
Article
Toward an idiomatic frame
work for cognitive
robotics
Graphical abstract
Highlights
d The proposed framework divides development of cognitive

architectures into layers

d The framework spans the best-known approaches employed

within cognitive robotics

d The framework is centered around modern probabilistic

programming techniques

d Two applications demonstrate the concepts of the framework
Damgaard et al., 2022, Patterns 3, 100533
July 8, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.patter.2022.100533
Authors

Malte Rørmose Damgaard,

Rasmus Pedersen, Thomas Bak

Correspondence
mrd@es.aau.dk

In brief

Damgaard et al. propose a general

framework for developing cognitive

architectures for robots. The proposed

framework divides development into a

series of layers separating models of

cognition from the algorithms that

implement them. Based on modern

probabilistic programming and

variational inference algorithms, the

proposed framework aims to support the

four desiderata generic cognition, grand

unification, functional elegance, and

sufficient efficiency. The concepts of the

framework are demonstrated through two

robotic applications.
ll

mailto:mrd@es.aau.�dk
https://doi.org/10.1016/j.patter.2022.100533
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100533&domain=pdf

OPEN ACCESS

ll
Article

Toward an idiomatic
framework for cognitive robotics
Malte Rørmose Damgaard,1,2,* Rasmus Pedersen,1 and Thomas Bak1
1Department of Electronic Systems, Automation and Control, Aalborg University, 9220 Aalborg, Denmark
2Lead contact

*Correspondence: mrd@es.aau.dk

https://doi.org/10.1016/j.patter.2022.100533
THE BIGGER PICTURE For many decades, robots have been expected to transfigure the world we live in,
and in many ways they already have, by increasingly taking over dull, dirty, and dangerous jobs. However,
for robots to integrate fully and seamlessly into human societies, robots need to be able to learn and reason
from experience and effectively deal with unpredictable and dynamic environments. Developing robotic
systems with such intelligence is a tremendous and difficult task, which has led to the foundation of the
new multi-disciplinary scientific field called cognitive robotics, merging research in adaptive robotics,
cognitive science, and artificial intelligence. To ease merging research from these scientific fields, we pro-
pose a general framework for developing intelligent robotic systems based on recent advancements in the
machine learning community. We hope that this framework will aid researchers and practitioners in bringing
even more helpful robots into our societies.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Inspired by the ‘‘cognitive hourglass’’ model presented by the researchers behind the cognitive architecture
called Sigma, we propose a framework for developing cognitive architectures for cognitive robotics. The
main purpose of the proposed framework is to ease development of cognitive architectures by encouraging
cooperation and re-use of existing results. This is done by proposing a framework dividing development of
cognitive architectures into a series of layers that can be considered partly in isolation, some of which directly
relate to other research fields. Finally, we introduce and review some topics essential for the proposed frame-
work. We also outline a set of applications.
INTRODUCTION

Research in cognitive robotics originates from a need to perform

and automate tasks in dynamic environments and with close or

direct interactionwithhumans.Uncertainty about theenvironment

andcomplexityof the tasks require robotswith theability to reason

and plan while being reactive to changes in their environment. To

achieve such behavior, robots cannot rely on predefined rules of

behavior,1 and inspiration is taken from cognitive architectures.

Cognitive architectures provide a model for information pro-

cessing that can capture robot functionalities. In combination

with acquired sensory data, they can potentially generate intelli-

gent autonomous behavior.2 Cognitive architectures dates back

to the 1950s,3 with the grand goal of implementing a full working

cognitive system.4 From this considerable challenge, an abun-
This is an open access article und
dance of architectures has evolved, and a recent survey sug-

gests that the number of existing architectures has reached

several hundred.3 Some are aimed toward robotics applications;

e.g., Robo-Soar,5 CARACaS,6 and RoboCog.7 Unfortunately,

most of these architectures take wildly different approaches to

model cognition and are implemented in different programming

languages. Most of these architectures are constructed from a

diverse set of specialized modules, making it difficult to expand,

combine, and re-use parts of these architectures. In fact, this

could be one of the contributing reasons for the abundance of ar-

chitectures. The authors of a recent study of cognitive architec-

tures related to the iCub robot explain their decision to start from

scratch rather than relying on existing architectures: ‘‘this

decision was made in order to gain more freedom for future ex-

pansions of the architecture.’’8 In other words, despite the
Patterns 3, 100533, July 8, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:mrd@es.aau.dk
https://doi.org/10.1016/j.patter.2022.100533
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100533&domain=pdf
http://creativecommons.org/licenses/by/4.0/

ll
OPEN ACCESS Article
abundance of architectures, existing architectures were not

deemed flexible enough to build upon. Following the arguments

for developing an interface layer for artificial intelligence put for-

ward by other researchers,9 we argue that a unifying and stan-

dardized framework for developing new cognitive architectures

aimed at cognitive robotics could potentially remedy these is-

sues and ease development of cognitive robotics.

