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Abstract: Methotrexate (MTX) is one of the most widely used cytotoxic chemotherapeutic agents,
and it is used in the treatment of different autoimmune disorders. However, the clinical applications
of MTX are limited by its hepatic toxicity. Hence, the present study was conducted to evaluate the
efficacy of fasudil (Rho-Kinase inhibitor) in the amelioration of MTX hepatotoxicity and the possible
underlying mechanisms. Experimentally, 32 male Sprague Dawley rats were used and divided into
four groups: control, MTX (20 mg/kg, i.p., single dose), fasudil (10 mg/kg/day i.p.) for one week,
and fasudil plus MTX. It was found that MTX significantly induced hepatitis and hepatocellular
damage, as shown by abnormal histological findings and liver dysfunction (ALT and AST), with
up-regulation of the inflammatory mediators NF-κB-p65 and IL-1β. Moreover, MTX remarkably
disrupted oxidant/antioxidant status, as evidenced by malondialdehyde (MDA) up-regulation asso-
ciated with the depletion of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH)
levels. Moreover, MTX reduced the hepatic expression of B-cell lymphoma 2 (Bcl-2). On the contrary,
the i.p. administration of fasudil significantly ameliorated MTX hepatotoxicity by histopatholog-
ical improvement, restoring oxidant/antioxidant balance, preventing hepatic inflammation, and
improving the hepatic anti-apoptotic capability. Furthermore, fasudil hepatic concentration was
determined for the first time using the validated RP-HPLC method. In conclusion, the present
study revealed that fasudil has a reliable hepatoprotective effect against MTX hepatotoxicity with
underlying antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. It also introduced a new
method for the determination of fasudil hepatic tissue concentration using the RP-HPLC technique.

Keywords: MTX hepatotoxicity; rho-kinase inhibitor; hepatic concentration; RP-HPLC technique

1. Introduction

Methotrexate (MTX) acts as an antifolate and antimetabolite, which is used extensively
in the treatment of different cancerous diseases [1]. MTX, used in different autoimmune
and inflammatory diseases, has shown a potent immunomodulatory effect [2]. MTX acts
by blocking dihydrofolate reductase, which inhibits folate metabolism and the synthesis
of purines and pyrimidines, resulting in decreased RNA and DNA synthesis. It has been
reported that MTX administration leads to serum elevation of aminotransferase and has
been linked to the induction of liver diseases such as liver fibrosis and cirrhosis [3].

Different regimens using MTX in humans are classified as high-dose, intermediate,
or low-dose according to the type of cancer and route of drug administration [4]. MTX
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administration in high doses (20 mg/kg) can result in a significant elevation of alanine
transaminase (ALT) and aspartate transaminase (AST) serum levels up to 10 to 20 times
the upper limits [5]. On the other hand, with long-term administration (1–12 months) of
MTX, the development of hepatitis, fatty liver, hepatic fibrosis, portal hypertension, and
symptomatic cirrhosis has been demonstrated [6–8]. The mechanism of hepatic injury
may be related to the accumulation of MTX in tissue and the inhibition of RNA and DNA
synthesis in hepatic cells, producing cellular arrest [9]. MTX treatment increases hepatic
stellate cells, but the mechanism underlying its fibrotic effect has not been elucidated [10,11].

Various studies have demonstrated the role of reactive oxygen species (ROS) genera-
tion in the initiation of MTX hepatotoxicity. Thus, it was found that the excessive generation
of reactive oxygen and nitrogen species (ROS/RNS) combined with the reduction in antioxi-
dant defense enzymes promotes the development of hepatocellular damage [12]. Moreover,
recent studies have clarified the role of inflammatory mediators such as tumor necro-
sis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in mediating MTX
hepatocellular damage [13–15].

