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Abstract: Fault diagnosis is important for the maintenance of rotating machinery. The detection of
faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem,
a model for deep statistical feature learning from vibration measurements of rotating machinery
is presented in this paper. Vibration sensor signals collected from rotating mechanical systems
are represented in the time, frequency, and time-frequency domains, each of which is then used
to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli
restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann
machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for
both gearbox and bearing systems. The fault classification performances in experiments using this
approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is
compared to such standard methods as a support vector machine, GRBM and a combination model.
In experiments, the best fault classification rate was detected using the proposed model. The results
show that deep learning with statistical feature extraction has an essential improvement potential for
diagnosing rotating machinery faults.
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1. Introduction

As one of the fundamental types of mechanical system, rotating machinery is widely applied
in various fields. As a result of relative motion between mating surfaces, components of rotating
machinery are prone to suffer from damage [1]. Effective fault diagnosis is thus important for
maintaining the health of rotating machinery. One of the most challenging fault diagnosis tasks
is the detection of faults and fault patterns, if any.

Different methods have been developed for fault diagnosis in rotating components such as
gearboxes and bearings [2–4]. Gao et al. [5,6] systematically reviewed the fault diagnosis with
model-based, signal-based, knowledge-based, and hybrid/active approaches. The most successful
methods have three main steps: determining the fault symptoms, extracting the sensitive features,
and classifying the condition patterns. Various fault symptoms, including vibration measurements [7],
thermal features [8], acoustic signals [9], oil debris [10], and other process parameters have been used
as indices of the health of rotating systems. Vibration sensor signals have been proven effective for
monitoring the health of rotating machinery.

Even in the vibration sensor category, different features sensitive to fault detection have been
extracted in recent years. Most of these feature extractions are performed in the time domain,
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frequency domain, and time-frequency domain. To extract a fault feature in the time domain,
Raad et al. [11] proposed using cyclostationarity as an indicator to diagnose gears. A diagnostic
feature was introduced by Bartelmus and Zimroz [12] to monitor planetary gearboxes in time-varying
operating conditions. The fault features are sometimes very sensitive in the frequency domain.
Spectral kurtosis is one of the most popular fault features in the frequency domain [13]. Based on
frequency domain kurtosis, an optimal mathematical morphology demodulation method was proposed
for the diagnosis of bearing defects [14]. Compared to feature extraction in the time and frequency
domains, time-frequency domain features have attracted much attention in both academia and
industry. Continuous wavelet transform (CWT) [15], discrete wavelet transform (DWT) [16], wavelet
packet transform (WPT) [17], second generation wavelet transform [18], comblet transform [19], and
other time-frequency tools [20,21] have been successfully used to generate fault-sensitive features.
In addition to feature extraction in a single domain, researchers have proposed detecting machinery
faults in different domains. Lei et al. [22] proposed two diagnostic parameters from an examination of
the vibration characteristics of planetary gearboxes in both the time and the frequency domains.

Based on the extracted fault features, different classifiers have been used to distinguish the
healthy condition from different fault patterns. A multi-stage feature selected by genetic algorithms
was proposed by Cerrada et al. [23] for the fault diagnosis of gearboxes. An intelligent diagnosis
model jointly using a wavelet support vector machine (SVM) and immune genetic algorithm (IGA)
was introduced for gearbox fault diagnosis [24]. Discriminative subspace learning has been used to
diagnose faults in bearings [25]. Tayarani-Bathaie et al. [26] introduced a dynamic neural network to
diagnose gas turbine faults. An artificial neural network and empirical mode decomposition have
been applied to automatic bearing fault diagnosis using vibration signals [27]. It is clear that the SVM
family has achieved good results in comparison with peer classifiers. Recently, deep learning has
gained much attention in the classification community. Tamilselvan and Wang [28] introduced deep
belief learning based health-state classification for failure diagnosis in datasets including iris, wine,
Wisconsin breast cancer diagnosis, Escherichia coli and others. Tran et al. [29] used deep belief networks
for the diagnosis of reciprocating compressor valves.

In this paper, we present a deep statistical feature learning approach for fault diagnosis in rotating
machinery. The purpose of this paper is to use deep statistical feature learning as an integrated
feature optimization and classification tool to improve fault diagnosis capability. For deep learning of
statistical features with unknown value boundaries, a Gaussian-Bernoulli deep Boltzmann machine
(GDBM) based on Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) is proposed for the
automatic learning of fault-sensitive features. The influences of different domains and typical rotating
mechanical systems on fault classification are investigated. Deep learning is an effective learning
framework for simultaneous statistical feature representation and classification, and the GRBM is a
promising tool for dealing with unknown-boundary problems within the deep learning framework.

The remainder of this paper is structured as follows: the statistical features of the machinery
vibration measurements are introduced in Section 2, and feature learning using the unsupervised
GRBM and the supervised GDBM are also proposed in this section. In Section 3, fault diagnosis
experiments for a gearbox and bearings are reported. The results of the experiments and discussions
of the results are presented in Section 4. Conclusions are given in Section 5.

2. Methodologies

The GDBM is applied as a deep statistical feature learning tool for fault diagnosis in this paper.
The methodologies used are introduced in this section. In Section 2.1, some classical statistical features
are calculated from the time, frequency, and time-frequency domains of the vibration measurements.
As the GDBM is constructed by stacking several GRBMs, and the GRBM is an improved version
of the restricted Boltzmann machine (RBM), in Section 2.2 the basics of the GRBM are introduced.
The statistical features calculated in the first subsection are used as the fault features represented by the
unsupervised GRBM. As deep learning is an effective learning framework for simultaneous statistical
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feature representation and classification, the GDBM is constructed in Section 2.3. More details can be
found in the following sections.

