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Abstract: Twenty-six known compounds and two new compounds, including a new lignan, 
(7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1), and a new indole alkaloid, 
hygarine (2), were isolated from the extracts of Hygroryza aristata (Gramineae). The 
structures of all compounds were elucidated on the basis of NMR spectral analysis. The 
compounds (-)-epigallocatechin-3-O-gallate (4) and (-)-epicatechin-3-O-gallate (5) possess 
free radical scavenging activities and compound 1 could inhibit superoxide anion 
generation and elastase release by fMLP/CB-induced human neutrophils with IC50 values 
of 19.33 ± 0.86 and 24.14 ± 1.59 μM, respectively.  
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1. Introduction 

Hygroryza aristata (Gramineae) is a stoloniferous perennial plant widely distributed in tropical 
Asia [1]. This plant grows in paddy fields and ponds at 400–800 meters above sea level, often forming 
floating clusters in lakes and slow-flowing rivers, and is a forage favored by cattle. Nevertheless, to 
our knowledge the chemical and biological activities of this plant have not been reported previously. 
In the search for biologically active constituents from natural sources, we determined that the 
methanolic extract of this plant was able to scavenge DPPH free radicals. In the present study two new 
compounds, (7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1) and hygarine (2), were isolated 
together with 26 known compounds from the extracts of the H. aristata (Figure 1). Several of these 
compounds were evaluated for their antioxidant and anti-inflammatory activities. 

Figure 1. Structures of compounds 1–5. 
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2. Results and Discussion 

Compound 1 was obtained as a colorless syrup. Its IR spectrum exhibited hydroxyl and aromatic 
group absorption bands at 3,375 cm−1 and 1,517 cm−1, respectively. The UV spectrum revealed 
absorption maxima at 237 and 279 nm. The 1H-NMR data (Table 1) showed two typical 
1,3,4,5-tetrasubstituted phenyl ring protons at δ 6.75 and 6.79 (each 2H, s), one anomeric proton at δ 

4.23 (1H, d, J = 7.6 Hz) and four methoxyl groups at δ 3.87 (12H, s). Four methines at δ 2.34, 2.46, 
5.01, 5.10 and two methylenes at δ 3.62, 3.67, 3.74, 4.01 were observed in the 1H-NMR and HMQC 
spectra. The 13C signals at δ 66.0, 70.2, 73.9, 77.0, 104.3 and the coupling constant (J = 7.6 Hz) of 
anomeric proton suggested that 1 contained a β-D-xylose moiety.  
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Table 1. 1H- and 13C-NMR data for compound 1 (400 and 100 MHz in methanol-d4). 

Position δC δH 
1 133.2  

2, 6 103.9 6.75 (2H, s) 
3, 5 148.3  
4 135.2  
7 83.6 5.10 (1H, d, J = 8.4 Hz) 
8 50.9 2.34 (1H, m) 
9a 
9b 

68.6 3.62 (1H, m) 
4.01 (1H, dd, J = 10.0, 4.8 Hz) 

1’ 133.2  
2’, 6’ 104.0 6.79 (2H, s) 
3’, 5’ 148.4  

4’ 135.3  
7’ 83.3 5.01 (1H, d, J = 8.4 Hz) 
8’ 53.5 2.46 (1H, m) 
9’a 
9’b 

60.1 3.67 (1H, m) 
3.74 (1H, dd, J = 11.6, 4.4 Hz) 

3, 5, 3’, 5’-OCH3 55.9 3.87 (12H, s) 
Xyl-1 104.3 4.23 (1H, d, J = 7.6 Hz) 
Xyl-2 73.9 3.20 (1H, m) 
Xyl-3 77.0 3.31 (1H, m) 
Xyl-4 70.2 3.48 (1H, m) 
Xyl-5 66.0 3.20 (1H, m) 

3.84 (1H, dd, J = 6.4, 2.4 Hz) 
 
HMBC correlations between H-1’, H-2’, H-6’/C-7’ and H-1, H-2, H-6/C-7 indicated that the 

1,3,4,5- tetrasubstituted phenyl rings were connected to C-7’ and C-7, respectively (Figure 2). The 
3J-correlation signals between H-9 (δH 3.62, 4.01) and C-1” (δC 104.3) indicated the presence of a 
xylose unit attached at C-9.  

Figure 2. HMBC and NOE Correlations of compound 1. 
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The planar structure of 1 is similar to that of icariol A2-9-O-β-xylopyranoside [2,3]. In a NOESY 

experiment, H-8/ H-2, 6; H-8’/H-2’, 6’ and H-8/H-8’ NOE correlations were observed, revealing that 
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H-8, 8’ and the two phenyls are a syn conformation. Based on these results, we established the relative 
configuration of 1 as shown in Figure 2. Thus, the structure of compound 1 was determined to be 
(7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside. 

Compound 2 was obtained as a brown syrup with an elemental composition of C19H18N2O3, as 
determined by its HRFAB-MS ([M+1]+ m/z 323.3734). The IR spectrum of 2 displayed absorption 
bands from a hydroxyl group (3,404 cm−1) and an amide group (1,643 cm−1). In the UV spectrum of 2, 
absorption maxima were observed at 224 (sh), 288, and 312 (sh) nm, revealing that the compound has 
an indole skeleton [4].  

Table 2. 1H- and 13C-NMR data for compound 2 (400 and 100 MHz in acetone-d6). 

Position δC δH 
2 123.5 7.09 (1H, d, J = 2.4 Hz) 
3 112.1  
4 112.0 7.19 (1H, d, J = 8.4 Hz) 
5 111.9 6.70 (1H, dd, J = 8.4, 2.0 Hz) 
6 151.1  
7 103.0 7.03 (1H, d, J = 2.0 Hz) 
8 132.0  
9 128.8  
1’ 26.1 2.89 (2H, t, J = 7.6 Hz ) 
2’ 40.2 3.59 (2H, dd, J = 13.6, 7.6 Hz) 
1” 166.1  
2” 119.4 7.48 (1H, d, J = 16.0 Hz) 
3” 139.6 6.49 (1H, d, J = 16.0 Hz) 
4” 127.3  

5”, 9” 129.6 7.42 (2H, d, J = 8.4 Hz) 
6”, 8” 116.1 6.85 (2H, d, J = 8.4 Hz) 

7” 159.3  
1-NH  7.74 (1H, br.s) 
3’-NH  7.30 (1H, br.s) 
6-OH  8.86 (1H, br.s) 
7”-OH  9.75 (1H, br.s) 

 
In the 1H-NMR data of 2, shown in Table 2, the three mutually coupled aromatic protons at δ 6.70 

(1H, dd, J = 8.4, 2.0 Hz ), 7.03 (1H, d, J = 2.0 Hz ) and 7.19 (1H, d, J = 8.4 Hz) were assigned to H-5, 
H-7 and H-4 in the indole skeleton, respectively. The signal at δ 7.09 (1H, d, J = 2.4 Hz) was 
contributed by H-2 in the indole skeleton. In the aromatic region of the 1H-NMR spectrum, the signals 
at δ 6.85 (2H, d, J = 8.4 Hz) and 7.42 (2H, d, J = 8.4Hz) indicated the presence of a 1,4-disubstituted 
benzene ring, and trans-olefinic protons appeared at δ 6.49 (1H, d, J = 16.0 Hz) and 7.48 (1H, d,  
J = 16.0 Hz). Therefore, the combined data for compound 2 indicated the presence of a partial 
coumaric acid. Two methylene proton signals at δ 2.89 (2H, t, J = 7.6 Hz) and 3.59 (2H, dd, J = 13.6, 
7.6 Hz) correlated with the carbon signal at δ 26.1 (C-1’) and 40.2 (C-2’) in the HSQC experiment. 
The COSY spectrum of 2 showed two methylenes coupled with NH (δH 7.30). Thus, compound 2 
contains a partial NH-CH2-CH2 structure. The HMBC spectrum exhibited correlations between 
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H-1’/C-2, C-3 and C-9, H-2’/C-1” and C-1’, H-2”/C-1”, C-3”, and C-4” indocatimg the three 
aforementioned structures to be connected as shown in Figure 3. In addition, the presence of a 
carbonyl group in the coumaric acid moiety connected to NH with an amide bond was further 
confirmed by the fragment at m/z 147 in the FAB-MS spectrum. According to previous reports and the 
above NMR analysis, compound 2 was deduced to have the structure shown and it was  
named hygarine. 

