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Abstract: Estrogens added illegally to dietary supplements are hazardous to human health. Tradi-
tional detection and analysis methods have many limitations, and we have developed an assay that
combines thin-layer chromatography with Raman imaging microscopy (TLC-RIM). The five estrogens
(estrone, estradiol, estriol, ethinyl estradiol, and diethylstilbestrol) were initially separated by TLC,
then detected by area scanning Raman imaging with a 532 nm laser under a microscope. Raman
spectra were obtained for each estrogen, which were used for detecting estrogen illegally added
to botanical dietary supplements. The LOD of each estrogen was 0.4, 1.0, 0.8, 0.2, and 0.2 mg/mL,
respectively. The matrix in the real sample did not interfere with the detection of estrogens. The
method was fast, sensitive, stable, specific, and reliable.

Keywords: Raman spectra; Raman Imaging Microscope; TLC; estrogen; dietary supplement

1. Introduction

The demand for botanical dietary supplements (BDS) originating from purely natural
substances is prominently increasing due to the belief that these “natural” herbal products
are harmless and do not cause the detrimental side effects of chemical drugs or their
analogues [1]. To improve the efficacy of BDS, some pharmaceutical drugs are intentionally
and illegally added, including chemicals prohibited by the administrative authority of
the government [2,3]. These illegal products are hazardous to human health and could
even threaten consumers’ lives. The chemicals that are most likely adulterated in BDS are
hormones. Among them, steroid estrogens such as estrone (E1), estradiol (E2), estriol (E3),
and ethinylestradiol (EE2) are often illegally added to anti-aging BDS; synthetic estrogens
such as diethylstilbestrol (DES) are often added to BDS for breast cancer prevention [4–6].
These estrogens have a variety of therapeutic and pharmacological effects, which are
mediated by the estrogen receptor and can cause serious toxic side effects if abused [7–10].
The illicit addition of estrogen is associated with many adverse health outcomes, such
as breast cancer, heart disease, and stroke [11–13]. Therefore, it is very important and
necessary to establish a rapid detection method for illegally added estrogens in BDS.

Many analytical techniques have been developed for the detection of the five es-
trogens (E1, E2, E3, EE2, and DES), i.e., E1 and E2 were detected accurately by UPLC–
MS/MS [14,15], E1, E3, and EE2 in mixtures were measured quickly by GC-MS [16,17], and
DES in water samples was detected sensitively by fluorimetry [18]. In addition, Raman
spectroscopic discrimination of E2 and EE2 in water samples was also described [19]. All
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the methods are known for their high sensitivity and specificity [20]; however, the disad-
vantages of them include being of high cost, time consuming, and complicated in prelab
sample preparation.

Raman spectroscopy coupled with thin-layer chromatography (TLC) detection meth-
ods, such as the combination of TLC and Raman spectra [21], the combination of TLC
and surface-enhanced Raman spectra (SERS) [22–25], and the combination of TLC and
surface-enhanced resonance Raman scattering (SERRS) [26,27], have been increasingly used
for the rapid detection of chemical constituents illegally added to BDS. These methods are
simple and fast, but the problem is that some components cannot be effectively separated
by TLC, and the spectrum obtained by Raman detection on TLC may not be the spectrum
of a single component, which may directly lead to a decrease in the accuracy of detection.
This problem can be solved by Raman imaging.

The purpose of Raman imaging is to visualize the distribution of different components
in a sample. Thus, each pixel in the image corresponds to a Raman spectrum, which can
be compared with an established Raman database or spectra of reference substance to
determine a specific analyte or spectral background measurements at this location [28,29].
There are two ways to perform Raman imaging, scanning imaging and wide-field imaging.
Area scanning is one approach of wide-field Raman imaging, which enables the entire
sample area to be illuminated with laser light, and its spatial information is obtained in one
scan without relative movement between the laser and the sample [30]. In area scanning,
when superimposed spectra of different components are obtained, the single spectra of
these components can also be obtained by different colors in the imaging [31,32].

