considering that the mammalian brain requires a con-
stant supply of glucose as its main source of energy for the 
regulation of brain physiology, one major role of endothelial 
cells is the transport of glucose (Mergenthaler et al. 2013). 
The glucose transporter GLUT-1 is the main glucose trans-
porter in brain endothelial cells and is essential for maintain-
ing normal neurological functions (Patching 2017). Lower 
GLUT-1 levels have been associated with the impairment 
of microvasculature as well as with BBB dysfunction in 
patients with Alzheimer’s disease (AD), which is closely 
associated with senescence (Winkler et al. 2015). In fact, 
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GLUT-1 expression was significantly decreased in patients 
with AD compared to healthy controls (Vogelsang et al. 
2018). Moreover, GLUT-1 immunoreactive structures are 
significantly decreased with age in gerbils and mice brain 
(Lee et al. 2018).

Resulting from a variety of stresses and irreversible 
growth arrest is cellular senescence, a stress response link-
ing the degenerative and hyperplastic pathologies of aging. 
Although cellular senescence is primarily involved in nor-
mal development, cell plasticity, and tissue repair, when the 
cellular program regulating these processes is disturbed, 
disease, and aging ensue (Rhinn et al. 2019). Senescence 
results in DNA damage, telomere shortening, telomere 
dysfunction, and oncogenic stress, which give rise to dys-
functional, transformed, or aged cells (Mohamad Kamal 
et al. 2020). Cellular senescence is a permanent form of cell 
cycle arrest that halts cell proliferation, but the cells remain 
viable. The irreversible growth arrest in senescent cells is 
governed by intrinsic and extrinsic factors, which include 
pathways for the cyclin-dependent kinase inhibitors (CdkIs) 
such as p16 and p21 (Regulski 2017). Hallmarks of cellu-
lar senescence include increased expression of senescence-
associated β-galactosidase activity, p16, p53, and p21. In 
addition, higher levels of DNA damage, hence, γ-H2AX, are 
also notable (Noren Hooten and Evans 2017).

Albeit the BBB may be more vulnerable to systemic 
inflammation in neurological disease (Varatharaj and Galea 
2017), BBB disruption also takes place in healthy aging 
individuals with no apparent disease state (Erickson and 
Banks 2019). During the adult period and the event of aging, 
BBB dysfunction emerges and is accompanied by inflam-
mation and loss of paracellular tightness, with no leukocyte 
recruitment. Typically, the cellular damage that occurs when 
the BBB is damaged leads to increased apoptosis or cellular 
senescence, which contributes to aging (Erdö et al. 2017). 
Still, even though it is known that BBB disturbance takes 
place in both healthy aging and diseased states accompa-
nied by aging, studies on the association of aging and BBB 
compromise are scarce.

Over the years, the mouse has remained as the mamma-
lian model of choice for disease modeling in animals. Not 
only is there a highly conserved genetic homology between 
mice and humans, but the mouse is easy to breed and employ 
in the laboratory (Gurumurthy and Lloyd 2019). Consider-
ing this, in vivo studies done in mice need to have coun-
terparts in vitro to enable an in-depth probing of cellular 
as well as molecular mechanisms of diseases. Research on 
BBB aging is currently limited to the use of patient mate-
rial or ex vivo material derived from mouse models (Vafaie 
et al. 2014; Meyer et al. 2016; Yamazaki et al. 2016; Balint 
et al. 2019). For this reason, a mechanistic follow-up of the 
underlying senescence-dependent pathways leading to loss 
of cellular function is not possible.

Since no in vitro senescence induction at the BBB has 
been attempted thus far, and it being a necessary tool to 
study the pathophysiology of aging-related diseases involv-
ing compromised BBB function, we herein investigate the 
expression of senescent markers in relation to BBB integrity 
in vitro. The purpose of this study is to report the association 
of senescent markers expression to decline of BBB integrity 
using our BBB model cell line. The immortalized microvas-
cular endothelial cell lines cEND and cerebEND generated 
in our laboratory (Förster et al. 2005; Silwedel and Förster 
2006; Helms et al. 2016) are both established BBB models. 
They have been used for drug transport studies and as an 
in vitro model of stroke (Neuhaus et al. 2012, 2014; Salvador 
et al. 2015; Shityakov et al. 2016; Burek et al. 2019; Ittner 
et al. 2020). Hence, they are both suitable models for in vitro 
studies of senescence at the BBB. Nonetheless, our study is 
limited to the use of the endothelial cells generated in our 
laboratory, since this is a preliminary attempt at a model of 
the senescent BBB.