On the other hand, Rho-kinase acts as a molecular control of several important cellular
functions, such as actin cytoskeleton organization, ROS formation, cellular adhesion and
apoptosis [16,17], cytokinesis and oncogenic transformation, and other factors that may be
involved in the pathogenesis of hepatic injury. Interestingly, Rho-kinase inhibitors were
effective in the amelioration of reperfusion injury in the liver and heart [18,19]. In addition,
accumulated evidence demonstrated that ROS activates the Rho/ROCK pathway, and
the inhibition of that pathway produces anti-inflammatory effects [20,21]. Additionally,
pleiotropic properties [22,23] such as the anti-oxidant and anti-inflammatory functions of
statins are thought to be conducted through the inhibition of the ROCK pathway [19,24]. It
has been reported that fasudil exhibited therapeutic potential against liver fibrosis [25,26],
cardiac toxicity [27], nephrotoxicity [28], and brain injury [29].

Herein, the present study was conducted to investigate Rho-kinase pathway inhibition
using fasudil as a target in the development of a new approach to ameliorate MTX-induced
hepatotoxicity. Moreover, a novel method used in the determination of hepatic tissue
concentration of fasudil was elucidated.

2. Results
2.1. Chromatographic Method Validation for Fasudil Tissue Concentration

To create a sensitive and accurate HPLC method for the quantitation of fasudil, the
mobile phase parameters were enhanced to produce symmetric and sharp peaks. After
several attempts, an optimum mobile phase was established, which was composed of
15% methanol/85% water containing 10 mM SDS and 20 mM ammonium acetate, and the
column temperature was set at 35 ◦C. The chromatogram is shown in Figure 1, where the
retention time of fasudil was obtained at 2.12 min. The developed method was validated
concerning ICH guidelines regarding linearity, accuracy, precision, the limit of detection
(LOD), and the limit of quantitation (LOQ) (Tables 1–3). The system suitability criteria for
the developed method such as the tailing factor, asymmetry factor, number of theoretical
plates, and the height equivalent to a theoretical plate (HETP) were evaluated (Table 4).
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Figure 1. Representative RP-HPLC chromatogram of fasudil (2.12 min, 3.0 μg/mL) under optimized 
conditions. 
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Figure 1. Representative RP-HPLC chromatogram of fasudil (2.12 min, 3.0 µg/mL) under optimized
conditions.

Table 1. Summary of the HPLC method development.

Parameter Value

λmax 275 nm

Retention time (min) 2.12

Linearity range (µg/mL) 1.0–12.0

LOD (µg/mL) 0.057

LOQ (µg/mL) 0.191

Regression equation Y = a + bx

Slope 121.02

Intercept −5.70

Correlation coefficient 0.999

Table 2. Accuracy results for fasudil in the standard solutions.

Standard Solution
(µg/mL) (n = 3) Found % Recovery Mean ± SD RSD (%)

1

0.9938 99.38

0.993 ± 0.094 0.940.9836 98.36

1.0024 100.24

6

6.0012 100.02

6.03 ± 0.85 0.856.0612 101.02

5.9592 99.32

12

12.2436 102.03

12.04 ± 1.45 1.4411.9232 99.36

11.964 99.71
SD = standard deviation; RSD = relative standard deviation.
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Table 3. The precision of the proposed HPLC method.

Standard
Solution
(µg/mL)

Intra-Day Precision
Mean ± RSD

Inter-Day Precision
Mean ± RSD

Found % Recovery Found % Recovery

1
0.9919 99.19

0.994 ± 0.30
0.9929 99.29

0.997 ± 0.570.9935 99.35 1.0041 100.41

0.9978 99.78 0.9967 99.67

6
5.8974 98.29

5.95 ± 0.82
5.9832 99.72

5.96 ± 0.715.979 99.65 5.9154 98.59

5.9862 99.77 5.9928 99.88

12
12.0372 100.31

12.07 ± 0.41
11.8764 98.97

11.98 ± 1.4112.054 100.45 11.9016 99.18

12.132 101.1 12.1812 101.51

Table 4. System suitability criteria for the determination of fasudil by the HPLC method.