In recent years, a community consensus has emerged about a

standard model of human-like minds; i.e., computational entities

whose structures and processes are substantially similar to those

found in human cognition.10 Although this ‘‘standardmodel of the

mind’’ spans key aspects of structure and processing, memory

and content, learning, and perception and motor, it is agnostic

to thebest practice formodelingand implementing these things.10

In line with the idea proposed by the researchers behind the

cognitive architecture Sigma,4 we argue that the evolution of

the scientific field of cognitive robotics could benefit from

anchoring new implementations around a common theoretical

elegant base separating a specific model of a part of cognition

from the algorithm that implements it. This theoretical base could

allow new functionalities to evolve hierarchically just like soft-

ware libraries build on top of each other, allowing discussions

and development to flourish at different levels of abstractions

and enable synergy with other research fields.

To explain the cognitive architecture Sigma,4 the authors pre-

sent a cognitive hourglass model based on the following four

desiderata:

d grand unification, spanning all of cognition;

d generic cognition, spanning natural and artificial cognition;

d functional elegance, achieving generically cognitive grand

unification with simplicity and theoretical elegance; and

d sufficient efficiency, efficient enough to support the antic-

ipated uses in real time.

Although grand unification and sufficient efficiency aligns well

with the needsof cognitive robotics, the need for generic cognition

and functional elegance is subtle for cognitive robotics. Although

the end goal of cognitive robotics might only be functional artificial

intelligence, building on something that is potentially also able to

model natural intelligence would allow artificial intelligence to

more easily benefit from insights obtained by modeling natural in-

telligenceandviceversa.Similarly, functionalelegance isnotagoal

of cognitive robotics per se. Still, it could allow researchers and

practitioners working on different levels of cognition to obtain a

commonreferencepointandunderstandingatabasic level, poten-

tially easingcooperationand re-useof resultsand innovative ideas.

In an attempt to obtain all four of these desiderata, the so-

called ‘‘graphical architecture’’ based on inference over probabi-

listic graphical models is placed at the waist of Sigma’s cognitive

hourglass model, gluing everything together just like the internet

protocol (IP) in the internet hourglass model.11 Functional

elegance is obtained by recognizing and developing general

architectural fragments and based on these defining idioms,

which can be re-used in modeling different parts of cognition.

Having defined sufficiently general idioms, the hope is to be

able to develop full models of cognition from a limited set of

such idioms and thereby achieve functional elegance while

achieving the three other desiderata.4 With roots in the given
2 Patterns 3, 100533, July 8, 2022
desiderata, Sigma’s cognitive hourglass model, in many ways,

could constitute a unifying and standardized framework for

cognitive robotics. However, as we will elaborate under Sigma’s

cognitive hourglass model, the model commits to specific archi-

tectural decisions, which hinders utilization of new technology

and ideas; e.g., their commitment to the sum-product algorithm

prevents use of new algorithms for efficient probabilistic infer-

ence. The benefits of utilizing probabilistic graphical models

specifically for cognitive robotics have been corroborated in

many studies. For example, learning and representing the hierar-

chical structure of concepts,12 simultaneous lexical and spatial

concept acquisition,13 navigation utilizing the learned con-

cepts,14 and the interaction between multiple probabilistic

graphical models15 have been studied. This research has led to

two frameworks, SERKET16 and its extension Neuro-SERKET,17

with the goal of connecting multiple probabilistic graphical

models on a large scale to construct cognitive architectures for

robotics. Being based solely on probabilistic graphical models,

SERKET and Neuro-SERKET currently do not seem to incorpo-

rate logic, making it difficult to implement symbolic approaches

in these frameworks. In fact, researchers behind thework related

to Markov logic and the system called Alchemy have argued that

the combination of logic, especially first order, and pure probabi-

listic graphical models is necessary to compose a sufficiently

general interface layer betweenartificial intelligence and thealgo-

rithms that implement it.9 Similar to Sigma, models of cognition

are implicitly tied to specific inference algorithms in Alchemy

and the SERKET frameworks. Thus, these cannot be considered

suitable as generalized frameworks.