The main purpose of this study was to develop a thin-layer chromatography combined
with Raman imaging microscopy method (TLC-RIM), which can rapidly separate and
accurately detect small amounts of estrogens, such as E1, E2, E3, EE2, and DES in BDS.
Estrogens were initially separated by TLC, the main spots on TLC were marked under
254 nm ultraviolet light, and estrogens were concentrated with anhydrous ethanol on TLC.
Raman spectra of concentrated estrogen were obtained by area scanning Raman imaging
with a 532 nm laser source under a microscope, which could be used to distinguish the five
estrogens illegally added to BDS such as Ganoderma lucidum spore powder.

2. Materials and Methods
2.1. Materials

All reagents were bought from Merck Drugs & Co., Germany. Reference substances of
E1 (98.0%), E2 (98.0%), E3 (99.0%), EE2 (99.0%), and DES (99.0%) were purchased from the
National Institutes for Food and Drug Control (Beijing, China), and separated chromato-
graphically using petroleum ether (AR, 99.5%), trichloromethane (AR, 99.0%), ethyl acetate
(AR, 99.5%), and benzene (AR, 99.5%). Three real samples of Ganoderma lucidum spore
powder were supplied by three different manufacturers (China) and extracted by using
anhydrous ethanol (AR, 99.5%).

TLC of the sample was obtained through thin layer plate (Merck KGaA, Düren,
Germany) made of high-performance silica gel and fluorescing additive F254, which is
called GF254 thin layer plate for short; the particle size is 8 ± 2 µm, layer thickness is
0.2 ± 0.03 mm, and the carrier is aluminum.

2.2. Apparatus

Separated compounds on TLC were located under 254 nm by an Ultraviolet analyzer
(YOKO-2F; Wuhan YOKO technology Ltd., Wuhan, China). Raman spectra and its imaging
were obtained by use of a DXR™ xi Raman Imaging Microscope (Thermo Fisher Scientific,
Waltham, MA, USA) with an excitation wavelength of 532 nm, a resolution of 5.0 cm−1, and
a 10× long working distance microscope objective. The excitation power was 10 mW and
the integration time was 0.5 s; number of scans was 20. The scan range was 3300~100 cm−1,
with a 50 µm confocal pinhole DXR532 full range grating (400 line/mm). Detector was
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TE-cooled electron-multiplying CCD (EMCCD). Area scanning was chosen as the scanning
mode, scanning area was more than 150 µm × 150 µm, and total scanning time was 20 min.

Ultra high-performance liquid chromatography–tandem mass spectrometry (UPLC–
MS/MS) was operated on a Dionex UltiMate 3000 ultra-performance liquid chromatography–
TSQ quantum mass spectrometer system (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Solutions Preparation

Reference substance solutions were prepared by dissolving each estrogen powder in
anhydrous ethanol to prepare a solution of 1.0 mg/mL.

Mixture reference solution was prepared by dissolving all the estrogen powders
together in anhydrous ethanol to prepare a solution in which each kind of estrogen was
1.0 mg/mL.

Real sample solutions were prepared by the following two steps. Extraction: Gano-
derma lucidum spore powder (2 g/a single dose) 10.0 g was placed in a centrifuge tube,
anhydrous ethanol 50.0 mL was added, extracted ultrasonically for 10 min, and purified
centrifugally for 5 min and filtrated with 0.45 µm membrane. Concentration: solvent was
evaporated in a water bath at 80 ◦C and reconstituted with 0.5 mL anhydrous ethanol.

Negative samples were samples that had been tested by Qiqihar Institute for Food
and Drug Control and confirmed to be free of E1, E2, E2, EE2, and DES. The preparation
method of negative sample solution was the same as that of real sample. Simulated
positive samples were prepared by adding E1, E2, E3, EE2, and DES to negative samples,
respectively. Simulated positive sample solution was prepared in the same way as real
sample at the concentration of each reference substance (1.0 mg/mL).

2.4. The TLC Method

Thin-layer chromatography (TLC) is a simple and fast separation technique [32]. In
our study, 10 µL of solutions of five control substances (E1, E2, E3, EE2, and DES) and their
mixed solutions were spotted on GF254 thin layer plate (8 cm × 10 cm) at a distance of 1 cm
from the bottom. The material was eluted to a distance of 8 cm in a development chamber
saturated with petroleum ether–trichloromethane–ethyl acetate–benzene (2:6:2:2, v/v/v/v).
The plate was removed and the solvent on the plate was naturally evaporated. Under UV
irradiation at 254 nm, the main spots on the TLC could be observed.

2.5. The TLC-RIM Method

In this method, we focused on thin-layer chromatography coupled with Raman imag-
ing microscopy (TLC-RIM) for rapid and specific detection of five estrogens added illegally
to dietary supplements.

After preliminary separation of E1, E2, E3, EE2, and DES by TLC, main spots on TLC
were observed and marked under 254 nm ultraviolet light. Then, estrogen in the spots was
concentrated with anhydrous ethanol on TLC for Raman spectroscopic analysis. Finally,
Raman images of estrogen was obtained by area scanning with 532 nm laser source under
microscope, and Raman spectrum of estrogen was obtained from the Raman images. Raman
spectrum of the test substance by the same method was obtained, and the Raman spectrum
was consistent with the Raman spectrum of the corresponding reference substance.

3. Results and Discussion
3.1. TLC Separation

The separation of five estrogens was carried out under the condition of the TLC
method as shown in Figure 1, the retardation factor (Rf) values of E1, E2, E3, EE2, and DES
were 0.73, 0.37, 0.29, 0.55, and 0.65, respectively.
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of characteristic peaks were obtained, except the relative peak intensity was slightly 
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peak intensity (1619 cm−1, 1612 cm−1) of E2 became weaker too; the characteristic peaks of 
EE2 changed from double peaks at 2113 cm−1 and 2102 cm−1 (powder) to a single peak at 
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TLC-RIM method has a good correlation with the spectra of the corresponding powder. 

Figure 1. Result of five estrogens (M: mixture reference solution).

3.2. The TLC-RIM Method

The estrogens on TLC were marked and concentrated under a 254 nm ultraviolet light,
then Raman Imaging Microscope and corresponding spectra were acquired, as shown in
Figure 2, respectively. The Raman spectrum of E1 was acquired as shown in the dark red
region, DES in blue, EE2 in red, E2 in green, and E3 in dark green.

All the estrogens could be distinguished in the imaging and corresponding Raman
spectra because Raman spectra can reflect the rich structural information of compounds.
Thus, the method (TLC-RIM) used for the five estrogens was a suitable method that is very
practical. The specificity could be further enhanced.
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Figure 2. Raman spectra (a), imaging (b), and TLC (c) of five estrogens in mixture by TLC-RIM.

3.3. Correlation between Raman Spectra of Reference Powders and the Spectra by TLC-RIM

The Raman spectra of estrogen powders were detected directly, the results are shown
in Figure 3. The Raman spectra were observed by TLC-RIM, as shown in Figure 2a.
Assignments of the Raman spectral characteristic peaks are shown in Table 1.

When the Raman spectra of reference substances detected by TLC-RIM were compared
with the spectra of the corresponding powders, almost the same Raman shifts (cm−1) of
characteristic peaks were obtained, except the relative peak intensity was slightly changed.
For example, the peak intensity (735 cm−1, 723 cm−1) of E1 became weaker; the peak
intensity (1619 cm−1, 1612 cm−1) of E2 became weaker too; the characteristic peaks of
EE2 changed from double peaks at 2113 cm−1 and 2102 cm−1 (powder) to a single peak
at 2111 cm−1 (TLC-RIM); the peak intensity of DES at 2960 cm−1, 2937 cm−1, 2913 cm−1,
and 2878cm−1 became stronger. Therefore, the Raman spectra of estrogens acquired by the
TLC-RIM method has a good correlation with the spectra of the corresponding powder.
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ν, stretching vibration; γ, out-of-plane bending vibration. Calculated the relative intensities of other peaks with
the peak of 3061 cm−1 as reference peak. The unique peaks are marked in red, and the peaks marked in blue are
those whose relative intensity or number of peaks had changed when measured by TLC-RIM method.
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3.4. Analysis of Characteristic Peaks of Estrogens

The detection results and the characteristic peaks of each estrogen are summarized in
Table 1.

Common characteristic peaks: the chemical structures of five estrogens all con-
tain methyl, methylene, and benzene rings, so there are some common characteristic
peaks in their Raman spectra, such as νCH (2960~2853 cm−1), ν=CH within phenyl rings
(3060 cm−1), νC=C within phenyl rings (1622~1586 cm−1), and γ=C-H within phenyl rings
(821~716 cm−1).

The structures of E1, E2, E3, and EE2 are similar: they are all steroid hormones, except
DES. There are three substituents on the benzene ring (1, 2, 4-substitution) of the steroid
hormones, and two related peaks (733~716 cm−1) of the =CH stretching vibration in the
Raman spectra. There are two substituents on the benzene ring (para-substitution) of DES,
and only one related peak (821~819 cm−1) of the =CH stretching vibration. The steroid
hormones have a higher number of -CH (methyl, methylene) bonds and lower number
of =CH bonds than DES, so the peak intensity of the steroid hormones at wavenumber
2964~2853 cm−1 is higher than that at 3060 cm−1, while DES is the opposite. In addition,
there is only one benzene ring in steroid hormones, so its peak heights (ν-C=C within phenyl
rings) are lower; there are two benzene rings in the structure of DES, so their peak heights
are higher.

Unique characteristic peaks: The peak from νC=O at 1709 cm−1 is unique to E1, the
peak from νC≡CH at 2111 cm−1 is unique to EE2. The peak from νC=C (symmetric vibration)
at 1629 cm−1 is a symbol of DES. Due to the existence of the C=C structure between the two
benzene rings in DES, the conjugated system is extended, resulting in the peak from νC=C
in a higher Raman shift (blue shift); the peak at 1629 cm−1 appears when the molecules are
connecting with each other through phenolic hydroxyl groups; the peak becomes a very
strong peak due to the resonance Raman effect.

3.5. Experiment of Simulated Positive Samples

Reference substance solutions, simulated positive samples, and negative sample solu-
tion of 10 µL were deposited onto the GF254 thin layer plate, respectively. The experiment
was carried out by the TLC-RIM method, and the result was shown as follows: The major
spots of the simulated positive sample were at the same position with the corresponding
reference substance on TLC when no spots were observed in the negative sample on the
TLC in Figure 4a. The preliminary result indicated that matrix compositions in Ganoderma
lucidum spore powder did not interfere with the observing of estrogens on the TLC. At the
same time, the Raman spectra of the simulated positive samples were also in accordance
with the corresponding reference substances when no Raman signal was detected in the
negative sample in Figure 4b. The result further confirmed that the matrix in the real
sample did not interfere with the detection of estrogens that were added.
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3.6. Detection of the Limit of Detection

Reference substance (E1, E2, E3, EE2, and DES) solutions were diluted with anhydrous
ethanol at a concentration of 0.1~1.2 mg/mL, respectively. Estrogen solutions of 10 µL of
different concentrations were deposited onto GF254 thin layer plates, respectively, and the
corresponding Raman spectra were detected; the results are shown in Figure 5. The limit of
detection (LOD) was defined as the estrogen concentration for which the signal-to-noise
ratio was greater than or equal to 3 (S/N ≥ 3); the signal peaks of the estrogens were:
1709 cm−1 (E1), 3060 cm−1 (E2), 2111 cm−1 (EE2), 3060 cm−1 (E3), and 1629 cm−1 (DES).
The results are shown in Figure 5f. The LOD of E1, E2, EE2, E3, and DES were 0.4 mg/mL
(S/N = 3.8), 1.0 mg/mL (S/N = 3.3), 0.2 mg/mL (S/N = 3.3), 0.8 mg/mL (S/N = 3.9), and
0.2 mg/mL (S/N = 4.5), respectively. When the solution of each concentration was detected
repeatedly three times (n = 3), the relative standard deviation (RSD) values of each signal
peak were 1.6~11.1%, 1.6~10.4%, 2.8~13.2%, 1.3~4.6%, and 0.6~10.1%, respectively.
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Figure 5. Raman spectra (a–e) and LOD (f) of five estrogens.

It should be emphasized that the increase in S/N was more significant after the
concentration of DES exceeded 0.6 mg/mL (Figure 5f), and the characteristic peaks of DES
were significantly enhanced (Figure 5e). When the concentration was less than 0.6 mg/mL,
although the S/N also increased slightly with the increase in the concentration, the increase
rate was slower. The reason for this phenomenon was considered to be as follows: when the
concentration of DES reaches a certain value, molecules are connected to each other through
phenolic hydroxyl groups, and the conjugated chain is extended, then the resonance Raman
effect results in a significant enhancement of the characteristic peaks of the Raman spectrum.

A comparison of the LOD with potentially abused estrogen doses in BDS is shown in
Table 2, and the results show that the LOD is less than or equal to the potentially abused
estrogen doses in BDS. Therefore, TLC-RIM is suitable for detecting estrogen that may be
illegally added in BDS.

Table 2. The comparison of LOD with potentially abused estrogen doses in BDS.

Drugs
The minimum Therapeutic
Dosage in Oral Medications

(mg/a Day)

Potentially Abused
Dosages of Drugs in BDS

(mg/a Single Dose)

The Possible Concentration of
the Drug in Sample Solution

(mg/mL)

LOD
(mg/mL)

E1 1 1 10 0.4
E2 1 1 10 1.0
E3 1 1 10 0.8

EE2 0.02 0.02 0.2 0.2
DES 0.25 0.25 2.5 0.2

3.7. Detection of Real Samples

A reference substance solution of 10 µL and three real sample solutions of 10 µL were
deposited onto the same GF254 thin layer plate, respectively. There was no spot in sample 2
or sample 3 observed on the TLC in Figure 6a; none of the estrogens added illegally were
found in the samples. There was only one spot in sample 1 at the same position as the
reference substances (EE2) on the TLC; however, the Raman spectrum of the compound
in the spot was different from EE2 in Figure 6b. The characteristic peak (2111 cm−1) from
νC≡CH was also not found in the spectrum. This phenomenon showed that there was no
EE2 added illegally found in sample 1, further proving that the specificity of the method
(TLC-RIM) was stronger than that of TLC. The above experimental results of the three
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samples were the same as those of UPLC–MS/MS, which indicated that the method is
accurate and reliable.
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Figure 6. TLC (a) and Raman spectra (b) of real samples by TLC-RIM. (S1, S2, and S3: sample 1,
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4. Conclusions

This study established a method (TLC-RIM) for the separation and detection of estro-
gens in BDS, which has high sensitivity, good stability, and strong specificity. In addition,
the method is also simple and fast.

Raman spectra of five estrogens acquired by TLC-RIM had a good correlation with the
corresponding spectra of the powder. It was shown that there are common characteristic
peaks of the five estrogens, such as νCH (2960~2853 cm−1), ν=CH within phenyl rings
(3060 cm−1), νC=C within phenyl rings (1622~1586 cm−1), and γ=C-H within phenyl rings
(821~716 cm−1), and there are also unique characteristic peaks from each estrogen, such
as νC=O at 1709 cm−1 (E1), νC≡CH at 2111 cm−1 (EE2), and νC=C at 1629 cm−1 (DES).
By a simulated positive test, taking Ganoderma lucidum spore powder as an example,
it was confirmed that the matrix components in a real sample would not interfere with
the detection of estrogen. The experimental results of three real samples further proved
that the specificity of the method (TLC-RIM) is stronger than that of TLC, and the results
were verified by UPLC–MS/MS, indicating that the method is accurate and credible. In
conclusion, this method can provide a new reference for the rapid detection technology
research of illegally added chemical components in BDS.
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