Parameters FDL Acceptable Limits

Asymmetry factor 1.06 <1.5

Tailing factor 1.25 <2

Theoretical plates (m) 4651 <2000

HETP (cm) 0.0322

In the present study, the fasudil concentration in the hepatic tissue homogenate was
found at 5.32 ± 1.5 µg/g proteins in the fasudil group, while the MTX + fasudil group
showed a higher concentration of fasudil as it was found at 6.91 ± 1.33 µg/g proteins. These
results suggested that the co-administration of MTX with fasudil significantly (p > 0.05)
increased the concentration of fasudil in hepatocytes against the administration of fa-
sudil alone.

2.2. Effect of Fasudil on Hepatic Enzymes and Lipid Peroxidation after MTX Challenge

The i.p. administration of MTX significantly (p < 0.05) induced hepatic injury charac-
terized by marked elevation of the hepatic MDA concentrations (2.95 nmol/mg protein) ac-
companied by an elevation of the hepatic enzymes ALT (74 U/L) and AST (95.6 U/L) serum
concentrations compared to the control group (1.57 nmol/mg protein) for MDA, (21.5 U/L)
for ALT, and (28.75 U/L) for AST (Figure 2). However, the concomitant administration
of fasudil with MTX significantly (p < 0.05) attenuated the MTX hepatic tissue-damaging
effect with 2.25 nmol/mg protein for MDA, 40 U/L for ALT, and 57.25 U/L for AST, though
the i.p. administration of fasudil for seven consecutive days did not produce significant
changes in the formerly mentioned parameters compared to the control group (Figure 2).

2.3. Effect of Fasudil on Hepatic Aberrations Induced by MTX Injection

The hepatic tissue of the control and fasudil groups showed normal cellular architec-
ture with hepatocytes in normal arrangement. On the other hand, the hepatic tissue of the
MTX group showed different histopathological changes, including hepatic lobular changes
with hepatocyte degeneration and congestion with inflammatory cell infiltration. However,
the histopathological lesions in MTX + fasudil groups were notably ameliorated compared
to the MTX group with mild inflammatory cell infiltration and congestion (Figure 3).
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Figure 2. Effect of fasudil on hepatic enzymes and lipid peroxidation after MTX challenge: (A) serum
ALT; (B) serum AST; (C) hepatic content of MDA. Results are presented as mean ± SEM (n = 8);
a: significant difference from the control group (p < 0.05); b: significant difference from the MTX
control group (p < 0.05). **** p < 0.0001. NS, non-significant.
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Figure 3. Fasudil ameliorated MTX-induced hepatic histopathological aberrations. Routine staining
(hematoxylin and eosin (H&E) stain, ×400) was conducted to examine control, MTX, fasudil, and
MTX + fasudil groups. Arrows mark hepatic changes, including hepatocyte degeneration and
congestion with inflammatory cell infiltration. Scale bar = 50 µm.
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2.4. Effect of Fasudil on the Hepatic GSH Content as well as Antioxidant Enzyme Activity

The i.p. administration of MTX by a 20 mg/kg dose significantly (p < 0.05) decreased
the GSH content of the hepatic tissue (7.3 ± 0.45 µmol/mg protein) compared to the control
group (14.23 ± 1.33 µmol/mg protein). On the other hand, the i.p. administration of fasudil
could restore GSH hepatic contents (10.87 ± 0.98 µmol/mg protein) and ameliorate MTX
depleting effects, while the i.p. administration of fasudil to control animals did not produce
any significant changes in the hepatic GSH concentrations (Figure 4).
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Figure 4. Effect of fasudil on the hepatic GSH content as well as antioxidant enzyme activity:
(A) hepatic GSH content; (B) hepatic SOD activity; (C) hepatic catalase activity. Results are presented
as mean ± SEM (n = 8); a: significant difference from the control group (p < 0.05); b: significant
difference from the MTX group (p < 0.05). **** p < 0.0001. NS, non-significant.

In the present study, the hepatic tissue concentrations of SOD and catalase in the con-
trol group were found (28 U/mg protein and 1.57 U/mg protein, respectively), whereas the
i.p. administration of MTX produced a significant (p < 0.05) reduction of both enzymes to
19.12 U/mg protein and 0.73 U/mg protein, respectively. However, the i.p. administration
of fasudil in combination with MTX could significantly attenuate the MTX depleting effect
on these antioxidant enzymes concentrations, namely, 19.12 U/mg protein for SOD and
0.73 U/mg protein for catalase (Figure 4).