Based on the observation that the layers of Sigma’s cognitive

hourglass model can be divided conceptually into more general-

ized layers, we propose a generalized cognitive hourglass model

based on recent advances within machine learning that makes

no such commitments. More specifically, the main contribution

of this paper is a framework for developing cognitive architec-

tures for robotics centered around probabilistic programs that

d separates a specific model of cognition from the algorithm

that implements it,

d allows the combination of logic and probabilistic models,

d is not tied to specific inference algorithms,

d provides a structure dividing development of cognitive ar-

chitectures into layers, and

d embraces the same four desiderata as Sigma.

The presented generalized cognitive hourglassmodel is a flex-

ible framework for guiding and discussing future development of

cognitive robotics. We do not intend to construct a new specific

cognitive architecture. Our framework should be viewed as

a space of systems subsuming the Sigma, Alchemy, and

SERKET frameworks, among others, and our intent with this

framework and manuscript is

1. to provide a framework for other researchers to expand,

2. to ease development of cognitive architectures for ro-

botics by encouraging and mitigating cooperation and

re-use of existing results, and

3. to highlight some of the current state-of-the-art technol-

ogy available to advance this research field.

Figure 1. Sigma’s cognitive hourglass model

Shown is a loose re-drawing of figures of the cognitive hourglass model pre-

sented in Rosenbloom et al.4

Layers with dashed borders are not recognized as distinguishable layers by

Rosenbloom et al.4

ll
OPEN ACCESSArticle
Under Sigma’s cognitive hourglass model, we briefly introduce

Sigma’s cognitive hourglass model in more detail. Based on this,

we present our generalized cognitive hourglassmodel as a frame-

work for developing new cognitive architectures aimed at cogni-

tive robotics under Generalized cognitive hourglassmodel. Under

Probabilistic programs,weprovide abrief introduction toprobabi-

listic programs because the presented framework is built around

them. Explaining the functionality of probabilistic programs with

conventionalmethodscanbedifficult; therefore,underGenerative

flowgraphs,wepresent a graphical representationof probabilistic

programs we call ‘‘generative flow graphs.’’ We do so in the hope

that it will ease dissemination of new models of parts of cognition

developedwithin the proposed framework. Being fundamental for

achieving functional elegancewithin the proposed framework, we

formally introduce the concept of probabilistic programming id-

ioms under Probabilistic programming idioms and explain how

‘‘generative flowgraphs’’ can aid identificationof such idioms.Un-

der Inference algorithms, we discuss the intrinsic problem of per-

forming approximate inference in complex probabilistic programs

and present some modern algorithms to tackle this problem for

cognitive robotics.Becauseprobabilisticprogramming languages

form the foundation of the present framework, we provide a brief

survey of probabilistic programming languages relevant to the

framework under Probabilistic programming languages. Finally,

under Application examples, we present some preliminary work

to support the presented framework.

RESULTS

Sigma’s cognitive hourglass model
Figure 1 illustrates how the dimensions of Sigma’s cognitive

hourglass model relate to the four desiderata. The top layer of
the hourglass represents all of the knowledge and skills imple-

mented by the cognitive system. This includes high-level cogni-

tive capabilities, such as reasoning, decision-making, and meta

cognition, as well as low-level cognitive capabilities, such as

perception, attention, and formation of knowledge and memory

that could potentially be inspired by human cognition. But it also

includes artificial cognitive capabilities such as, e.g., creation of

grid maps common in robotics. Therefore, the extent of this layer

corresponds to the achievable extent of grand unification and

generic cognition.

The ‘‘cognitive architecture’’ layer defines central architectural

decisions, such as utilization of the cognitive cycle and tri-level

control structure for information processing, and division of

memory into a perceptual buffer, working memory, and long-

term memory. It also defines other architectural concepts,

such as ‘‘functions,’’ ‘‘structures,’’ ‘‘affect/emotion,’’ ‘‘surprise,’’

and ‘‘attention.’’ Therefore, the cognitive architecture induces

what can be considered a ‘‘cognitive programming language,’’

in which all of the knowledge and skills in the top layer can be

embodied and learned. As an intermediate layer, cognitive id-

ioms provide design patterns, libraries, and services that ease

implementation of knowledge and skills.