Figure 3. Significant correlations observed in HMBC of compound 2. 
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Twenty-six known compounds, including N-p-coumarylanthranilic acid (3) [5], (-)-epigallo- 
catechin-3-O-gallate (4) [6], (-)-epicatechin-3-O-gallate (5) [7], L-tyrosine (6) [8], quercetin (7) [9], 
rutin (8) [9], kaempferol (9) [10], adenine (10) [11], adenosine (11) [11], inosine (12) [11], uracil (13) 
[12], uridine (14) [13], coumaric acid (15) [14], methyl coumarate (16) [15], ferulic acid (17) [16], 
n-hexacosyl ferulate (18) [17], vanillic acid (19) [18], p-hydroxybenzoic acid (20) [19], 2,6-di- 
methoxyquinone (21) [20], physcion (22) [21], cycloeucalenol (23) [22], squalane (24) [23], a 
β-sitosterol and stigmasterol mixture (25) [15], eicosanoic acid 2,3-dihydroxypropyl ester (26) [24], 
butcosanoic acid 2,3-dihydroxypropyl ester (27) [24] and sucrose (28) [25], were isolated and 
identified by comprehensive studies of their physical and spectral data.  

Figure 4. Effect of (7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1) and 
N-p-coumarylanthranilic acid (3) isolated from H. aristata on generation of superoxide 
anion (left) and elastase release (right) in fMLP/CB-activated human neutrophils. 
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All data are expressed as mean ± S.E.M. (n = 3). *P < 0.05, ***P < 0.001 compared with the control value. 
 
Among all these compounds, several were evaluated for their antioxidant and anti-inflammatory 

activities. The inhibitory activity of (7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1) and 
N-p-coumarylanthranilic acid (3) against the inflammatory response in human neutrophils was 
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investigated. Compound 1 showed moderate anti-inflammatory activities and further, it inhibited 
superoxide anion generation and elastase release by fMLP/CB-induced human neutrophils, with IC50 
values of 19.33 ± 0.86 and 24.14 ± 1.59 μM, respectively (Figure 4). In addition, the n-butanol soluble 
layer of the H. aristata methanolic extract was found to be a powerful scavenger of DPPH free radicals 
(Figure 5). In further bioactivity-guided investigation of the butanol layer, (-)-epigallo- 
catechin-3-O-gallate (4) (2.92 g, 0.31% of plant material), and (-)-epicatechin-3-O-gallate (5) (0.55 g, 
0.06%) were obtained; these compounds were the major components of H. aristata. Their radical 
scavenging activities were greater by approximately 3.8 and 3.1-fold, respectively, than that of 
α-tocopherol (Figure 6). These results suggest that H. aristata could be a rich natural source of 
catechins due to its high content of these substances. 

Figure 5. Effects of different crude extracts in scavenging DPPH radicals.  
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Reduction of DPPH was measured spectophotometrically at 517 nm. All data are expressed as the 
mean ± S.E.M. of three separate experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared with 
the control value. HAM: H. aristata methanolic crude extract, HAC: H. aristata CHCl3 layer, HAB: 
H. aristata n-BuOH layer, HAW: H. aristata water layer, Vit E: α-tocopherol. 
 
Figure 6. DPPH radical scavenging effects of compounds 1, 4 and 5 isolated from the 
n-butanol layer.  
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Reduction of DPPH was measured spectophotometrically at 517 nm. All data are expressed as the 
mean ± S.E.M. of three separate experiments. ***P < 0.001 compared with the control value. 
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3. Experimental  

3.1. General  
 

Melting points were measured on a Yanagimoto MP-S3 micro melting point apparatus and are 
uncorrected. The UV spectra were recorded on a Hitachi U-3010 spectrophotometer in MeOH solution. 
The IR spectra were recorded on a Jasco IR Report-100 spectrophotometer as KBr discs. The 1H- and 
13C-NMR spectra were recorded on Bruker Avance-400 spectrometer. Chemical shifts are shown in δ 
values with tetramethylsilane as internal reference. The mass spectra were performed in the EI or FAB 
(matrix: glycerol) mode on a VG 70-250 S spectrometer. Specific rotations were determined on a Jasco 
P-1010 polarimeter.  
 
3.2. Plant Material  
 

Hygroryza aristata was collected and authenticated by Prof. C. S. Kouh at I-Lang, Taiwan. A 
voucher specimen (CGU-HA-1) was deposited in the herbarium of Chang Gung University, Taoyuan, 
Taiwan. 
 
3.3. Extraction and Isolation  
 

Dry H. aristata (948 g) was extracted with MeOH (6 L × 6) under reflux for 8 hours and 
concentrated to give a brown syrup (122.0 g). The syrup was suspended in H2O and partitioned 
successively with CHCl3 and n-BuOH. The CHCl3 extract (17.0 g) was subjected to column 
chromatography over silica gel and eluted with a CHCl3 and MeOH step gradients to afford eight 
fractions. Repeated column chromatography of the first fraction, over silica gel with n-hexane and 
EtOAc mixtures yielded squalane (24, 2.3 mg). The second and third fractions were treated as the first 
fraction to obtain n-hexacosyl ferulate (18, 7.2 mg), p-hydroxybenzoic acid (20, 5.0 mg), 2,6-di- 
methoxyquinone (21, 2.2 mg) and physcion (22, 1.5 mg), separately. The fourth fraction was 
repeatedly chromatographed over silica gel with CHCl3 and MeOH (18:1) to afford cycloeucalenol (23, 
7.1 mg), β-sitosterol & stigmasterol mixture (25, 100.0 mg), eicosanoic acid 2,3-dihydroxypropyl ester 
(26, 5.2 mg) and butcosanoic acid 2,3-dihydroxypropyl ester (27, 12.1 mg), successively. The fifth 
fraction was repeatedly column chromatographed over silica gel with CHCl3-MeOH gradients to give 
coumaric acid (15, 11.5 mg) and methyl coumarate (16, 5.3 mg). The sixth fraction was purified by 
recrystallisation to afford vanillic acid (19, 2.5 mg).   

The n-BuOH layer (18.4 g) was applied on Diaion HP-20 gel and eluted with gradients of H2O and 
MeOH to give eight fractions. The second fraction was subjected to column chromatography over 
silica gel and eluted with a CHCl3 and MeOH step gradient to afford L-tyrosine (6, 10.0 mg), inosine 
(12, 11.0 mg) and uridine (14, 20.0 mg), successively. The third fraction was chromatographed on 
silica gel column and eluted with CHCl3 and MeOH mixtures to give adenine (10, 15.6 mg) and uracil 
(13, 5.6 mg). The fourth fraction was filtered to give adenosine (11, 20.3 mg).The fifth fraction was 
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repeatedly column chromatographed over silica gel with CHCl3 -MeOH gradients to give quercetin (5, 
3.5 mg), kaempferol (7, 10.0 mg), (-)-epigallocatechin-3-O-gallate (4, 2,919.3 mg) and (-)-epi- 
catechin-3-O-gallate (5, 552.0 mg). The seventh fraction was also rechromatographed over silica gel 
and eluted with EtOAc to give (7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1, 15.7 mg) and 
rutin (6, 3.2 mg). The eighth fraction was repeatedly column chromatographed over silica gel with 
CHCl3-MeOH gradients to give hygarine (2, 3.0 mg), N-p-coumarylanthranilic acid (3, 8.6 mg) and 
ferulic acid (17, 2.8 mg), separately. 