2.5. Effect of Fasudil on IL-1β Expression

The i.p. administration of MTX produced a significant elevation of the inflammatory
mediator IL-1β up to 191.12 pg/mg protein compared to 94.87 pg/mg protein for the
control group, which was significantly attenuated by i.p. administration of fasudil when
combined with MTX (127.87 pg/mg protein), while the i.p. administration of fasudil did
not produce any significant change in the IL-1β compared to the control group (Figure 5).
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Figure 5. Effect of fasudil on IL-1β expression. Results are presented as mean ± SEM (n = 8);
a: significant difference from the control group (p < 0.05); b: significant difference from the MTX
group (p < 0.05). **** p < 0.0001. NS, non-significant.

2.6. Effect of Fasudil on NF-κB-p65 and Bcl-2 Expressions

As shown in Figure 6, the distribution of NF-κB-p65 inside hepatic tissue using the
immunostaining technique showed that MTX significantly up-regulated NF-κB-p65 ex-
pression compared to the control group, whereas fasudil i.p. administration significantly
reduced NF-κB-p65 tissue up-regulation induced by MTX. On the other hand, fasudil
administration didn't produce any change in the NF-κB-p65 expression compared to the
control group. Moreover, hepatic tissue immunostaining for the detection of Bcl-2 distri-
bution showed that MTX significantly down-regulated Bcl-2 distribution and expression
compared to the control group. On the other hand, fasudil treatment significantly amelio-
rated the MTX-depleting effect on Bcl-2, and treated animals showed up-regulation of Bcl-2
compared to the MTX-treated group (Figure 7).
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Figure 6. Effect of fasudil on NF-κB-p65 immunostaining protein expression after MTX-challenge
(IHC ×400). Arrows indicate the localization and expression of NF-κB-p65 in hepatic sections.
Scale bar = 200 µm. The bar graph represents the quantitative determination of NF-κB-p65 protein
expression in different groups (n = 6); a: significant difference from the control group (p < 0.05); b:
significant difference from the MTX group (p < 0.05). *** p < 0.001. **** p< 0.0001. NS, non-significant.
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400). Arrows indicate the localization and expression of Bcl-2 in hepatic sections. Scale bar = 200 µm.
The bar graph represents the quantitative determination of Bcl-2 protein expression in different
groups (n = 6); a: significant difference from the control group (p < 0.05); b: significant difference from
the MTX group (p < 0.05). ** p < 0.05. **** p < 0.0001. NS, non-significant.
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3. Discussion

Methotrexate (MTX) is a folate antagonist with immunomodulatory effects, which has
been used extensively in the treatment of different autoimmune and cancerous diseases [2],
but due to its severe toxicity (mainly hepatotoxicity), its clinical applications are limited.
Therefore, the present study examined Rho-associated kinase (ROCK) pathway inhibition
using fasudil as a new modality to attenuate MTX hepatotoxicity, which could increase
MTX clinical applications and enhance patient tolerance.

MTX in low doses can induce changes in the histology of the liver, and in the long
run it can produce a different type of hepatotoxicity. On the other hand, high-dose ad-
ministration, as in leukemia, can result in severe hepatic tissue damage and elevation of
the hepatic enzymes with progressive fibrosis and cirrhosis [10,30]. In the present study
MTX prominently induced histopathological changes and hepatic tissue injury as found by
histopathological examination. This was in agreement with preceding studies [8], which
found that MTX can induce hepatic lesions, such as focal fibrosis, congestion, and dilatation
of sinusoids with fatty vacuolation, and portal vein inflammation [31], which could be
recognized, as the liver is the major site of MTX metabolism into the toxic agent 7-hydroxy-
MTX, and the MTX can be stored inside hepatocytes in polyglutamated form, leading to
hepatotoxicity [32,33].