2.1. Statistical Features of the Vibration Sensor Signals

For a vibration measurement x(t) of the rotating machinery, its spectral representation X(f ) can be
calculated by:

Xp f q “ x̂p f q “
ż `8

´8

xptqe´2πj f tdt (1)

where the hat “ˆ” stands for the Fourier transform, t the time and f the frequency. For engineering
applications, the collected vibration data are discrete values. Hence, the discrete version of Equation (1)
(i.e., the discrete Fourier transform, DFT) should be used for the vibration data. There are several ways
to calculate the DFT, among which the fast Fourier transform (FFT) is an efficient solution.

The time domain measurement x(t) and the frequency domain spectrum X(f ) are capable of
describing the machinery vibration in terms of time and frequency separately. For jointly representing
the machinery vibration, the wavelet transform provides a powerful mathematical tool for signal
processing and analysis. As mentioned in the Introduction, the CWT, DWT and WPT are in general the
most popular categories in the wavelet transform family. Although different wavelet transforms have
been successively applied in the fault diagnosis community, this paper uses the WPT to generate the
time-frequency statistical features because it has comparatively low dimensions of the decomposition
numbers and enhanced signal decomposition capability in the high frequency region.

The WPT is an extension of the typical DWT, in which detailed information is further decomposed
by the WPT in the high frequency region. In other words, the WPT decomposes x(t) into a set of
wavelet packet (WP) nodes through a series of low-pass and high-pass filters recursively.

With the integral scale parameter j and translation parameter k (k = 0, . . . , 2j ´ 1; j = 0, . . . , J,
which is the number of the decomposition levels), a WP function Tn

j,kptq is defined by:

Tn
j,kptq “ 2j{2Tnp2jt´ kq (2)

where n = 0, 1, . . . is the oscillation parameter [30]. The first two WP functions with j = k = 0 are the
scaling function φ(t) and the mother wavelet function ψ(t), respectively. The remaining WP functions
for n = 2, 3, . . . can be given by the WPT as:

T2nptq “
?

2
ÿ

k
hpkqTn

1,kp2t´ kq and T2n`1ptq “
?

2
ÿ

k
gpkqTn

1,kp2t´ kq (3)

where the low-pass filter h(k) and the high-pass filter g(k) have the following forms:

hpkq “
1
?

2
ă ϕptq, ϕp2t´ kq ą and gpkq “

1
?

2
ă ψptq, ψp2t´ kq ą (4)

where <*,*> represents the inner product operator. The WP coefficients Pn
j,k are therefore the inner

product between the signal and the WP functions, i.e.:

Pn
j,k “ă xptq, Tn

j,k ą“

ż 8

´8

xptqTn
j,kptqdptq (5)

In this way, the signal x(t) is decomposed by the WPT into J levels. At the j-th (j = 0, . . . , J) level,
there are 2j packets with the order n = 1, 2, . . . , 2j. For simplicity, we index the WP node as (j, n) whose
coefficients are given by Pn

j,k.
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According to the above analyses, the vibration measurement of the rotating machinery can be
represented in the time domain, the frequency domain and the time-frequency domain. This can be
formulated by:

Mpp, qq “

$

’

&

’

%

xptq; p P R1, q “ t P Rn0 , time domain
Xp f q; p P R1, q “ f P Rtn0{2u, frequency domain
rP1

1,k, P2
1,k, ..., P2j

j,ks; p P R2J`1´1, q P Rn0{2j
, time-frequency domain

(6)

where n0 is the length of x(t).
As the three representations M(p,q) are usually very long, statistical features can be used as healthy

condition indicators for rotating machinery. Statistical features have been approved as simple and
effective features in fault diagnostics [17]. Based on the aforementioned studies, one can use the
following statistical features for the vibration signals:

F1,ppMq “
ş8

´8
rM´µs4PpMqdM

σ4 , F2,ppMq “
ş8

´8
rM´µs3PpMqdM

σ3 ,

F3,ppMq “
max|M|

d

1
N

N
ř

q“1
M2

, F4,ppMq “
max|M|

˜

1
N

N
ř

q“1

?
|M|

¸2 , F5,ppMq “

d

1
N

N
ř

q“1
M2

1
N

N
ř

q“1
|M|

,

F6,ppMq “
max|M|

1
N

N
ř

q“1
|M|

, F7,ppMq “
ş8

´8
rM´ µs2PpMq, F8,ppMq “

˜

1
N

N
ř

q“1

a

|M|

¸2

, and

F9,ppMq “ 1
N

N
ř

q“1
|M|

(7)

where N is the length of q for M(p,q), P(.) is the probability density [31], µ is the mean value, σ

is standard deviation, and F1,p, . . . , F9,p stand for kurtosis, skewness factor, crest factor, clearance
factor, shape factor, impulse indicator, variance, denominator of clearance factor (the square of the
averaged square roots of absolute amplitude), and mean of absolute amplitude values of the p-th
vector of M(p,q), respectively [32]. Note that there are nine statistical features for the time domain
representation M(p,q) = x(t), 9 for the frequency domain representation M(p,q) = X(f ), and 9(2j + 1 ´ 1)
for the time-frequency domain representation M(p,q) = rP1

1,k, P2
1,k, ..., P2j

j,ks. The feature set F is therefore
given by:

F “

$

’

&

’

%

rF1,1pMq, ..., F9,1pMqs; time domain
rF1,1pMq, ..., F9,1pMqs; frequency domain
rF1,1pMq, ..., F9,1pMq, F1,2pMq, ..., F9,2pMq, ..., F9,2J`1´1pMqs; time-frequency domain

(8)

2.2. Statistical Feature Representation by Unsupervised Boltzmann Machines

After determining the statistical features in the time domain, the frequency domain and the
time-frequency domain, in this subsection the unsupervised Boltzmann machine is proposed for
feature representation.