Below the cognitive architecture and at the waist of the model

is the graphical architecture constituting a small elegant core of

functionality. Functional elegance is obtained by compilation of

knowledge and skills through a series of layers into a common

representation in the graphical architecture. This graphical archi-

tecture primarily consists of probabilistic inference over graph-

ical models (more specifically, factor graphs) utilizing the sum-

product algorithm18 plus the following extensions:

1. each variable node is allowed to correspond to one or

more function variables,

2. special purpose factor nodes,

3. and the possibility of limiting the direction of influence

along a link in the graph.

Of these extensions, the two first are merely special-purpose

optimizations for the inference algorithm; i.e., a part of the imple-

mentation layer in Figure 1. According to the authors, the third

extension has ‘‘a less clear status concerning factor graph se-

mantics.’’4 Finally, the graphical architecture is implemented in

the programming language LISP. In this model, sufficient effi-

ciency is achieved as the cumulative efficiency of all layers;

i.e., an efficient implementation in LISP is futile when models of

knowledge and skills are inefficient for a given task.

The model shown in Figure 1 commits to multiple, more or less

restrictive decisions, such as utilization of factor graphs and the

sum-product algorithm at its core, the ‘‘cognitive cycle,’’ the tri-

level control structure, and LISP as the exclusive implementation

language. Although these commitments may be suitable for the

specific cognitive architecture Sigma mainly targeted human-

like intelligence, they would hinder exploration of new ideas

and utilization of new technologies, making this model less suit-

able as a general framework.

Generalized cognitive hourglass model
Although Sigma’s cognitive hourglass model has an advanta-

geous structure with roots in highly appropriate desiderata, it is
Patterns 3, 100533, July 8, 2022 3

Figure 2. The generalized cognitive hourglass model

Our proposal for a generalized cognitive hourglass model. Dashed borders

indicates layers that are not necessarily recognized as distinguishable layers

but could help in development of the other layers.

ll
OPEN ACCESS Article
not suitable as a general framework because of some exclusive

structural commitments. We argue that these structural commit-

ments are mostly artifacts of the limited expressibility of factor

graphs and the sum-product algorithm.

Consider, for instance, the ‘‘cognitive cycle’’ dividing process-

ing into an elaboration and adaption phase. The elaboration

phase performs inference over the factor graph, and the adap-

tion phase modifies the factor graph before further inference.

We argue that this two-phase division of processing is caused

by the need for the sum-product algorithm to operate on a static

factor graph. This cognitive cycle makes the tri-level control

structure necessary to make cognitive branching and recursion

possible. Similarly, we argue that the third extension of the factor

graph semantics employed in the cognitive architecture Sigma is

nothing more than a simple control flow construct over the infor-

mation flow in the graphical model and inference algorithm. It is

easy to imagine how other control flow constructs, such as

recursion, loops, and conditionals, could also be advantageous

in modeling cognition.

Basically, we believe that special-purpose implementations of

architectural constructs, such as the two-phase ‘‘cognitive cy-

cle’’ employed by Sigma and similar cognitive architectures,

have been necessary previously because of the limitations of

the available modeling tools. The flexibility of probabilistic pro-

grams provided by the possibility of incorporating I/O opera-

tions, loops, branching, and recursion into a probabilistic model

should instead permit representation of such constructs as

probabilistic programming or cognitive idioms.

In Figure 2, we present our proposal for a more general cogni-

tive hourglass model having probabilistic programs at its waist

as the theoretical modeling base. Just like the model under

Sigma’s cognitive hourglass model, our model is composed of

a series of layers that expand away from the waist of the hour-

glass. On top of the pure probabilistic program, we might be

able to recognize program fragments that are sufficiently general

to be considered idioms. From these idioms, it might be possible

to construct dedicated programming languages for expressing
4 Patterns 3, 100533, July 8, 2022
cognitive behavior, knowledge, and skills, such as the ‘‘cognitive

language’’ employed in the cognitive architecture Sigma.4 In this

framework, functional elegance above the probabilistic program

is obtained via compilation of knowledge and skills through

appropriate cognitive programming languages into probabilistic

programs. Below the probabilistic programs different inference

algorithms can carry out the necessary inference in the probabi-

listic program. Different versions of these inference algorithms

can potentially be implemented in different probabilistic lan-

guages. The probabilistic program and probabilistic program-

ming language can be situated in standard deterministic

programming languages. One needs not even use the same

deterministic programming language for both,19 separating

development of models of cognition from development of the al-

gorithms that implement them. Finally, the deterministic pro-

gramming languages allow us to execute a model of cognition

on different types of hardware doing the actual computations.