On the other hand, in the present study, it was found that the i.p. administration
of fasudil could significantly ameliorate the MTX injurious effect on the hepatic tissue,
which could be attributed to ROCKs inhibition. Hence, ROCKs are considered the major
regulator of tissue responses to injury, and fasudil, a ROCK inhibitor, and its metabolite
hydroxyfasudil selectively inhibit ROCKs by competing with ATP for binding to the
kinase, with minimal effects on other intracellular signaling pathways [34] in addition to
antioxidant and anti-inflammatory properties [35].

The mechanism of MTX-inducing hepatotoxicity is not fully elucidated, and it can
somewhat be attributed to oxidative stress generation [36]. Hence, different reports stated
that MTX administration results in antioxidant enzyme depletion and free radical gener-
ation [12,37], which was in agreement with our findings. In the present study, we found
that the i.p. administration of MTX significantly decreased the antioxidant enzymes SOD
and catalase concentrations with depletion of hepatocellular GSH stores compared to the
normal group. Hence, we used fasudil to ameliorate these effects, and we found that
fasudil noticeably ameliorates the depleting effect of MTX on SOD and catalase enzymes
and protected the hepatic GSH stores from diminution, assuming that Rho-ROCK pathway
inhibition using fasudil has a hepatoprotective effect by amelioration of the oxidative stress
inside hepatic tissue. This was in agreement with former studies, which found that the
abnormal activation of the Rho/ROCK pathway was involved in different metabolic disor-
ders, including oxidative stress, and the inhibition of Rho-ROCK pathway can diminish
the oxidative stress [38].

Studies have reported that MTX administration could inhibit the cytosolic nicoti-
namide adenosine diphosphate (NADP)-dependent dehydrogenases and other cellular
antioxidants [39,40]. NADPH is required to maintain the reduced state of cellular glu-
tathione and protects against free radical generation, which is involved in the damage of
biomolecules, such as lipids, leading to MDA upregulation [41]. In the present study, MTX
significantly upregulated MDA hepatic tissue concentrations compare to the normal group,
whereas the i.p. administration of fasudil remarkably attenuated the MDA upregulation by
MTX, preserving the hepatocellular structure integrity, which confirms the hepatoprotec-
tive properties of fasudil. Furthermore, we found that the i.p. administration of fasudil
ameliorated MTX hepatic enzyme (ALT and AST) upregulation, which was consistent with
other studies’ findings [42].

RhoA can modulate several cellular functions including monocyte/macrophage
chemotaxis, adhesion, and proliferation [43]. RhoA can activate the NF-κB-p65 inflamma-
tory pathway, indicating its potential role in the inflammatory process [44]. In the present
study, we examined the fasudil attenuation effect on the inflammatory process induced
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by MTX as a proposed hepatoprotective mechanism, and we found that fasudil could
significantly attenuate the inflammatory mediators NF-κB-p65 and IL-1B upregulation
produced by MTX administration, as presented by immunohistochemistry and biochemical
analysis, respectively.

Researchers have found that the inhibition of the Rho/ROCK signal pathway can
increase anti-apoptotic family members’ tissue concentrations [45], and the inhibition of
ROCK by Y-27632 resulted in the upregulation of the anti-apoptotic protein (Bcl-2) and
downregulation of the pro-apoptotic proteins [46], and it was reported that the inhibition
of the ROCK pathway using fasudil decreased the number of apoptotic cells in cases of
myocardial ischemic reperfusion injury [47], which agreed with our findings. Thus, we
found that fasudil could significantly ameliorate Bcl 2 protein depletion by MTX, indicating
the ability of fasudil to protect hepatocytes against apoptosis and degradation.

Furthermore, the present study introduced a new validated method for the detection
and determination of fasudil concentration inside hepatic tissue, and we found that the
MTX combined administration with fasudil significantly increased concentrations of the
hepatic tissue content of fasudil compared to the fasudil only treated group, which could be
attributed to decreased metabolic capacities of the liver due to MTX hepatotoxicity, leading
to fasudil accumulation, increasing the fasudil protective effect by upregulating its hepatic
concentrations.