Materials and methods

Cell culture

Reagents for cell culture were obtained from Sigma-Aldrich 
unless otherwise indicated. Cells were cultured in a 37 °C 
incubator (Steri-Cult 200, Forma Scientific). Primary murine 
brain (Pelo Biotech) and cerebellar (cerebEND) (Silwedel 
and Förster 2006) microvascular endothelial cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
supplied with 50 U/ml penicillin/streptomycin and 10% 
fetal calf serum. Additional supplements were added for 
culturing cerebral murine microvascular brain endothelial 
cells (cEND) (Förster et al. 2005; Burek et al. 2012): 2% 
l-Glutamine, 2% MEM, 2% non-essential amino acids, and 
2% Na-pyruvate. Primary cells and cells between passages 
22–70 were used in experiments. They were seeded in 6-well 
plates (Greiner Bio-One GmbH) with or without cover slips 
with a density of 40,000 cells/cm2 and cultured until 95% 
confluent prior to use in experiments.

Induction of senescence

Cells between passages 22–70 were induced to senescence 
by treatment with 100, 150, and 200 µM H2O2 (Sigma-
Aldrich) for 90 min. Afterwards, the medium was changed 
and the cells were incubated for 24 h at 37 °C (Chen et al. 
2007). Next, they were washed twice with phosphate-buff-
ered saline (PBS) (Sigma-Aldrich) prior to further process-
ing for permeation assay, immunofluorescent staining, and 
Western blot analysis.
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Immunofluorescent staining and microscopy

Cells grown on 20 mm diameter cover slips were fixed in 
methanol for 20 min at −20 °C. Next, they were washed 
thrice with PBS for 10 min each and blocked with 5% don-
key serum (EMD Millipore) in PBS for 1 h at room tempera-
ture. Primary antibodies (anti-p15/16 conjugated to Alexa 
Fluor 555 diluted 1:500, Santa Cruz Biotechnology; anti-p21 
conjugated to Alexa Fluor 488 diluted 1:500, Santa Cruz 
Biotechnology; anti-claudin-5 conjugated to Alexa Fluor 
488 diluted 1:500, Thermo Fisher Scientific; anti-ZO-1 con-
jugated to Alexa Fluor 488 diluted 1:500, Thermo Fisher 
Scientific; anti-β-gal diluted 1:500, Cell Signaling; anti-γ-
H2AX diluted 1:500, Merck Millipore; anti-Ki67 diluted 
1:500, Santa Cruz Biotechnology; anti-GLUT-1 diluted 
1:500, EMD Millipore; and anti-VE-Cadherin diluted 1:200, 
Santa Cruz Biotechnology) were diluted in PBS with 5% 
donkey serum and allowed to bind overnight at 4 °C. All 
of the commercial antibodies used have been validated by 
the manufacturer as given in the specification sheets. Cells 
were then washed thrice as previous before addition of the 
secondary antibody (anti-rabbit Alexa Fluor 555, anti-mouse 
Alexa Fluor 488, anti-goat Alexa Fluor 488, each one diluted 
1:400, Thermo Fisher Scientific), if needed, which was 
allowed to incubate for 1 h at room temperature. Cells were 
washed again as previous before mounting on glass slide 
with Fluoroshield + DAPI (Abcam). Samples were viewed 
using the Leica DM13000B microscope with a Leica DFC 
450C camera. The following image acquisition conditions 
were used with the aid of the Leica V4.13 software: expo-
sure time—11.4 to 287.2 ms for DAPI, 6.5 s for p16 and 
p21, 4 s for claudin-5, ZO-1, β-galactosidase and γ-H2AX, 
2 s for GLUT-1, and 12 s for VE-Cadherin; gain—1×; and 
gamma—1.13. Quantification of β-gal was carried out by 
counting positively stained cells and calculating the percent-
age compared to the total cell number. The ImageJ software 
(NIH, USA) was used for cell counting.

Western blot analysis

Cells were lysed with RIPA buffer (50 mM Tris pH 8.0, 
150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% 
NP40) containing protease inhibitor cocktail (Roche). They 
were then sonicated (Bandelin SONOPULS) and mixed with 
Laemmli buffer containing 5% β-mercaptoethanol. After 
denaturation, they were run through a 10–12% SDS PAGE 
mini gel and blotted overnight using a Mini Trans-Blot 
Electrophoretic Transfer Cell (Bio-Rad). Subsequently, the 
membrane was blocked in 5% non-fat dry milk (Carl Roth) 
and probed with the primary antibody anti-claudin-5 (1:500, 
Thermo Fisher Scientific) or anti-γ-H2AX (1:500, Merck 
Millipore) and horse radish peroxidase-conjugated anti-
β-actin (1:25,000, Sigma-Aldrich) as endogenous control 

overnight, followed by secondary antibodies anti-mouse/
rabbit (1:3000, Roche Lumi Light Plus and Cell Signaling 
Technology). The aforementioned commercial antibodies 
used have been validated by the manufacturer as given in 
the specification sheets. Detection was carried out using an 
enhanced chemiluminescence solution (Whitehead et al. 
1979) and viewed with Imagen Flour Chem FC2 (Cell Bio-
sciences) with the AlphaView Software (Version 1.3.0.7, 
Innovatech Corporation). Densitometric analysis was carried 
out using the Image J software (NIH, USA).

Transendothelial electrical resistance (TEER) 
measurement

Upon treatment of cells grown on transwell-inserts (Corn-
ing) with a pore diameter of 0.4 μm, TEER was measured 
using the volt-ohm meter device (EVOM, World Precision 
Instruments). Blank filters were used as internal control.

Endothelial permeability measurement

Cells grown on transwell-inserts were placed into a plate 
with 1.5 ml HEPES-buffered Ringer’s solution (pH 7.4). 
1 mM fluorescein (Sigma) was dissolved in the aforemen-
tioned solution, of which 500 µl was added to the upper 
compartment of the insert. For a total duration of 1 h, the 
inserts were transferred into new wells with fresh solution 
every 20 min. Each time, aliquots of the solution were col-
lected from the receiver compartment. In the same way, ali-
quots were taken from the donor compartment at the begin-
ning and end of the assay. Samples were measured using 
the Tecan Microplate Reader (Thermo Fisher Scientific) at 
490/516 nm. Three inserts were measured for each treatment 
condition, including an insert containing no cells. Perme-
ability coefficient was calculated as previously described 
(Curtaz et al. 2020).

Statistical analysis

Statistical significance was determined by unpaired t test or 
one-way ANOVA, where p < 0.05 is considered significant 
using the Graph Pad Prism 6 program (Graph Pad Software 
Inc).

Results and discussion

H2O2 induces senescence marker expression

Cultured cells that undergo senescence are not able to 
undergo DNA synthesis, in the same way as quiescent cells. 
Associated with the senescent phenotype is elevated expres-
sion of senescence-associated beta-galactosidase (β-gal). 
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The presence of this biomarker is, however, independent of 
DNA synthesis, which thus helps to distinguish senescent 
from quiescent cells (Itahana et al. 2007).

One factor that brings about senescence is oxidative 
stress, which could be induced in vitro via hydrogen perox-
ide (H2O2), an oxidant produced in aerobic metabolism and 
inflammation (Chen and Ames 1994). Hence, we induced 
senescence in our murine brain endothelial cell lines as 
well as primary endothelial cells (EC) via H2O2 treat-
ment. We observed that increasing concentrations of H2O2 
(100–200 μM) led to an increased amount of β-gal-positive 
cells in cerebellar endothelial cells (cerebEND), whereby all 
concentrations used were significantly different compared to 
control (Fig. 1a).

Likewise, high-passaged cerebral endothelial cells 
(cEND) stained positive for β-gal, while untreated primary 
EC as well as low-passaged ones did not. However, treat-
ment of the low-passaged cEND and primary ECs with H2O2 
rendered positive staining for β-gal (Fig. 1b). Altogether, 
this posits that older cells in culture (i.e., late passages) 
undergo senescence due to oxidative stress. This could be 
replicated in early passages of cells by inducing senescence 
using H2O2. Meanwhile, positive staining for the prolifera-
tion marker Ki67 was observed in both untreated and treated 
high-passaged cells (Fig. 1b). Senescent cells have elevated 
levels of β-gal as well as persistent DNA damage response 
distinguishing them from non-proliferating cells (Campisi 
and d’Adda di Fagagna 2007; Kuilman et al. 2010).

Fig. 1   Alterations in endothelial cells brought about by aging and 
senescence induction. a Increased concentration of H2O2 increases 
beta-galactosidase (β-gal) expression in cerebellar endothelial cells 
(cerebEND). Magnification 10 × . Representative images from at 
least three independent experiments. Scale bar 200  µm. Increase in 
β-gal-positive cells is significantly different for all H2O2 concen-
trations used, compared to control (p values: 100  µM =  <0.0001, 

150 µM = 0.0028, 200 µM =  <0.0001). b Untreated primary endothe-
lial and low-passaged cerebEND cells do not express β-gal, while 
high-passaged cEND cells do. Treatment of the various cells, both 
low- and high-passaged, with 150  µM H2O2, leads to β-gal expres-
sion. Both untreated and H2O2-treated cEND cells express β-gal as 
well as Ki67. Arrows indicate staining of Ki67. Magnification 40×. 
Scale bar 50 µm
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In our BBB model, assessment of β-gal, p16, and p21 
demonstrates their expression in high-passaged cells but 
not in lower passaged ones. Untreated cEND cells of high 
passage as well as treated low passage showed both p16 
and p21 staining. Meanwhile, primary ECs stained posi-
tive for both, only upon administration of 150 µM H2O2 
(Fig. 2a).

Both p16 and p21 are components of the tumor suppres-
sor pathways governed by p53, a transcriptional regula-
tor disrupted in cancer (van Deursen 2014). p16 is one 
of the most useful in vivo markers of senescence. As a 
regulator of the cell cycle, p16 is involved in limiting G1 
to S-phase progression. Its expression is undetectable 
in healthy young tissues, but increases notably in many 
aging or injured tissues (Liu et al. 2019). Meanwhile, p21, 
directly induced by p53, functions as cell cycle inhibitor 
arresting the G1 phase and acts as an anti-proliferative 
effector (Georgakilas et al. 2017). The presence of these 
markers in high-passaged cells but not in the lower pas-
saged ones confirms aging endothelial cells to be carrying 
characteristics of senescence.

Senescence induction alters expression 
of transporter and junctional proteins

Endothelial cells are highly glycolytic, even in quiescent 
conditions. For this reason, they require constant uptake 
of glucose, which majorly takes place via the glucose 
transporter (GLUT)-1 (Fitzgerald et al. 2018). To exam-
ine the effects of senescence induction to the expression 
of GLUT-1 in our model, we conducted immunofluores-
cent staining. In our observation, expression of GLUT-1 
was evident in both treated and untreated primary, cEND 
and cerebEND cells of both low and high passages. A 
decreased and more dispersed staining could be visually 
observed in treated cEND and cerebEND cells. However, 
GLUT-1 staining in primary ECs appeared unaltered 
(Fig. 2b). This result is in accordance to a study where 
measurement of GLUT-1 expression in brain-derived 
endothelial cells using median fluorescence intensity 
showed a significant decrease among patients with Alz-
heimer’s disease compared to controls, although there was 
no reduction in cell numbers (Vogelsang et al. 2018).

Fig. 2   Effects of senescence induction on expression of senescence 
markers and glucose transporter-1. a High-passaged untreated cEND 
cells express p21 and p16. Low-passaged cerebEND cells treated 
with 150 µM H2O2 induced p21 and p16 expression. Meanwhile, pri-
mary cells do not express both markers if left untreated. b Antibody 
against glucose transporter (glut)-1 renders staining in both treated 

and untreated primary, cEND and cerebEND cells of both low and 
high passages. Reduction of staining is visually observed in cEND 
and cerebEND upon treatment with 150 µM H2O2, but not in primary 
endothelial cells. Representative images from at least three independ-
ent experiments. Magnification 40×. Scale bar 50 µm
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Considering that tight- and adherens junction proteins 
are major determinants of BBB integrity, we visually 
appraised the staining pattern of VE-Cadherin, ZO-1, and 
claudin-5 in our model. The distribution of VE-Cadherin at 
cell–cell contacts of untreated cEND, cerebEND and pri-
mary ECs showed a regular pattern, with the exception of 
high-passaged cEND cells, compared to those treated with 
150 μM H2O2. High-passaged cEND cells appear similar 
to the treated ones (Fig. 3a). This result agrees with previ-
ous observation in human umbilical vein endothelial cells 
(HUVEC) treated with conditioned medium from senescent 
cells which reported an irregular VE-Cadherin disposi-
tion inside the cells (Wong et al. 2019). In the same way, 
the staining pattern of ZO-1 in treated cEND and primary 
ECs is disrupted compared to untreated control. However, 
senescence induction with 150 μM H2O2 did not alter the 
morphology of ZO-1 staining pattern in cerebEND cells 
(Fig. 3b). Accordingly, decreased expression of claudin-5 
was noted in H2O2-treated primary and cerebEND cells 
(Fig. 4a, b). Of note, senescence-induced cerebEND cells 
were enlarged and had bigger nuclei, giving rise to a dis-
rupted endothelial cell morphology. Normal control cells 

were spindle-shaped (Fig. 4b). It is known that adherens 
and tight junctions are disrupted in senescent cells, leading 
to BBB dysfunction (Krouwer et al. 2012).

In conjunction, we examined DNA damage, by assess-
ing the expression of DNA-double-strand break biomarker 
γ-H2AX. This histone octamer component in nucleosomes 
was detected among senescence-induced cEND cells but not 
in the control (Fig. 4c). Western blot analysis confirmed this 
by showing a trend of increasing γ-H2AX expression, with 
the highest concentration of 200 μM being significantly dif-
ferent from the control (p = 0.0336). In conjunction with the 
immunofluorescence staining observation, claudin-5 levels 
showed a decreasing trend with increased H2O2, as com-
pared to control, albeit not statistically significant (Fig. 4d).

Several studies indicate the association of senescence 
with compromised BBB integrity. For instance, in an 
in vitro model constructed with senescence-induced primary 
endothelial cells, pericytes, and astrocytes, tight junction 
structure and barrier integrity were significantly impaired 
(Yamazaki et al. 2016). These results, together with our 
preliminary findings, indicate that accumulation of senes-
cent vascular cells is associated with compromised BBB 

Fig. 3   Changes in expression of adherens and tight junctions after 
senescence induction. a VE-Cadherin is localized along the cell 
membrane of untreated low-passaged cEND and cerebEND cells. 
Untreated high-passaged cEND, primary endothelial as well as 
treated cells show dispersed staining. b ZO-1 outlines the borders of 

untreated cEND and primary endothelial cells. When 150 µM H2O2 
was administered, both cells lost the typical border staining of ZO-1. 
On the other hand, cerebEND cells appear the same with or without 
treatment. Magnification 40 × . Scale bar 50 µm
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integrity, providing insights into the mechanism of BBB 
disruption related to biological aging.