When comparing Sigma’s hourglass model with the generalized

hourglass model, the complexity might seem to have increased.

However, this is not the case. The generalized hourglass model

simply highlights some of the components implicit in Sigma’s

hourglass model.

We expect that this model is sufficiently general to be consid-

ered a framework for research and development of cognitive ro-

botics, and as stated in the Introduction, the presented model

should be considered a space of systems subsuming others.

Our model subsumes Sigma, which limits the probabilistic pro-

grams at the waist of our model to factor graphs and limits infer-

ence to the sum-product algorithm. As another example,

consider the SERKET frameworks. In both frameworks, exact

message-passing is used to perform inference on probabilistic

graphical models with discrete and finite variables; otherwise,

sampling importance resampling is used. Both of these frame-

works can also be considered special cases of our framework,

with ‘‘modules’’ and their connections somehow resembling

what we have chosen to call ‘‘probabilistic programming id-

ioms.’’ The ‘‘modules’’ in SERKET and Neuro-SERKET are sup-

posed to be fully defined and self-contained. In contrast, our

definition of ‘‘probabilistic programming idioms’’ allows nesting

and, e.g., class definitions with abstract methods, as we will

exemplify under Application examples. As a third example,

Alchemymay also be considered one instance of our framework,

limiting the probabilistic programs at the waist to Markov logic

and utilizing a combination of Markov chain Monte Carlo and

lifted belief propagation for inference.9 In fact, because probabi-

listic programs can be considered an extension of deterministic

programs, it should even be possible to situate emergent, sym-

bolic, and hybrid approaches to cognitive architectures in this

framework, covering the full taxonomy considered in Kotseruba

and Tsotsos.3 In our framework, constructs such as the cognitive

cycle and tri-level control structure could potentially be ex-

pressed as probabilistic programming idioms rather than spe-

cial-purpose architectural implementations. Similarly, incorpora-

tion of results from other research areas, such as deep learning,

is only limited to the extent that a given probabilistic program-

ming language and corresponding inference algorithms can

incorporate essential tools used in these research areas; i.e.,

automatic differentiation for deep learning. This framework gives

a satisfying view of the foundational hypothesis in artificial

ll
OPEN ACCESSArticle
intelligence about substrate independence10 by cleanly sepa-

rating the model of cognition (i.e., the probabilistic program

and everything above it) from the organic or inorganic substrate

on which it exists (i.e., everything below the probabilistic

program).

Although the above might sound promising, the choice of

probabilistic programs as a focal point also has important rami-

fications. In general, we cannot guarantee the existence of an an-

alytic solution for all models, and even if a solution exists, it might

be computationally intractable.19 Therefore, we have to endure

approximate solutions. Though this might sound restrictive,

this is also the case for most other complex real-world problems.

In fact, it can be considered a form of bounded rationality consis-

tent with the concept of ‘‘satisficing,’’ stating that an organism

confronted with multiple goals does not have the senses or the

wits to infer an ‘‘optimal’’ or perfect solution and, thus, will settle

for the first solution permitting satisfaction at some specified

level of all of its needs.20 The second important ramification is

that the model with its roots in probabilistic and deterministic

programming languages is only applicable to the extent to which

the hypothesis that artificial cognition can be grounded in such

programming languages is valid. However, this is currently a

widely accepted hypothesis.