4. Materials and Methods
4.1. Drugs, Reagents, and Chemicals

Fasudil and MTX were purchased from Sigma-Aldrich, St. Louis, Missouri, USA.
Carbon tetrachloride (CCl4) and thiobarbituric acid (TBA) were purchased from Merck,
Darmstadt, Germany. Methanol and sodium dodecyl sulfate were purchased from Thermo
Fisher Scientific, Waltham, Massachusetts, USA, and Milli-Q water used to prepare buffer
solutions was obtained by a Millipore® purification system (Merck, Bedford, MA, USA).
Other chemicals and reagents were of high analytical grade and certified sources.

4.2. Animals

Thirty-two adult male Sprague Dawley rats (130–150 g, 12–15 weeks) were used.
Animals were kept under standard laboratory conditions of 12 h light/12 h dark cycle and
25 ± 2 ◦C (2 animals per cage), and they were fed standard rat chow (not less than 19%
protein, 6% fiber, 3.5% fat, and 6.5% ash; EL Nasr Chemical Company, Abou-Zaabal, Cairo,
Egypt) and water ad libitum. Animals were obtained from the Helwan animal breeding
house, Cairo, Egypt. All animal treatments and procedures were conducted according
to the ethical committee of the Faculty of Pharmacy at South Valley University (P.S.V.U
012/21), which complies with the ARRIVE guidelines and the EU Directive 2010/63/EU
for animal experiments.

4.3. Study Design

Experimentally, rats were randomly divided into 4 groups (8 rats/group) as follows:
Group I, control animals, received 0.5 mL saline/rat i.p. for seven consecutive days.
Group II rats received an i.p. injection of fasudil (10 mg/kg/day) for seven consecutive
days [48,49]. Group III rats received an i.p. injection of MTX (20 mg/kg) as a single
dose [50,51]. Group IV rats received MTX (20 mg/kg, i.p.) as a single dose followed by
fasudil (10 mg/kg/day, i.p.) for seven consecutive days.

After 24 h fasting from the last dose, rats were sacrificed (9:00 a.m.) under ketamine
anesthesia (50 mg/kg, i.p.), and blood samples were collected from the inferior vena cava
and cooled and centrifuged at 4000 rpm for 15 min. Sera were collected and refrigerated
at −20 ◦C for biochemical analysis. The animals’ livers were rapidly dissected from
each animal and washed using ice-cold saline, and then a portion of the hepatic tissue
was taken from all animals and homogenized using 100 mmol KH2PO4 buffer solution,
cooled, and centrifuged at 3000 rpm for 15 min to produce 10% homogenate. At the
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end of centrifugation, the supernatants were kept at −80 ◦C for further analysis. The
remained portions of the hepatic tissues were stored in 10% formalin-buffered saline for
histopathological and immunohistochemical examination.

4.4. Development of the Chromatographic Method
4.4.1. Instrumentation

The chromatographic system consisted of a 1260 Infinity LC system (Agilent Technolo-
gies, Inc., Santa Clara, CA, USA) equipped with a binary pump and a DA detector.

4.4.2. Preparation of Standard Solutions

A methanolic stock solution of fasudil was prepared to obtain a concentration of
25.0 mg/mL. Working standard solutions were freshly prepared by further dilution of
the aliquots of the stock solution with the mobile phase to obtain concentrations of
1.0–12.0 µg/mL for fasudil.

4.4.3. Chromatographic Conditions

The chromatographic separation of fasudil was performed using a Symmetry C18
column (150 mm × 4.6 mm, 5 µm particle size). The mobile phase consisted of a mixture
of methanol/water containing 20 mM of ammonium acetate and 10 mM SDS in a 15/85
v/v ratio. Fasudil was eluted by an isocratic technique at a flow rate of 0.5 mL min−1; the
column temperature was 35 ◦C, the detection wavelength was measured at λ = 275 nm,
and the injection volume was 20 µL. Several chromatographic conditions were examined,
optimized, and validated following ICH guidelines [52].