The deep learning is a promising branch of the machine learning. It was developed to simulate
the working mechanism of the brain to make sense of such data as images, sounds, and texts.
The composed single layer GRBM model is the core to construct the deep learning (GDBM) frameworks
in this work, and is originated from restricted Boltzmann machine (RBM).

The Boltzmann machine is a log-linear energy based model, where the energy function is linear
in its free parameters. To restrict the Boltzmann machines to those without visible-visible and
hidden-hidden connections, the RBM was proposed by Hinton, the father of deep learning, to form
deep learning networks [33].
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Conventional RBMs define the state of each visible and hidden neuron as binary codes (0 or 1).
For real-valued data, the RBM has to normalize the input variables into [0, 1] with treating them
as probabilities. For regular cases where the real values data have limited values, e.g., [0, 255] for
pixels in the image processing, the RBM works well [34]. However, our statistical features scatter
in different ranges. For example, the minimal value for F1 is 0, but that for F5 will be a negative
number. This means that the conventional RBM is difficult to cope with our statistical features for the
fault diagnosis.

To accommodate the real-valued data, the binary visible neurons can be replaced by the Gaussian
ones to generate the Gaussian-Bernoulli RBM (GRBM). Although with real-valued neurons, the GRBM
exhibits same structure compared to its RBM counterpart as shown in Figure 1.
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Figure 1. Illustration of the network connections with a GRBM. Note the GRBM exhibits same structure
compared to its RBM counterpart.

For the GRBM shown in Figure 1, the energy function E(v, h) is given by:

Epv, h|θq “
nv
ÿ

i“1

pvi ´ biq
2

2σ2
i

´

nv
ÿ

i“1

nh
ÿ

j“1

Wijhj
vi

σ2
i
´

nh
ÿ

j“1

cjhj (9)

where v and h denote the visible and the hidden neurons, bi and ci stand for the offsets of the visible
layers, wij represents the weights for the connection matrix, σi is the standard deviation associated
with a Gaussian visible neuron vi, and θ is the Gaussian parameter [35]. The traditional gradient-based
training of the GRBM has difficulty learning σi, which is constrained to be positive. Hence, some
algorithms fix σi as unity. With the improved energy function, Cho et al. [35] proposed conditional
probabilities for the visible and the hidden neurons as follows:

ppvi “ v|hq “ pv|bi `

nh
ÿ

j“1

hjwij, σ2
i q (10)

and

ppvi “ v|hq “ pv|bi `

nh
ÿ

j“1

hjwij, σ2
i q and pphi “ 1|vq “ Spcj `

nv
ÿ

i“1

wijvi{σ
2
i q (11)

where p.|µ, σ2q is the Gaussian probability density function with mean µ and variance σ2, and S(.) is a
sigmoid function. The upgraded gradients with respect to the GRBM parameters are given by:

∇Tij “
A

vihj{σ
2
i

E

d
´

A

vihj{σ
2
i

E

m
, ∇bi “

A

vi{σ
2
i

E

d
´

A

vi{σ
2
i

E

m
, ∇cj “

@

hj
D

d ´
@

hj
D

m ,

∇logσ2
i “ expp´logσ2

i q

¨

˝

C

pvi ´ biq
2
{2´

nh
ÿ

j“1

vihjwij

G

d

´

C

pvi ´ biq
2
{2´

nh
ÿ

j“1

vihjwij

G

m

˛

‚

(12)

where <.>d and <.>m represent the expectation computed over the data and the model
distributions, respectively.
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When applying the GRBM for the unsupervised learning of the statistical features, the feature
set F should be used as v and the GRBM results GR(F) = h. In this way, the nv statistical features
are represented by nh neurons [36]. For condition monitoring and fault type classification, GRBM
representations can be input to a classifier such as a support vector machine (SVM), decision tree, or
random forest.

When applying the SVM as a classifier for fault diagnosis in rotating machinery, one should choose
a multi-class SVM. The classical SVM is a binary classifier. Different methods have been proposed for
using classical SVMs to compose multi-class SVMs. A pairwise coupling strategy was introduced by
Hastie and Tibshirani [37] to perform multi-class classification by combining posterior probabilities
provided by individual binary SVM classifiers.

2.3. Deep Statistical Feature Learning and Classification

After determining the statistical features in the time domain, the frequency domain and the
time-frequency domain, in this subsection the unsupervised Boltzmann machine is proposed for
feature representation.