The H2O layer (82.1 g) was applied on Diaion HP-20 gel and eluted with gradients of H2O and 
MeOH to give four fractions. The first fraction was chromatographed on Sephadex LH-20 column and 
eluted with gradients of H2O and MeOH to afford sucrose (28, 20.5 mg). The second fraction was 
repeatedly column chromatographed over Sephadex LH-20 with H2O:MeOH gradients to give uridine 
(14, 20.0 mg).  

3.4. DPPH Free-Radical Scavenging Activity 

The scavenging activity of the DPPH radical was assayed by the modified method of Shimada et al. 
[26]. The absorbance was measured at 517 nm. Lower absorbance of the reaction mixture indicates 
higher free-radical scavenging activity. The DPPH radicalscavengingactivity (%) was calculated by the 
following equation: 

scavenging activity (%) = (1 − Asample/Acontrol) × 100% 

3.5. Preparation of Human Neutrophils 

Human neutrophils from venous blood of healthy, adult volunteers (20–30 years old) were isolated 
with a standard method of Dextran sedimentation prior to centrifugation in Ficoll Hypaque gradient 
and hypotonic lysis of erythrocytes. Purified neutrophils that contained > 98% viable cells, as 
determined by trypan blue exclusion, were resuspended in HBSS buffer at pH 7.4, and kept at 4 °C 
before use. 

3.6. Measurement of Superoxide Anion (O2
•−) Generation 

The measurement of the generation of O2
•− was based on the superoxide dismutase 

(SOD)-inhibitable reduction of ferricytochrome c [27]. In brief, after supplementing with 
ferricytochrome c (0.5 mg/mL), neutrophils (6 × 105/mL) were equilibrated at 37 °C for 2 min and 
incubated with either control or different concentrations of tested compounds for 5 min. Cells were 
activated by fMLP (0.1 μM) or PMA (5 nM) for 10 min. When fMLP was used as stimulant, 
cytochalasin B (CB, 1 μg/mL) was incubated for 3 min before peptide activation. The changes in 
absorbance with the reduction of ferricytochrome c at 550 nm were continuously monitored in a 
double-beam, six-cell positioner spectrophotometer with constant stirring. Calculation is based on the 
difference of the reactions with and without SOD (100 U/mL) divided by the extinction coefficient for 
the reduction of ferricytochrome c (ε = 21.1/mM/10 mm). 
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(7S*,8R*,7’R*,8’S*)-Icariol A2-9-O-β-xylopyranoside (1). Colorless syrup. Formula: C27H36O13. [α]D 
+0.63° (c 0.35, MeOH). UV λmaxnm (logε) : 237 (2.89), 279 (2.70). IRνmax cm−1: 3,375, 1,613, 1,517, 
1,113. FAB-MS m/z (rel. int.%): 591 ( [M+Na]+, 8), 175 (7), 161 (9), 153 (6), 149 (20), 133 (9). 1H- 
and 13C-NMR: see Table 1. 

Hygarine (2). Brown syrup. UV λmaxnm (logε): 224 (sh) (3.52), 288 (3.27), 312 (sh) (3.22). IRνmax 

cm−1: 3,404, 1,643, 1,048. FAB-MS m/z (rel. int.%): 323 ([M+1]+, 12), 147 (30), 55 (100), 94 (30). 
HRFAB-MS: Anal. Calcd. for C19H18N2O3 323.3726, found 323.3734. 1H- and 13C-NMR: see Table 2. 
 
4. Conclusions 

Two new compounds, (7S*,8R*,7’R*,8’S*)-icariol A2-9-O-β-xylopyranoside (1) and hygarine (2), 
together with twenty-six known compounds, were isolated from the extracts of Hygroryza aristata. 
(-)-Epigallocatechin-3-O-gallate (4) and (-)-epicatechin-3-O-gallate (5) possess free radical scavenging 
activities. (7S*,8R*,7’R*,8’S*)-Icariol A2-9-O-β-xylopyranoside (1) could inhibit superoxide anion 
generation and elastase release by fMLP/CB-induced human neutrophils with IC50 values of  
19.33 ± 0.86 and 24.14 ± 1.59 μM, respectively.  
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