It is important to stress that the layers of the proposed frame-

work are not independent. On the contrary, as the technological

possibilities and community knowledge evolve, changes in one

layer might open new possibilities in the layers above. Similarly,

the need for new features in one layer might guide the research

directions and development of the layers below. However, this

structure is exactly what would allow further discussions and

development in cognitive robotics to evolve at different levels

of abstractions and benefit from other research fields related

to the layers below probabilistic programs. In the layers above

probabilistic programs, development and identification of

probabilistic programming idioms, cognitive programming lan-

guages, and cognitive idioms mitigate cooperation and re-use

of existing results. The framework thus minimizes the burden

of developing new cognitive architectures by allowing re-

searchers to focus their energy on specific layers, or parts

thereof, in the hourglass model rather than dealing with all of

the details of a cognitive architecture. The extent to which the

burden of development is reduced thus depends on the technol-

ogy available in each of the layers of the hourglass.

Preliminaries
In this paper, we do not distinguish between probability density

functions and probability mass functions and jointly denote them

as probability functions. The symbol ! is used to denote integrals

and summations depending on the context. In general, we use z

to denote latent random variables, x to denote observed random

variables, p(.) to denote ‘‘true’’ probability functions, q(.) to

denote approximations to ‘‘true’’ probability functions, q to

denote parameters of ‘‘true’’ probability functions, p(.), and 4

to denote parameters of approximations to ‘‘true’’ probability

functions, q(.). When a probability function directly depends

on a parameter, we write the parameter in a subscript before

the parentheses; e.g., pq(.) and q4(.). We use a line over a

value, parameter, or random variable to denote that it is equal

to a specific value; e.g., z = 1; 432. We use a breve over a
parameter or random variable to denote that it should be consid-

ered a fixed parameter or random variable within that equation;

e.g., q
^

or z
^
. For parameters, this means that they attain a spe-

cific value, q; i.e., q
^
means that q = q. For random variables, it

means that the probability functions with which this variable is

associated is considered fixed within a given equation. We use

capital letters to denote sets; e.g., A = f1;.;ng. We use a su-

perscript with curly brackets to denote indexes; e.g. z{i} would

denote the i’th latent random variable. Similarly, we use a super-

script with curly brackets and two numbers separated by a semi-

colon to denote a set of indexes values; i.e., zf1;ng = zfAg =

fzf1g;.; zfngg. We use a backslash, \, after a set followed by a

value, random variable, or parameter to denote the exclusion

of that value, random variable, or parameter from that set; i.e.,

zfAg=zfng = fzf1g; .; zfn� 1gg. We use capital C to denote a

collection of latent random variables, observed random vari-

ables, and parameters. We specify such a collection by enclos-

ing variables and parameters with curly brackets around and

with a semicolon separating latent random variables, observed

random variables, and parameters in that order; e.g., C=

{Z;X;Q}. We use Pa, Ch, An, and De as abbreviations for parent,

child, ancestors, and descendants, respectively, and use, e.g.,

PaQ(C) to denote the set of parameters parent to the collection

C, and ChX(Z) to denote the set of observed variables that are

children of the latent random variable Z.

Probabilistic programs
At the heart of our framework, we have chosen to place probabi-

listic programs. One definition of probabilistic programs is as

follows:

‘‘probabilistic programs are usual functional or imperative pro-

gramswith two added constructs: (1) the ability to draw values at

random from distributions, and (2) the ability to condition values

of variables in a program via observations.’’21

With these two constructs, any functional or imperative pro-

gram can be turned into a simultaneous representation of a joint

distribution, pQ(Z,X), and conditional distribution, pQ(X|Z), where

X represent the conditioned/observed random variables, Z the

unconditioned/latent random variables, andQ other parameters

in the program that are not given a probabilistic treatment, allow-

ing us to integrate classical control constructs familiar to any

programmer, such as if/else statements, loops, and recursions

into probabilistic models. Such probabilistic programs can ex-

press exactly the same functionality as any deterministic pro-

grams can and evenmore. These two constructs are usually pro-

vided as extensions to a given programming language through

special sample and observe functions or keywords.19 Thus, it

would be natural to represent such probabilistic programs by

pseudo-code. However, based on experience, it can be hard

to follow the generative flow of random variables in such

pseudo-code. Alternatively, such generative flows have classi-

cally been represented by directed graphical models.22 Unfortu-

nately, we also found that the semantics of classical directed

graphical models do not provide an appropriate presentation.

Generative flow graphs

We found that combining the semantics of classical directed

graphical models with the semantics of flowcharts into a hybrid

representation is a good visual representation. Directed graph-

ical models represent the conditional dependency structure of
Patterns 3, 100533, July 8, 2022 5

A

B

Figure 3. