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Abstract: The Spexin gene is considered the most dysregulated in obese human fat. Limited data
suggest that the novel peptide spexin may potentially impact food intake, weight regulation and body
adiposity. The aim of this case-control study was to compare fasting serum spexin concentrations
between normal weight (NW) and overweight/obese (OB/OW) adolescent females and explore the
relationship between circulating spexin and anthropometric, bone and fat mass, metabolic and
hormonal parameters. Eighty post-menarcheal females (mean age ± SD 16.23 ± 2.26 years); 55 NW
(mean BMI ± SD 19.72 ± 2.52 kg/m2) and 25 OB/OW (mean BMI ± SD 29.35 ± 3.89 kg/m2) participated
in the study. Circulating spexin levels did not differ significantly (p = 0.378) between NW (median
(interquartile range), 0.26 (0.17) ng/mL) and OB/OW (median (interquartile range), 0.28 (0.06) ng/mL)
adolescents and did not correlate with BMI (rs = −0.090, p = 0.438), % body fat (rs = −0.173, p = 0.409),
glucose or insulin resistance indices derived from fasting and oral glucose tolerance states. In the total
study sample, spexin concentrations correlated positively with lipoprotein(a) (rs = 0.402, p = 0.046).
In the OB/OW adolescents spexin levels correlated positively with testosterone (rs = 0.727, p = 0.011)
and free androgen index (rs = 0.755, p = 0.007). In the NW adolescents, spexin concentrations correlated
negatively with dehydroepiandrosterone sulphate (rs = −0.445, p = 0.038). Results may suggest
potential involvement of spexin in the regulation of lipoprotein(a) and of the reproductive/adrenal
axis in post-menarcheal adolescent females.

Keywords: spexin; adolescents; lipoprotein(a); testosterone; free androgen index; DHEAS; androgens;
fat mass; overweight; obesity

1. Introduction

Spexin is a novel peptide which was first identified through a bioinformatics approach (Markov
model) [1]. Immunohistochemical analysis in rats revealed its expression in a wide range of organs
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including the brain, where it may act as a novel multifunctional regulatory neuropeptide [2]. Subsequent
studies with microarray techniques identified the spexin gene (Ch12: orf39) as the most dysregulated
in obese human fat [3,4] with an almost complete absence of expression in obese human fat tissue in
comparison to non-obese fat tissue.

Limited data from human and animal studies suggest that spexin may potentially impact food
intake, weight regulation and body adiposity. In animal studies (rats with dietary-induced obesity
and mice), spexin decreased caloric intake, increased locomotion and affected energy regulation with
subsequent weight loss [4,5]. In vitro, spexin has also reduced adipocyte uptake of long-chain fatty
acids [4]. Similarly, spexin functioned as a satiety factor through differential modulation of central
orexigenic and anorexigenic signals in goldfish [6].

Data regarding circulating spexin in obese vs. normal-weight children are conflicting.
Kumar et al. [7] observed a reverse association between body mass index (BMI) and serum spexin
levels, with obese children having significantly lower circulating spexin than normal-weight children.
Similarly, in the study of Chen et al. [8], serum spexin levels were significantly decreased in obese
prepubertal children compared to controls and were negatively correlated with fasting insulin and the
homeostatic model assessment for insulin resistance (HOMA-IR).

However, the proposed role of spexin in childhood obesity was questioned by Hodges et al. [9],
who found that spexin did not correlate with any body composition, fitness or blood measurements.

In adults, circulating spexin has been associated with obesity, glucose metabolism and age.
Recent research by Kolodziejski et al. [10] showed that serum spexin levels were reduced in obese
women (vs. non-obese volunteers) and were negatively correlated with BMI, HOMA-IR and insulin.
Lin et al. [11] reported that spexin levels were negatively correlated with BMI, fasting glucose and
with age suggesting a possible role of this peptide in aging-related functions and disorders. Likewise,
Gu et al. [12] reported lower circulating spexin levels in adults with type 2 diabetes mellitus (T2DM)
as well as negative correlations of circulating spexin with blood glucose and hemoglobin A1c
(HbA1c). Al-Daghri et al. [13] reported significantly lower spexin concentrations in adults (particularly
women) with metabolic syndrome compared to those without metabolic syndrome. In another study,
Al-Daghri et al. [14] demonstrated an inverse association between spexin levels with fasting glucose in
adult females with prediabetes, but not in males, suggesting a sexual dimorphism in spexin levels,
which according to the authors can be explained by gender differences in glucose metabolism and
insulin sensitivity due to sex steroids [15].

Spexin may therefore have a role in metabolic regulation. The aim of this study was to compare
fasting serum spexin concentrations between normal weight and overweight/obese adolescent females
and explore the relationship between circulating spexin levels and anthropometric, bone and fat mass,
metabolic and hormonal parameters.

2. Materials and Methods

2.1. Participants

Post-menarcheal adolescent females, aged 12–18 years, who presented to the Centre for Adolescent
Medicine and UNESCO Chair on Adolescent Health Care of the First Department of Pediatrics at the
Aghia Sophia Children’s Hospital, from May 2016 to June 2018, were eligible to participate in the study.
Exclusion criteria included pregnancy, severe comorbidity and chronic medication or contraceptive use.

The study was approved by the Ethics Committee of the Aghia Sophia Children’s Hospital (project
identification code 28126/09-12-15) and was in accordance with the Helsinki Declaration. Written
consent was obtained from each adolescent and/or parent after full explanation of the purpose and
nature of all procedures used.
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2.2. Anthropometric Measurements

Weight (Wt), height (Ht), waist circumference (WC) and hip circumference (HC) were measured
in all adolescents barefoot and in light clothing. Weight and height were measured by an electronic
scale with stadiometer (seca 217, Hamburg, Germany). Waist and hip circumferences were measured
with the use of an inextensible anthropometric tape (seca 201, Hamburg, Germany). Measurements
were rounded to the nearest 0.1 cm.

2.3. Bone Mineral Density (BMD) and Body Fat Assessment

Study participants underwent a dual-energy X-ray absorptiometry (DXA) scan with enhanced
pediatric software (General Electric Lunar Prodigy enCore 2008, Slough, UK) for assessment of bone
and fat mass. Before scanning, a daily quality assessment was performed by the same radiologist using
proper calibration phantoms, as per the manufacturer’s protocol. During the procedure, adolescents
should wear light, metal-free clothing.

Bone status was evaluated by measurement of areal BMD (g/cm2) at two sites: the lumbar spine
(LS, L1–L4) and the whole body without the head (WB). Measurement precision, as reflected by the
coefficient of variation (CV), was 1.5% for lumbar spine BMD and 1.1% for subcranial whole body
BMD. The results were presented as age and gender-matched BMD z-scores provided by the DXA
manufacturer (pediatric Italian reference population). All patients with Ht <10th centile had their BMD
z-scores corrected based on Ht-age, in accordance with pediatric guidelines for DXA interpretation [16].

For the purposes of this study and to highlight the possible association between circulating spexin
levels and adiposity, body fat percentage (BF%) was also recorded and was automatically available
from the WB scan.

2.4. Blood Sampling

Blood samples were collected from each participant in the morning between 08:00 and 09:00, after
an overnight 8–10 h fast, between day 2 and day 5 of the menstrual cycle. Metabolic and hormonal
parameters were analyzed immediately and the supernatant serum was kept frozen at −80 ◦C pending
spexin assay. Participants were also evaluated with a 2-h oral glucose tolerance test (OGTT) for
measurement of serum glucose and insulin concentrations at 0, 30, 60, 90 and 120 min.

2.5. Measurements of Metabolic Parameters

Serum concentrations of glucose, triglycerides (TG), total cholesterol (CHOL), high-density
lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and alkaline phosphatase
(ALP) were measured on an Architect Clinical Chemistry Analyzer (ABBOTT Diagnostics Ltd.).
Lipoprotein(a) (Lp(a)) serum levels were measured using nephelometry, on the APTEC/KONELAB
60 automated analyzer. Apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB) and apolipoprotein
E (ApoE) were measured using latex particle-enhanced immunonephelometric assay on the BN
PROSPECNEPHELOMETER (Siemens Healthcare Diagnostics, Liederbach, Germany). The intra-assay
and inter-assay CV for ApoA1, ApoB, ApoE and Lp(a) did not exceed 5%. Serum interleukin 6 (IL-6)
was measured using the BMS213HS ELISA kit from eBioscence Bender MedSystems GmbH. The
method analytical sensitivity was 0.03 pg/mL, the calculated overall intra-assay CV was 4.9% and the
overall inter-assay CV was 6.0%.