In a common sense, an unsupervised mono-layer GRBM is inferior to a supervised multi-layer
deep model. To stack several GRBMs on top of each other, a Gaussian-Bernoulli deep Boltzmann
machine (GDBM) can be constructed for deep statistical feature learning of the machinery vibration
signals. As an extension of the classical deep Boltzmann machine (DBM), the GDBM was introduced
by Cho et al. [36]. Unlike other RBM-based deep models such as the deep belief network and the deep
autoencoder, each neuron in the intermediate layers of the GDBM connects with both top-down and
bottom-up information.

The GDBM structure used in this paper is shown in Figure 2a. The suggested GRBM is composed
of three GRBMs (i.e., GRBM1, GRBM2, and GRBM3). Each GRBM consists of one visible layer and one
hidden layer, and the hidden layer of the previous GRBM is just the visible layer of the next GRBM.
In this way, the first layer (data layer) and the second layer (hidden layer 1) forms the GRBM1, the
second layer and the third layer (hidden layer 2) forms the GRBM2, the third layer and the last layer
(output layer) forms the GRBM3, and the three GRBMs are stacked together to form the GDBM.
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Figure 2. Schematic of the three-layer GDBM: (a) network structure; and (b) pretraining and
composition of the GDBM.

The GDBM and its constituting GRBMs can be pretrained using a greedy, layer-by-layer
unsupervised learning algorithm [37]. During the pretraining period as shown in Figure 2b, special
attention should be paid to the GDBM as the neurons in the intermediate layers receive information
both from the upper and the lower layers. To cope with this particularity, Salakhutdinov [38] halved
the pretrained weights in the intermediate layers and duplicated the visible and topmost layers for the
pretraining. With this idea, Equation (10) should be revisited to calculate the energy of the visible layer
for the GRBM as:
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Epv, hp1q|θq “
nv
ÿ

i“1

pvi ´ biq
2

2σ2
i {Nv

´

nv
ÿ

i“1

nh
ÿ

j“1

wijh
p1q
j

vi

σ2
i Nv

´

nh
ÿ

j“1

cjh
p1q
j (13)

where Nv = 2 corresponds to the duplication of the visible layer. Similarly, the energy for the topmost
GRBML during the pretraining is given by:

EphpL´1q, hpLq|θq “ ´
nh
ÿ

j“1

Nvcjh
pLq
j ´

nv
ÿ

i“1

nh
ÿ

j“1

NvwpL´1q
ij hpL´1q

i hpLqj ´

nv
ÿ

i“1

bih
pL´1q
i (14)

The aforementioned pretraining is an unsupervised, bottom-up procedure for the GDBM.
This means that it cannot be applied for the classification after the pretraining. Compared to
conventional unsupervised learning, fortunately, the GDBM requires an extra supervised, top-down
fine-tuning procedure [39,40]. At the fine-tuning procedure, the output layer is replaced by a multilayer
perceptron (MLP) with sigmoid functions. To fit the fault classification task, all the weights w can be
discriminatively fine-tuned using a back-propagation (BP) algorithm [41]. The supervised BP method
uses labeled data as an extra MLP layer of variables to train the GDBM model for the classification.
Unlike the unsupervised training process considering one GRBM at a time, the BP training considers
all the layers in a GDBM simultaneously, which is in the same way as for the standard feed forward
neural networks [42]. In this way, the GDBM can be regarded as an improvement of the MLP, or neural
networks. It is capable of dealing with the classification for nonlinear, abnormal (non-Gaussian) data
using a “deeper” fashion [43]. Of course, this “deeper” learning is much more time-consuming than
the conventional ones.

Having introduced the GDBM and its constituting components, the GRBMs, the procedure of
applying the GDBM based classification for the fault diagnosis of the rotating machines is shown in
Figure 3 and is summarized as follows:

Step 1. Collect the vibration signals x(t), define the fault patterns and the diagnosis problems;
Step 2. Calculate the statistical feature set F according to Equation (8);
Step 3. Develop the GDBM model with the stack of the GRBMs according to Figures 1 and 2;
Step 4. Pretrain the GDBM model and its constituting GRBMs using the layer-by-layer unsupervised

learning algorithm from the training dataset;
Step 5. Fine-tune the GDBM weights using the BP algorithm from the training dataset; and
Step 6. Diagnose the rotating machinery condition using the trained GDBM model.
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3. Data Collection Experiments for the Fault Diagnosis

To validate the effectiveness of deep statistical feature learning for fault diagnosis, the proposed
deep learning was applied to diagnose the health of two rotating mechanical systems. The experimental
setups and procedures are detailed in the following two subsections.

3.1. Experimental Procedure for Gearbox Fault Diagnosis

The first experiments were carried out on a gearbox fault diagnosis system. As shown in Figure 4a,
the output of a motor (3~, 2.0 HP, Siemens, Munich, Germany) was connected to the input shaft of
a gearbox (fabricated by the lab of the Universidad Politécnica Salesiana, Cuenca, Ecuador) via a
coupling. A 53-tooth pinion was installed on the input shaft of the gearbox, whose output shaft has an
80-tooth gear. An electromagnetic torque break (8.83 kW, Rosati, Monsano, Italy) was used as a load to
connect with the output shaft of the gearbox via a belt transmission. The torque break was controlled
by a controller (GEN 100-15-IS510, TDK-Lambda, Tokyo, Japan) which enabled the load to be adjusted
manually. An accelerometer (ICP 353C03, PCB, Depew, NY, USA) was mounted on top of the gearbox
to collect the vibration signals, which were sent to a laptop (Pavilion g4-2055la, HP, Palo Alto, CA,
USA) through a data acquisition system (cDAQ-9234, NI, Austin, TX, USA). The laptop controlled an
inverter (VLT 1.5 kW, Danfoss, Nordberg, Denmark) for adjusting the motor’s rotation speed, which
was monitored by a tachometer (VLS5/T/LSR optical sensor, Compact, Bolton, UK).

Sensors 2016, 16, 895 8 of 19 

 

The first experiments were carried out on a gearbox fault diagnosis system. As shown in  

Figure 4a, the output of a motor (3~, 2.0 HP, Siemens, Munich, Germany) was connected to the input 

shaft of a gearbox (fabricated by the lab of the Universidad Politécnica Salesiana, Cuenca, Ecuador) 

via a coupling. A 53-tooth pinion was installed on the input shaft of the gearbox, whose output shaft 

has an 80-tooth gear. An electromagnetic torque break (8.83 kW, Rosati, Monsano, Italy) was used as 

a load to connect with the output shaft of the gearbox via a belt transmission. The torque break was 

controlled by a controller (GEN 100-15-IS510, TDK-Lambda, Tokyo, Japan) which enabled the load 

to be adjusted manually. An accelerometer (ICP 353C03, PCB, Depew, NY, USA) was mounted on 

top of the gearbox to collect the vibration signals, which were sent to a laptop (Pavilion g4-2055la, 

HP, Palo Alto, CA, USA) through a data acquisition system (cDAQ-9234, NI, Austin, TX, USA). The 

laptop controlled an inverter (VLT 1.5 kW, Danfoss, Nordberg, Denmark) for adjusting the motor’s 

rotation speed, which was monitored by a tachometer (VLS5/T/LSR optical sensor, Compact, Bolton, 

UK). 

  

(a) (b) 

Figure 4. Gearbox fault diagnosis configurations: (a) experimental set-up; and (b) three different 

faulty gears and five different faulty pinions. 

In the gearbox fault diagnosis experiments, in addition to one normal pinion and one normal 

gear, three different faulty gears and five different faulty pinions (shown in Figure 4b) were used to 

configure different condition patterns for the gearbox. The 10 different patterns shown in Table 1 

were set for the collection of vibration signals.  

Table 1. Experimental configurations of different condition patterns. 

Experimental 

Setup 
Pattern Label Component 1 Component 2 Load 

Gearbox 

(component 1-

pinion; 

component 2-

gear) 

A Normal Normal zero, small, great 

B Chaffing tooth Normal zero, small, great 

C Worn tooth Normal zero, small, great 

D Chipped tooth 25% Normal zero, small, great 

E Chipped tooth 50% Normal zero, small, great 

F Missing tooth Normal zero, small, great 

G Normal Chipped tooth 25% zero, small, great 

H Normal Chipped tooth 50% zero, small, great 

I Normal Missing tooth zero, small, great 

J Chipped tooth 25% Chipped tooth 25% zero, small, great 

Bearing 

(component 1-

bearing 1; 

component 2-

bearing 2) 

1 Normal Normal Zero, 1, 2 flywheel(s) 

2 Normal Inner race fault Zero, 1, 2 flywheel(s) 

3 Normal Outer race fault Zero, 1, 2 flywheel(s) 

4 Normal Ball fault Zero, 1, 2 flywheel(s) 

5 Outer race fault Inner race fault Zero, 1, 2 flywheel(s) 

Figure 4. Gearbox fault diagnosis configurations: (a) experimental set-up; and (b) three different faulty
gears and five different faulty pinions.

In the gearbox fault diagnosis experiments, in addition to one normal pinion and one normal
gear, three different faulty gears and five different faulty pinions (shown in Figure 4b) were used to
configure different condition patterns for the gearbox. The 10 different patterns shown in Table 1 were
set for the collection of vibration signals.

To challenge the fault diagnosis performance, three different load conditions (no load, small load,
and large load), were manually set for each pattern. For each pattern and load condition, we collected
24 signals, each of which covered 0.4096 s, with a sampling frequency of 10 kHz. The experiments
were repeated five times, so 3600 vibration signals corresponding to 10 condition patterns (with three
different loads) were recorded. Each vibration signal was used to generate the temporal, spectral, and
WPT representations M(p,q) given by Equations (6)–(8) were then used to generate the feature set F for
the vibration signals. The 3600 feature sets were divided into a training dataset with 2400 samples and
the testing dataset with 1200 samples.
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Table 1. Experimental configurations of different condition patterns.

Experimental Setup Pattern Label Component 1 Component 2 Load

Gearbox (component
1-pinion; component
2-gear)

A Normal Normal zero, small, great
B Chaffing tooth Normal zero, small, great
C Worn tooth Normal zero, small, great
D Chipped tooth 25% Normal zero, small, great
E Chipped tooth 50% Normal zero, small, great
F Missing tooth Normal zero, small, great
G Normal Chipped tooth 25% zero, small, great
H Normal Chipped tooth 50% zero, small, great
I Normal Missing tooth zero, small, great
J Chipped tooth 25% Chipped tooth 25% zero, small, great

Bearing (component
1-bearing 1; component
2-bearing 2)

1 Normal Normal Zero, 1, 2 flywheel(s)
2 Normal Inner race fault Zero, 1, 2 flywheel(s)
3 Normal Outer race fault Zero, 1, 2 flywheel(s)
4 Normal Ball fault Zero, 1, 2 flywheel(s)
5 Outer race fault Inner race fault Zero, 1, 2 flywheel(s)
6 Ball fault Inner race fault Zero, 1, 2 flywheel(s)
7 Ball fault Outer race fault Zero, 1, 2 flywheel(s)

The unsupervised GRBM and the supervised GDBM were applied to learn the statistical features
of the vibration signals. The statistical features represented by the unsupervised GRBM required an
additional classifier for the pattern classification. Considering its excellent classification capability, the
SVM was used as the classifier for the GRBM representations. For the GDBM, supervised deep learning
as shown in Figure 3 was applied for the healthy condition pattern classification of the gearbox.

3.2. Experimental Procedure for Bearing Fault Diagnosis

To further challenge the deep statistical feature learning for fault diagnosis, we also carried out
bearing fault diagnosis experiments. The gear fault patterns (displayed in Table 1) occupied areas of
great damage, which introduced greater changes in the vibration measurements [44]. Compared to the
vibration signal of the gear fault, an incipient bearing fault often has a smaller damage surface and
thus generates weak vibration changes [45].

As shown in Figure 5a, a rolling element bearing test rig was constructed in the Universidad
Politécnica Salesiana of Ecuador to collect the vibration measurements for different healthy conditions.
The test rig was driven by a motor (3~, 2.0 HP, Siemens) controlled by an inverter (VLT 1.5 kW,
Danfoss). The rotating speed of the motor was monitored by a tachometer (VLS5/T/LSR optical
sensor, Compact). A steel shaft (φ30 mm) was connected to the motor via a coupling. The two
ends of the shaft were supported by two bearings (bearing 1 and bearing 2, 1207 EKTN9/C3, SKF,
Goteborg, Sweden). An accelerometer (ICP 353C03, PCB) was mounted on the housing (SNL 507-606,
SKF) of bearing 2 for measuring the vibration signals, which were collected by a data acquisition
box (cDAQ-9234, NI) that communicated with a laptop (Pavilion g4-2055la, HP). Two flywheels were
installed on the shaft as the load of the system.

In addition to the normal bearings, as shown in Figure 5b, three different faulty bearings with an
inner race fault, an outer race fault and a ball fault, were used in the experiments. Using combinations
of bearings in different conditions, seven healthy condition patterns were set, as shown in Table 1.
For each experiment with each pattern, there were respectively 0, 1 and 2 flywheels used as the load.
For each pattern and load configuration, 48 signals were collected for 0.4096 s. Each experiment was
repeated five times. This means that 5040 signals were finally obtained. The sampling frequency for
the bearing fault diagnosis was also set at 10 kHz.

Similar to the procedure described in the previous section, the statistical features were produced
from the raw data of the bearing vibration signals. The unsupervised GRBM and the supervised GDBM
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were again applied for the fault diagnosis of the bearing system. The results of all the experiments are
detailed in the next section.
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Figure 5. Fault diagnosis configurations for the rolling element bearings: (a) experimental set-up; and
(b) 3 different faulty bearings with an inner race fault (left), an outer race fault (middle) and a ball
fault (right), respectively.

4. Results and Discussion

4.1. Gearbox Fault Diagnosis Results

Figure 6a,b plot the time domain waveform and statistical features for the first signal collected
from the gearbox experimental setup. As the signal covered 0.4096 s with the sampling frequency
of 10 kHz, the length of the discrete time signal is 4096. For all the collected 3600 signals, their time
domain waveforms and statistical features are shown in Figure 6c,d, respectively.
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Figure 6. Time domain features for the gearbox fault diagnosis: (a) time domain waveform of the
first signal; (b) time domain statistical features of the first signal; (c) time domain waveforms of the
3600 collected signals; and (d) time domain statistical features of the 3600 collected signals.

Vibration signals were then transformed into the frequency domain. The frequency domain
representation and statistical features for the first signal are shown in Figure 7a,b, respectively.
As the sampling frequency was 10 kHz, the effective frequency band in Figure 7a is [0, 5000] Hz.
However, there are only 4096 points for the temporal waveform. This means that there are only
2048 frequency points ranging between [0, 5000] Hz. For all the collected 3600 signals, their frequency
domain representations and statistical features are shown in Figure 7c,d, respectively.
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For generating the time-frequency domain representations, the WPT was applied to decompose
the raw data up to four levels. There are 2, 4, 8 and 16 nodes for each level. Put all the nodes together,
the WPT presentation and statistical features are displayed in Figure 8a,b, respectively. As the length
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of the raw signal is 4096 points, numbers of data points for a node at the four levels are 2052, 1030, 519
and 264, respectively. In this way, the number of data points as shown in Figure 8a is 16,600. For the
WPT, there are 30 nodes each of which has nine features. This generates 270 features for the first signal
as shown in Figure 8b.

All the 3600 data have been disordered for the experiments. Among all the 3600 samples for
each data, 2400 samples were random chosen as the training dataset F. To represent the statistical
feature set F, we first applied the mon-layer GRBM with parameters as: number of the neurons
in the hidden layer = 200, number of the learning epochs = 150, the initial learning rate = 0.001,
its upper-bound = 0.001, and the weight decay = 0.005. As unsupervised learning of the GRBM
does not have the classification function, a multi-class SVM classifier was applied to obtain the
first fault diagnosis model (# 1 peer model). The reason for us to implement the model is to show
the performance of the present deep learning. For # 1 peer model, the GRBM acts as the second
feature representation tool (statistical features given by Equation (7) is the first one) for the vibration
measurements. The outputs of the GRBM were fed into the SVM classifier. The supervised GDBM
was subsequently applied for the same dataset F with parameters as: number of the neurons in the
hidden layer 1 = 200, number of the neurons in the hidden layer 2 = 200, number of the pretraining
epochs (for each constituent and the model) = 150, number of the fine-tuning epochs = 150, the initial
learning rate = 0.001, its upper-bound = 0.001, and the weight decay = 0.005. In this way, we obtained
the second fault diagnosis model (the proposed GDBM model). For comparison, the SVM classifiers
for the original statistical features M(p,q), and the combination of M(p,q) and the GRBM representation
were respectively developed as the third fault diagnosis model (#2 peer model) and the fourth one
(#3 peer model). All the algorithms were realized using Matlab®. One may note that in this work we
have not employed more “shallow” learning models such as the decision tree, the random forest, and
the neural network. The reason is that the SVM has been proven the prominent representative which
outperforms most of the “shallow” learning members.
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Figure 8. Time-frequency domain features for the gearbox fault diagnosis: (a) WPT representation
of the first signal; (b) time-frequency domain statistical features of the first signal; (c) time-frequency
domain representations of all the collected 3600 signals; and (d) time-frequency domain statistical
features of all the collected 3600 signals.
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With the trained models, the remaining 1200 samples (in the time, frequency, and time-frequency
domains, respectively) were used to test the classification performances, which are displayed in Table 2.

From the diagnosis results shown in Table 2, it is clear that the classification rates for the
time-frequency domain statistical features are higher (72.09% on average) than those for the time
and frequency domains. This is due to the joint time and frequency representation of the WPT.
When comparing the statistical features of the time and frequency domains, the time domain features
are always the worst. Among all the models, deep statistical feature learning via the GDBM exhibits the
best classification rate for the same data (62.58%, 91.75%, 95.17%, and 83.17% for the time, frequency,
time-frequency domain statistical features, and the average, respectively). The best classification rate of
95.17% is seen with the GDBM model and time-frequency statistical features. Compared to supervised
learning methods (e.g., the GDBM), the unsupervised GRBM displays the lowest classification rates
(26.67%, 52.67%, 42.25%, and 41.33% for the time, frequency, time-frequency domain statistical features,
and the average, respectively). Nevertheless, it should be noted that the GRBM used in this paper
is an unsupervised algorithm, which shows that there is still some potential for fault diagnosis, if
a fine-tuning procedure can be introduced for its learning process. As one of the most important
“shallow” learning approaches, the SVM exhibited good classification results for the gearbox system.
This result is similar to that of existing studies (e.g., [46]). When the GRBM representations are
combined with the original statistical features M(p,q), a small increase in the classification rates can
be seen (from 52.83% to 79.42% for the frequency domain, 69.50% to 78.42% for the time-frequency
domain statistical features, and 61.05% to 64.56% on average). However, due to the “shallow” learning
limit, it is very difficult to further improve the classification rate for the SVM. Our results indicate that
deep statistical feature learning has the best performance for gearbox fault diagnosis. It should be
noted that deep learning is much more time-consuming than classical learning methods.

Table 2. Fault classification rates for the testing dataset (%), where N represents the device, d denotes
the domain of the feature.

Device (N) Domain (d)
Fault Diagnosis Model

#1 Peer GDBM #2 Peer #3 Peer Average a

Gearbox Time domain 26.08 62.58 60.83 35.83 46.33
Frequency domain 52.67 91.75 52.83 79.42 69.17
Time-frequency domain 45.25 95.17 69.50 78.42 72.09
Average b 41.33 83.17 61.05 64.56 62.53

Bearing Time domain 18.52 60.63 59.58 41.96 45.17
Frequency domain 39.95 87.57 80.74 82.91 72.79
Time-frequency domain 58.84 91.75 81.53 82.70 78.71
Average b 39.10 79.98 73.95 69.19 65.508

a the average value of the left four models; b the average value of the above three domains.

4.2. Bearing Fault Diagnosis Results

For the bearing fault diagnosis experiments, 5040 vibration signals and their statistical
features in the time domain are plotted in Figure 9a,b. The Fourier transform were then used to
generate the frequency data and their statistical features as shown in Figure 9c,d, respectively.
The time-frequency representation produced by the 4-level WPT and their statistical features are
shown in Figure 9e,f, respectively.