Senescence induction changes barrier permeability 
and integrity

To evaluate the effects of senescence induction to barrier 
integrity, the permeation of fluorescein through both treated 
and untreated low and high-passaged cells was determined. 
Untreated high-passaged cEND and cerebEND cells exhib-
ited a trend of slightly greater permeability compared to 
low-passaged cells, albeit not significant (Fig. 5a, b). On 
the other hand, treated high-passaged cEND cells were 
significantly more permeable to fluorescein compared to 
low-passaged ones (Fig. 5a). In the same way, senescence 
induction with H2O2 significantly increased permeation in 
both cEND and cerebEND cells regardless of being low or 
high passages (Fig. 5a, b). Fluorescein permeation signifi-
cantly increased in primary ECs due to senescence induction 
(Fig. 5c). Nonetheless, H2O2 appears to impart no effect on 
the integrity of both cEND and cerebEND cells as observed 
through transendothelial electrical resistance (TEER) meas-
urements (Fig. 5d). However, TEER of primary ECs signifi-
cantly decreased after application of H2O2 (p < 0.0001). The 
TEER values of both cEND and cerebEND cells, regardless 

of passage, appear to be significantly lower than that of pri-
mary endothelial cells. In vivo, the rat BBB has a recorded 
TEER of 5900 Ω cm2 (Butt et al. 1990). This value is, how-
ever, difficult to achieve among in vitro BBB models. For 
instance, primary human brain endothelial cells (HBMECs) 
and immortalized human brain endothelial cell line hCMEC/
D3 both have a TEER value of 100 Ω cm2 (Daniels et al. 
2013), whereas the mouse brain endothelial cell line bEND.3 
co-cultured with C8-D1A astrocytes in a transwell system 
demonstrated a TEER value of 25 Ω cm2 (Booth and Kim 
2012). Thus, in general, although there appears to be no 
significant difference in the TEER values of treated and 
untreated cerebEND and cEND cells, the results we obtained 
in this study are indicative that senescence induction with 
H2O2 results to an altered permeability and compromised 
barrier integrity.

Overall, senescent marker expression varied between pri-
mary ECs as well as the low- to high-passaged and senes-
cence-induced endothelial cell lines used in our model. 
Moreover, expression of tight junction protein such as 
claudin-5 decreased in cells expressing senescent markers. 
Thus, these initial findings could draw out a possible rela-
tionship between senescence and BBB integrity and war-
rant further investigation. Suitable in vitro models of aging 
endothelial cells are currently lacking. Although Yamazaki 

Fig. 4   Effects of senescence induction on DNA damage and tight 
junction integrity. a Claudin-5 delocalizes in primary endothelial 
cells upon treatment with 150  µM H2O2. b With higher H2O2 con-
centration, claudin-5 expression decreases in cerebEND cells, while 
c γ-H2AX expression increases. a–c Immunofluorescence stain-
ing of representative images from at least three independent experi-

ments. Magnification: a, b = 40 × , c = 10 × . Scale bar: a, b = 50 µm, 
c = 200 µm. d Western blot analysis. Claudin-5 expression decreased 
with H2O2 treatment. γ-H2AX expression increases with higher H2O2 
concentration showing 200  µM as being significantly different from 
control (p = 0.0336). Densitometric values were analyzed from three 
independent experiments
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and colleagues (2016) demonstrated that the accumulation 
of senescent vascular cells is associated with compromised 
BBB integrity, the in vitro BBB model is composed of pri-
mary cultures of mouse endothelial cells and pericytes, as 
well as astrocytes. Despite the fact that primary cells repre-
sent what is occurring in vivo more than immortalized cell 
lines, the latter are more cost-effective and easier to handle. 
Moreover, they provide a pure population of cells, which 
lead to a more stable platform and reproducible results 
(Kaur and Dufour 2012). Hence, our proposed use of the 
two immortalized murine cell lines we generated in our labo-
ratory, namely, cEND and cerebEND cells as basic in vitro 
models systems for the senescent BBB, is advantageous. 
With this in mind, this initial attempt to provide an in vitro 
model of the senescent BBB may prove useful for looking 
into mechanistic insights of the aging BBB. Further inves-
tigations, which include additional cells of the BBB, like 
pericytes and astrocytes, should be carried out in the future.
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Fig. 5   Permeability and integrity of the cells are altered by senes-
cence induction with 150 µM H2O2. a–c Fluorescein permeability is 
significantly increased in cells treated with 150 µM H2O2. d Transen-
dothelial electrical resistance (TEER) of senescence-induced pri-

mary endothelial cells significantly declined albeit there is no change 
among cEND and cerebEND cells. Values were analyzed from tripli-
cate wells
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were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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