2.6. Measurements of Hormonal Parameters

Serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol
(E2), testosterone (T), ∆4-androstenedione (∆4-A), dehydroepiandrosterone sulphate (DHEA-S), sex
hormone-binding globulin (SHBG), insulin, cortisol, intact parathyroid hormone (iPTH) and high
sensitivity C-reactive protein (hsCRP) were measured on an Immulite 2000 analyzer (Siemens Healthcare
Diagnostics Products Ltd., United Kingdom) using two-site chemiluminescent immunometric assays
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with analytical sensitivities for FSH 0.1 IU/L, LH 0.05 IU/L, E2 55.0 pmol/L, T 0.52 nmol/L, ∆4-A 1.0
nmol/L, DHEA-S 0.08 µmol/L SHBG 0.02 nmol/L, insulin 2 µIU/mL, cortisol 0.20 µg/dL, iPTH 3.00
ng/mL and hsCRP 0.1 mg/L. The intra-assay and inter-assay precision CVs ranged between 2.9–7.9%
for FSH, 3.0–7.1% for LH, 6.7–16% for E2, 5.1–11.7% for T, 3.5–13.2% for ∆4-A, 4.9–13% for DHEA-S,
2.3–6.6% for SHBG, 3.3–7.3% for insulin, 5.2–9.4% for cortisol, 7.0–12% for iPTH and 2.8–8.7% for
hsCRP. Serum 25-hydroxyvitamin D [25(OH)D] was measured on the MODYLAR ANALYTICS E170
(Roche Diagnostics GmbH) automated analyzer using electrochemiluminescence. Levels of serum
17-hydroxyprogesterone (17OHP) were determined by RIA (DIAsource ImmunoAssays SA, Belgium;
intra-assay CV < 7%, inter-assay CV < 10%; analytical sensitivity 0.06 nmol/L). Serum free-testosterone
(free-T) was measured by RIA using DSL (Diagnostic Systems Laboratories, Inc, USA) with analytical
sensitivity 0.18 pg/mL. Free androgen index (FAI) was determined by the concentrations (in nmol/L)
of T and SHBG with the use of the formula FAI = 100 × T/SHBG. Clinical hyperandrogenism was
measured with the modified Ferriman-Gallwey (FG) score.

Serum spexin concentrations were measured by ELISA using the Spexin (Human) EIA Kit of
Phoenix Pharmaceuticals (USA) with an analytical sensitivity of 0.08 ng/mL.

2.7. Insulin Sensitivity/Resistance Assessment

Insulin sensitivity was estimated with the use of the quantitative insulin sensitivity check index
(QUICKI = 1/ [log (fasting insulin in µIU/mL) + log (fasting glucose in mg/dL)). Insulin resistance
was estimated by the HOMA-IR according to the formula HOMA-IR = fasting glucose (in mg/dL) ×
fasting insulin (in µIU/mL)/405. By using 75 g OGTT, the total plasma glucose response and insulin
secretion were evaluated from the area under the glucose curve (AUC glucose) and the insulin curve
(AUC insulin), respectively, estimated by the trapezoid rule. The AUCglucose/AUCinsulin ratio was
also calculated.

2.8. Ovarian Measurements

Study participants underwent transabdominal ultrasonography in the follicular phase of the
menstrual cycle for measurement of ovarian volumes. The volume (V) of each ovary was calculated
with the use of the formula V = length ×width × height × 0.523. The mean ovarian volume (MOV)
was calculated for each adolescent by using the mean volume of both ovaries.

2.9. Statistical Analysis

Continuous variables are shown as mean ± standard deviation (SD) or as median and interquartile
range depending on data normality. Comparisons of continuous data were carried out with the use of
the student t-test after checking the assumption of homogeneity of variance or with the Mann-Whitney
U test for non-parametric data. Pearson or Spearman’s rho correlation coefficients identified correlations
between continuous variables. BMI was calculated as the ratio of body weight to the square of height
(kg/m2) and the International Obesity Task Force [17] cut-offs were used to categorize adolescents as
normal weight, overweight and obese. P values were based on 2-tailed tests and statistical significance
was set at p < 0.05. Statistical analysis was carried out using the SPSS software 25 version for Windows
(IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.).

3. Results

A total of 296 girls were screened for eligibility but most families declined participation due
to other commitments. Eventually 80 adolescent females (mean age ± SD 16.23 ± 2.26 years);
55 normal-weight (NW group; mean age ± SD 16.69 ± 2.22 years, mean BMI ± SD 19.72 ± 2.52 kg/m2)
and 25 obese/overweight (OB/OW group; mean age ± SD 15.17 ± 2.01 years, mean BMI ± SD
29.35 ± 3.89 kg/m2), agreed to participate in the study. Participants’ anthropometric, bone and fat mass,
metabolic and hormonal characteristics are presented in Table 1.
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Table 1. Anthropometric, bone and fat mass, metabolic and hormonal characteristics of the study sample.

Total Sample
(n = 80)

NW Group
(n = 55)

OB/OW Group
(n = 25) p

BMI (kg/m2) 22.72 ± 5.40 19.72 ± 2.52 29.35 ± 3.89 <0.001

Spexin (ng/mL) § 0.27 (0.15) 0.26 (0.17) 0.28 (0.06) 0.378

BF (%) 36.43 ± 9.34 29.13 ± 4.56 44.33 ± 6.05 <0.001

Ht (cm) 163.62 ± 6.15 164.42 ± 5.48 162.75 ± 6.81 0.342

Wt (kg) 66.60 ± 16.34 55.50 ± 5.27 78.62 ± 15.77 <0.001

WC (cm) § 77.00 (14.00) 69.00 (11.50) 84.00 (15.00) <0.001

HC (cm) 103.39 ± 10.32 96.09 ± 5.63 107.05 ± 10.26 0.003

WC/HC § 0.76 (0.09) 0.73 (0.07) 0.78 (0.09) 0.019

FG-score 8.47 ± 5.96 6.68 ± 4.85 11.29 ± 6.60 0.022

TG (mmol/L) § 0.93 (0.53) 0.68 (0.44) 1.05 (0.45) 0.013

Glucose (mmol/L) 4.95 ± 0.51 4.75 ± 0.54 5.18 ± 0.37 0.002

AUC glucose
(mmol/L) 793.03 ± 125.44 716.60 ± 94.28 838.88 ± 121.51 0.017

Insulin (pmol/L) § 71.88 (65.63) 48.20 (41.04) 95.15 (87.99) <0.001

AUC insulin §

(pmol/L)
69,109.70 (56,754.54) 47,566.31 (12,885.41) 99,414.20 (57,473.35) <0.001

AUC glucose/AUC
insulin § 1.40 (0.91) 1.82 (0.59) 0.92 (0.57) 0.002

HOMA-IR § 2.19 (2.06) 1.36 (1.12) 3.26 (3.44) <0.001

QUICKI 0.34 ± 0.03 0.36 ± 0.03 0.32 ± 0.02 <0.001

LH (IU/L) § 5.40 (4.51) 5.68 (4.60) 4.62 (3.96) 0.130

FSH (IU/L) 5.27 ± 1.17 5.29 ± 1.13 5.25 ± 1.28 0.928

E2 (pmol/L) 148.05 ± 45.30 146.51 ± 47.94 150.51 ± 42.47 0.800

T (nmol/L) 6.66 ± 3.68 7.46 ± 4.13 5.03 ± 1.74 0.022

Free-T (pmol/L) § 7.56 (7.08) 7.22 (8.54) 7.81 (10.27) 0.220

DHEA-S (µmol/L) 6.20 ± 3.16 5.54 ± 2.60 7.24 ± 3.76 0.118

∆4-A (nmol/L) 11.10 ± 4.75 10.54 ± 5.34 11.97 ± 3.63 0.383

SHBG (nmol/L) § 33.75 (22.88) 40.70 (23.58) 24.55 (13.15) 0.011

FAI § 4.50 (5.20) 4.50 (6.95) 6.40 (3.60) 0.693

17OHP (nmol/L) § 3.42 (2.30) 3.42 (2.51) 3.24 (1.39) 0.699

MOV (mL) § 10.50 (6.38) 10.50 (8.00) 10.00 (5.11) 0.938

WB z-score 0.45 ± 0.91 0.06 ± 0.95 0.78 ± 0.77 0.065

LS z-score 0.36 ± 1.12 -0.19 ± 1.04 0.83 ± 0.99 0.030

ALP (IU/L) § 83.00 (29.00) 86.00 (28.25) 80.00 (54.00) 0.892

iPTH (pmol/L) 5.32 ± 2.22 5.39 ± 1.64 5.27 ± 2.62 0.895

25(OH)D (nmol/L) 53.59 ± 19.02 57.58 ± 17.20 50.67 ± 20.32 0.370

Cortisol (nmol/L) § 455.24 (193.13) 463.51 (126.09) 366.95 (466.55) 0.879

hsCRP (nmol/L) § 11.62 (11.43) 8.95 (8.95) 13.43 (37.14) 0.190

IL-6 (ng/mL) § 0.75 (0.66) 0.78 (0.78) 0.68 (0.63) 0.935
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Table 1. Cont.

Total Sample
(n = 80)

NW Group
(n = 55)

OB/OW Group
(n = 25) p

CHOL (nmol/L) 4.31 ± 0.87 3.69 ± 0.48 4.72 ± 0.82 0.001

HDL (nmol/L) 1.32 ± 0.25 1.39 ± 0.30 1.28 ± 0.21 0.240

LDL (nmol/L) 2.44 ± 0.76 1.91 ± 0.43 2.83 ± 0.73 0.001

ApoA1 (g/L) 1.33 ± 0.16 1.375 ± 0.18 1.31 ± 0.15 0.297

ApoB (g/L) 0.70 ± 0.20 0.58 ± 0.15 0.79 ± 0.18 0.004

ApoE (g/L) 0.04 ± 0.01 0.04 ± 0.02 0.04 ± 0.01 0.375

Lp(a) (g/L) § 0.09 (0.19) 0.09 (0.16) 0.09 (0.19) 0.609

PRL (nmol/L) § 4.79 (0.52) 0.67 (0.56) 0.42 (0.28) 0.097

NW: normal weight; OB/OW: obese/overweight; BMI: body mass index; BF: body fat; Ht: height; Wt: weight; WC:
waist circumference; HC: hip circumference; FG-score: Ferriman–Gallwey score; TG: triglycerides; AUC: area under
the curve; HOMA-IR: homeostatic model assessment for insulin resistance; QUICKI: quantitative insulin sensitivity
check index; LH: luteinizing hormone; FSH: follicle stimulating hormone; E2: estradiol; T: testosterone; free-T:
free-testosterone; DHEA-S: dehydroepiandrosterone sulfate; ∆4-A: ∆4-androstenedione; SHBG: sex hormone-binding
globulin; FAI: free androgen index; 17OHP: 17-hydroxyprogesterone; MOV: mean ovarian volume; WB: whole body;
LS: lumbar spine; ALP: alkaline phosphatase; iPTH: intact parathyroid hormone; 25 (OH)D: 25-hydroxyvitamin D;
hsCRP: high sensitivity C-reactive protein; IL-6: interleukin 6; CHOL: cholesterol; HDL: high-density lipoprotein
cholesterol; LDL: low-density lipoprotein cholesterol; ApoA1: apolipoprotein A1; ApoB: apolipoprotein B; ApoE:
apolipoprotein E; Lp(a): lipoprotein(a); PRL: prolactin. Values are expressed as mean ± standard deviation (SD) or
§ median (interquartile range). The p-Value was calculated using the t-test after the assumption of homogeneity of
variance or § Mann-Whitney U test.

Statistically significant differences between the two groups were found in BMI, Wt, BF%, WC, HC,
WC/HC, FG-score, glucose, AUC glucose, insulin, AUC insulin, AUC glucose/AUC insulin, HOMA-IR,
QUICKI, T, SHBG, TG, CHOL, LDL, ApoB and LS z-score (Table 1). Circulating spexin levels did not
differ significantly between NW and OB/OW adolescents (p = 0.378) (Table 1, Figure 1) and did not
correlate with either BMI (rs = −0.090, p = 0.438) or BF% (rs = −0.173, p = 0.409) (Table 2).
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Figure 1. Differences in fasting serum spexin concentrations between normal weight and
obese/overweight (OB/OW) female adolescents.
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Table 2. Spearman rho correlation coefficients between fasting serum spexin concentrations and study
sample characteristics.

Total Sample OB/OW Group NW Group

rs p rs p rs p

Age (years) −0.138 0.226 0.260 0.219 −0.215 0.115

BMI (kg/m2) −0.090 0.438 −0.160 0.454 −0.253 0.067

BF (%) −0.173 0.409 0.266 0.404 −0.135 0.661

Ht (cm) 0.077 0.596 0.190 0.374 −0.017 0.935

Wt (kg) 0.044 0.763 −0.041 0.848 0.026 0.901

WC (cm) 0.032 0.861 0.108 0.632 −0.123 0.719

HC (cm) 0.041 0.821 0.387 0.075 −0.543 0.085

WC/HC 0.027 0.879 −0.114 0.615 0.259 0.441

FG-score 0.092 0.594 0.333 0.245 −0.132 0.559

TG (mg/dL) −0.232 0.174 −0.342 0.102 −0.042 0.897

Glucose (mg/dL) 0.039 0.789 −0.396 0.056 0.217 0.287

AUC glucose (mg/dL) −0.118 0.582 0.181 0.519 −0.25 0.516

Insulin (µIU/mL) 0.102 0.483 −0.150 0.484 0.203 0.319

AUC insulin (µIU/mL) 0.213 0.317 0.309 0.262 0.017 0.966

AUC glucose/AUC
insulin −0.331 0.114 −0.342 0.212 −0.267 0.488

HOMA-IR 0.101 0.487 −0.221 0.300 0.218 0.284

QUICKI −0.099 0.494 0.209 0.327 −0.213 0.296

LH (mIU/mL) −0.056 0.744 0.503 0.067 −0.214 0.326

FSH (mIU/mL) −0.034 0.843 0.068 0.817 −0.068 0.759

E2 (pg/mL) 0.018 0.919 0.314 0.274 −0.132 0.559

T (ng/mL) −0.016 0.928 0.727 * 0.011 −0.147 0.504

Free-T (ng/dL) 0.080 0.662 0.222 0.446 −0.003 0.99

DHEA-S (µg/dL) −0.212 0.216 0.143 0.626 −0.445 * 0.038

∆4-A (ng/mL) −0.285 0.093 −0.055 0.852 −0.38 0.081

SHBG (nmol/L) −0.270 0.112 −0.471 0.089 −0.149 0.51

FAI 0.081 0.653 0.755 ** 0.007 −0.105 0.642

17OHP (ng/mL) −0.176 0.329 −0.007 0.983 −0.271 0.235

MOV (mL) −0.079 0.643 −0.024 0.935 −0.087 0.693

WB z-score −0.262 0.240 −0.319 0.313 −0.061 0.867

LS z-score −0.124 0.582 −0.049 0.879 −0.040 0.913

ALP (IU/L) −0.159 0.447 −0.456 0.088 0.225 0.532

iPTH (pg/mL) −0.074 0.719 0.079 0.781 −0.387 0.239

25(OH)D (ng/mL) −0.007 0.972 0.004 0.990 0.117 0.732

Cortisol (µg/dL) −0.270 0.213 −0.308 0.306 −0.467 0.174

hsCRP (mg/L) 0.273 0.208 0.161 0.567 0.395 0.333

IL-6 (ng/mL) § −0.085 0.687 0.307 0.265 −0.486 0.154
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Table 2. Cont.