Of the 5040 samples, 3150 of the bearing system vibration signals were randomly chosen as
the training dataset F. Similar modeling procedures to the gearbox fault diagnosis were repeated
to develop the bearing fault diagnosis models. For comparisons, the same parameters are used in
this subsection for the four models (i.e., No. 1: GRBM, No. 2: GDBM, No. 3: SVM, and No. 4:
GRBM-SVM). After obtaining the trained models, the remaining 1890 samples (in the time, frequency,
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and time-frequency domains) were applied to test the classification performance for the bearing fault
diagnosis. The results are displayed in Table 2.
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statistical features; (c) the frequency domain representations; (d) the frequency domain statistical
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A comparison of the feature performances in the different domains in Table 2 suggests that the
time–frequency domain features exhibit the best performances (58.84%, 91.75%, 81.53% and 82.70%
with the GRBM, GDBM, SVM and GRBM-SVM models, respectively), and the time domain features
have the lowest classification rate (45.17% on average for all models). Compared with the gearbox
fault diagnosis, the fault features for the rolling element bearings are more evident in the frequency
domain, especially in the high frequency resonance band [47]. However, the model comparison results
for the bearing fault diagnosis are almost same as those for the gearbox fault diagnosis. Among all
the peer models, the deep statistical feature learning model (the GDBM) has the best classification
rate (60.63% for the time domain, 87.57% for the frequency domain, 91.75% for the time-frequency
domain, and 79.98% on average). This again validates the effectiveness of deep statistical feature
learning for fault diagnosis in rotating machinery. Nevertheless, the improvement in fault diagnosis
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performance with deep learning is at the cost of complexity. The present GDBM is the most complex
model with the largest number of parameters that must be estimated from the sample. It is an intrinsic
drawback that “deeper” learning requires much more time than “shallow” learning does. As pointed
out by LeCun et al. [48], the advent of fast graphics processing units (GPUs), which are convenient to
program, allowed researchers to train deep networks 10 or 20 times faster. This indicates that parallel
computation is helpful for reducing computation time. However, parallel computation is beyond
the scope of this study. All the programs in this work were executed on a laptop. This resulted in
much more computation time (hour-level) for the presented GDBM than its “shallow” counterparts
(usually second- or minute- level on a laptop).

4.3. Remarks

Based on the fault diagnosis results as shown in the previous two subsections, one can see that
the deep statistical feature learning holds the best classification performance comparing to the peer
models. During the experiments, there were some very aberrant values (outliers) collected from the
experimental setups, because the outliers are always unavoidable for real applications. It is obvious
that the outliers may lead to deterioration of the fault diagnosis. However, we did not remove those
outliers from the dataset, even if the removal of the outliers may increase the classification rates.

It should be noted that the given parameters also play important roles to the GDBM model.
As indicated by Cho et al. [35], the training procedure of the GDBM can easily run into problems
without careful selection of the learning parameters. Upon determining the network structure for
different layers, therefore, the learning epochs for the pretraining and the fine-tuning will be directly
related to the classification performance. In this subsection we will discuss the influence of the epochs
for the pretraining and the fine-tuning procedure. We first adjusted the number of pretraining epochs
(for the GRBMs and the presented model) with all the other parameters fixed. Figure 10a plots the
change of the fault classification rates in response to the increase of the pretraining epochs for the
WPT features. For the fault diagnosis of both the gearbox and the bearing systems, the number of
pretraining epochs does not influence the classification very much. This means that even for a small
number (e.g., 10) of the epochs, the pretraining can achieve good effect.
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Figure 10. Relationship between the classification rate and the number of the modeling epochs:
(a) classification rates v.s. pretraining epochs; and (b) classification rates vs. fine-tuning epochs of the
time-frequency domain GDBM models.

The pretraining epochs were subsequently set at 150 to adjust the number of the fine-tuning epochs
between 10 and 250. The fault classification rates for the two mechanical systems were displayed in
Figure 10b. With the increase of the fine-tuning epochs, the classification rates for both experiments
improve accordingly. For the gearbox diagnosis experiments, the improvement goes slowly after
125 epochs. As for the bearing systems, the classification rate increases still evidently before 200 epochs.
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Figure 10a,b prove that the deep statistical feature learning using the GDBM is not very sensitive to
the learning parameters. Even though, a careful selection of the model parameters will be helpful in
improving the fault pattern classification for the rotating machinery. This means that the proposed
method has an essential improvement potential for the fault diagnosis of the rotating machinery.

Figure 11a–c plots the comparisons between the real fault patterns and the classified patterns for
the bearing fault diagnosis in the time, the frequency and the time-frequency domains, respectively.
It is shown that some signals are correctly classified by the proposed method in some domains, but
are misclassified in other domains. Let’s take 10 vibration signals (#286~#295) of the bearing fault
diagnosis as an example. The time domain diagnosis misclassified #295 signal, while both the frequency
domain and the time-frequency domain obtained right classification. The frequency domain diagnosis
misclassified #290 signal, but all the other two domains are correct. The time-frequency domain
diagnosis misclassified #286 signal, while all the rest domains are right. If one considers the three
domains simultaneously, therefore, all the 10 vibration signals (#286~#295) can be right diagnosed.
This shows that the combination of the diagnosis results may contribute better classification rates.
Though out of our scope in this paper, this discussion encourages us that further potentials can be
explored for the proposed fault diagnosis approach.
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5. Conclusions

In this paper, a deep statistical feature learning for vibration measurement has been proposed to
diagnose fault patterns in rotating machinery. The statistical feature set was first extracted from the
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time, frequency, and time-frequency domains of the vibration signals. The real-valued RBMs were
then stacked to develop a GDBM to accommodate statistical feature learning. Two typical rotating
machinery systems (a gearbox and bearing test rigs), were constructed to validate the proposed
approach, which was used for fault classification in the three-domain feature sets. The results show
that deep statistical feature learning is capable of classifying fault patterns at higher rates than other
models. Compared with the unsupervised GRBM, the SVM and the combined SVM and GRBM
models, the deep statistical feature learning by the GDBM consistently had clearly better performances.
This means that deep learning with statistical feature representation is a feasible update of conventional
methods. The results also reveal that the statistical features in the time, frequency and time–frequency
domains have different representation capabilities for fault patterns. Our further work will focus on
optimizing the statistical features in different domains for different diagnostic applications.
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