4.4.4. Calibration Curve of Fasudil in Hepatic Tissue Homogenate

Appropriate volumes of working standard solution of fasudil were added to an aliquot
of hepatic tissue homogenates (free from fasudil, obtained from the control animal group).
The mixtures were vortex-mixed (for 3 min) and centrifuged at 6000 rpm (for 5 min) at
room temperature. From the clear supernatant, 20 µL was injected into the HPLC system
for analysis.

4.5. Histopathological and Immunohistochemical Examination

At room temperature, hepatic tissue snaps were successfully fixed in 10% formalin-
buffered saline for 24 h. Liver snaps were terminated, washed, treated with different grades
of alcohol, and sectioned with a thickness of 5 µm using a microtome. Then, the sections
were deparaffinized using xylene and routinely stained with hematoxylin and eosin (H&E)
following the standard procedures [53]. In addition, immunopositive slide sections were
conducted for the immune detection of NF-κB-p65 [54] and Bcl-2 [55] according to the
standard immunohistochemical procedure. Quantification of immunopositivity expression
of NF-κB-p65 and Bcl-2 was conducted using ImageJ® software (National Institutes of
Health, Bethesda, USA) according to the previously reported investigation [56].

4.6. Biochemical Investigations
4.6.1. Total Protein

Hepatic tissue total protein concentration was determined by the Bradford technique [57].

4.6.2. Liver Enzymes

Rat sera were used for the estimation of ALT and AST concentrations using the
available commercial kits (Biodiagnostics, Cairo, Egypt) following the manufacturer’s
instructions [58].



Pharmaceuticals 2022, 15, 1436 12 of 15

4.6.3. Superoxide Dismutase (SOD) Activity

The hepatic activity of SOD was measured kinetic spectrophotometrically using the
SOD activity kit (Biodiagnostics, Cairo, Egypt) following the manufacturer’s protocol.
Absorbance was measured at 440–460 nm using the ELISA reader.

4.6.4. Catalase Activity

Samples of hepatic tissue homogenate were used for catalase activity determination
using the catalase activity kit purchased from Biodiagnostics, Cairo, Egypt, and following
the manufacturer’s protocol. Samples were treated using triton X-100 for solubilization
of the enzyme before the assay, and the enzyme concentration was assayed using a spec-
trophotometric procedure based on the disappearance of hydrogen peroxide, whereas the
activity of the enzyme was expressed as units/mg protein [59].

4.6.5. Malondialdehyde (MDA) Content

Lipid peroxidation was determined in the hepatic tissue by measuring the MDA
content. The method was a spectrophotometric assay based on the reaction between MDA
and thiobarbituric acid at 95 ◦C in an acidic medium, producing a pink color, and its
absorbance was determined at 532 nm [60].

4.6.6. Proinflammatory Marker, IL-1β

The concentration of IL-1β was quantified in the collected serum using an IL-1β ELISA
kit specific for rats following the manufacturer’s protocols [61].

4.6.7. Statistical Analysis

GraphPad Prism software (version 9.2.0) was used for the statistical analysis of the
present results. Results were expressed as means ± standard errors of the means (SE) of 8
variables. One-way analysis of variance (ANOVA) was used for statistical analysis between
different groups followed by the Tukey–Kramer test to compare the mean of each group.
The results were considered statistically significant when p < 0.1.

5. Conclusions

In conclusion, the present study introduced fasudil as a potent hepatoprotective agent
against hepatic injury produced by MTX, with underlying mechanisms as an effective
anti-inflammatory (IL-1β and NF-κβ inhibition), antioxidant (SOD, catalase, and GSH
upregulation), and anti-apoptotic (Bcl-2 up-regulation) drug, which may widen the clinical
applications and decrease the toxicity to one of the most potent immune suppressants and
anticancer drugs (MTX), increasing its therapeutic usefulness.
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acid on methotrexate-induced damage in liver and kidney of rats. Environ. Toxicol. Pharmacol. 2015, 39, 1122–1131. [CrossRef]
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