Total Sample OB/OW Group NW Group

rs p rs p rs p

CHOL (mg/dL) −0.011 0.953 −0.300 0.226 0.062 0.849

HDL (mg/dL) −0.062 0.736 0.011 0.965 −0.161 0.616

LDL (mg/dL) 0.135 0.509 −0.089 0.752 0.288 0.391

ApoA1 (mg/dL) −0.003 0.990 0.238 0.393 −0.315 0.345

ApoB (mg/dL) 0.056 0.787 −0.027 0.924 −0.014 0.968

ApoE (mg/dL) 0.104 0.619 −0.194 0.507 0.189 0.577

Lp(a) (mg/dL) 0.402 * 0.046 0.465 0.094 0.278 0.408

PRL (ng/mL) −0.057 0.781 0.077 0.785 −0.182 0.592

NW: normal weight; OB/OW: obese/overweight; BMI: body mass index; Ht: height; Wt: weight; WC: waist
circumference; HC: hip circumference; FG-score: Ferriman–Gallwey score; TG: triglycerides; AUC: area under the
curve; HOMA-IR: homeostatic model assessment for insulin resistance; QUICKI: quantitative insulin sensitivity
check index; LH: luteinizing hormone; FSH: follicle stimulating hormone; E2: estradiol; T: testosterone; free-T:
free-testosterone; DHEA-S: dehydroepiandrosterone sulfate; ∆4-A: ∆4-androstenedione; SHBG: sex hormone-binding
globulin; FAI: free androgen index; 17OHP: 17-hydroxyprogesterone; MOV: mean ovarian volume; WB: whole body;
LS: lumbar spine; ALP: alkaline phosphatase; iPTH: intact parathyroid hormone; 25(OH)D: 25-hydroxyvitamin D;
hsCRP: high sensitivity C-reactive protein; IL-6: interleukin 6; CHOL: cholesterol; HDL: high-density lipoprotein
cholesterol; LDL: low-density lipoprotein cholesterol; ApoA1: apolipoprotein A1; ApoB: apolipoprotein B; ApoE:
apolipoprotein E; Lp(a): lipoprotein(a); PRL: prolactin. §: median (interquartile range); *** p < 0.001, ** p < 0.01,
* p < 0.05.

In the total study sample, serum spexin concentrations were positively correlated with Lp(a)
(rs = 0.402, p = 0.046). In the OB/OW group, serum spexin levels were positively correlated with T
(rs = 0.727, p = 0.011) and FAI (rs = 0.755, p = 0.007). In the NW group, serum spexin concentrations
were negatively correlated with DHEA-S (rs = −0.445, p = 0.038) (Table 2).

4. Discussion

In this case-control study, normal weight and obese/overweight adolescent females were compared
in terms of fasting serum spexin concentrations. The relationship between the circulating spexin levels
and anthropometric, bone and fat mass, metabolic and hormonal parameters was also explored.

The sample size was small, constituting a limitation of the study. However, the NW and OB/OW
groups differed significantly in terms of WC, HC, WC/HC, glucose and insulin indices at the fasting
state (glucose, insulin, HOMA-IR, QUICKI), and OGTT-based (AUC glucose, AUC insulin, AUC
glucose/AUC insulin), T, SHBG, FG-score, lipids (TG, CHOL, LDL, ApoB), BF% and LS z-score.
As expected, BMD was higher in OB/OW adolescents compared to NW, especially at the lumbar spine.
According to the literature, increased body weight is typically correlated with increased BMD, without
necessarily reflecting the quality of the bone, which can be more prone to fracture, given the metabolic
bone-fat cross-talk [18].

Fasting circulating spexin concentrations did not differ significantly between NW and OB/OW
post-menarcheal adolescents, neither did they correlate with BMI or BF%. Our findings also do not
support the role of spexin in glucose homeostasis. Furthermore, we did not demonstrate any correlation
between circulating spexin and the inflammatory cytokine IL-6, which is considered the best biomarker
of obesity-induced, local and systemic low-grade inflammation associated with the development of
insulin resistance [19,20].

Our results are in agreement with the findings of Hodges et al. [9] who examined the effect of
obesity, T2DM and glucose administration on serum spexin concentrations in adolescents of both sexes.
The median fasting spexin levels were similar between NW, OB or OB with T2DM adolescents with a
mean age of 16 years. Moreover, they were not correlated with biochemical parameters (glucose, insulin,
and lipids) or body composition and glucose ingestion did not affect serum spexin concentrations in
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these adolescents. In our study, serum spexin concentrations were not correlated with glucose or any
of the surrogate markers of insulin resistance/sensitivity. In line with our findings, Kumar et al. [21] in
a recent study of adolescents, did not find any correlation between spexin levels and fasting glucose or
HOMA-IR. There are potential explanations for the lack of correlation between spexin and glucose
metabolism and insulin sensitivity indices in our female adolescents, in contrast to adults. Insulin
sensitivity and glucose metabolism fluctuate as the adolescent goes through various pubertal stages,
and the factors influencing these changes have not been clearly defined. Early in puberty a decrease in
insulin sensitivity occurs, which resolves by the end of puberty, possibly independently of changes
in BMI or adiposity. On the other hand, a strong association between insulin resistance and BMI is
evident in childhood [22].

Serum spexin concentrations were positively correlated with Lp(a) in the total study sample
indicating that spexin may play a role in lipid metabolism. Recent data [23] advocate a novel role of
spexin in lipid metabolism of human adipocytes by stimulating lipolysis and inhibiting lipogenesis.
Gu et al. [12] in a study of adults with T2DM, found negative correlations for circulating spexin with
blood lipids (LDL, TG). Lin et al. [11] reported that spexin levels were significantly correlated with
TG. Serum spexin concentrations correlated negatively with TG in obese children in the study of
Chen et al. [8].

Lp(a) is an atherogenic lipoprotein with high concentrations implicated in cardiovascular
disease. It is composed of apolipoprotein B-100 and apolipoprotein(a), which shares extensive
homology with plasminogen, conferring its unique atherogenic properties [24]. The variance of Lp(a)
concentrations in largely explained by genetics; however, the physiological function of Lp(a) still
remains unclear [25]. Studies in recent years have demonstrated unexpected inverse associations
between Lp(a) concentrations and the risk of T2DM, i.e., an increased risk of T2DM in adults with low
Lp(a) concentrations [26], as well as between Lp(a) levels and both fasting insulin and 2-h (post glucose
challenge) insulin and glucose concentrations [27]. Furthermore, suppression of apolipoprotein(a) by
insulin in hepatocytes has been demonstrated in experimental studies [28]. Likewise, serum spexin
levels were down-regulated during glucose tolerance tests in adults with T2DM [12]. Although the
relevance of the positive correlation between circulating Lp(a) and spexin is not known, as it is described
for the first time, this association could be mediated by mechanisms implicated in glucose homeostasis.

In the absence of effective and safe drugs [29], regulation of lipoprotein and androgen status
could contribute to atherogenic fraction reduction. In that context, spexin could be further evaluated
in future studies as a promising target for novel therapeutic research. As expected, testosterone and
SHBG concentrations were significantly lower in the OB/OW group (vs. the NW group). The inverse
relationship between obesity and testosterone can be explained by the high levels of the enzyme
aromatase in adipocytes, which converts testosterone to estradiol and may therefore lower circulating
testosterone [30]. Serum concentrations of SHBG are also known to be negatively associated with
obesity [31,32]. Interestingly, this study demonstrated for the first time an association between fasting
serum spexin concentrations with Lp(a) and androgens.

More specifically, serum spexin concentrations correlated positively with T and FAI in the OB/OW
group. In obese humans, spexin is the most down-regulated gene in their fat tissue [4] and serum
spexin levels in severely obese (BMI > 35 kg/m2) adult women have been negatively correlated with
obesity [10]. Obesity is also known to be correlated negatively with serum testosterone [30]. In the
present study, BF% was significantly (p < 0.001) higher in the OB/OW group than in the NW group.
Therefore, fat tissue may have played a role in the positive association between testosterone and
spexin levels in our OB/OW group, although the inclusion of moderately (and not severely) obese
adolescents in this group might not allow any differences relating to fat tissue level to become apparent
in circulating spexin concentrations.

In the NW group, spexin concentrations correlated negatively with DHEA-S. The spexin gene
belongs to the Spexin/Galanin/Kisspeptin gene family [33] suggesting its involvement in the regulation
of reproduction. Spexin has multiple physiological functions with studies in goldfish revealing that
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spexin inhibits the reproductive axis [34]. Moreover, research on rat adrenal glands suggests that
spexin inhibits the proliferation of adrenocortical cells, but the mechanism underlying this action
remains unknown [35].

5. Conclusions

In conclusion, although spexin has been reported to be down-regulated in obese children and adults,
serum spexin concentrations were not significantly different between the NW and OB/OW adolescents
of our study. Also, our findings do not corroborate the proposed role of spexin as a biomarker of body
adiposity and glucose control in the clinical setting, as circulating spexin levels did not correlate with
fat mass, glucose or insulin resistance indices derived from fasting and OGTT states. The association
of spexin with Lp(a) and androgens may suggest the potential involvement of spexin in the regulation
of lipoprotein(a) and of the reproductive/adrenal axis in female post-menarcheal adolescents.

As spexin research is accumulating, further investigations are needed to explore the role of this
evolutionarily conserved neuropeptide in humans.
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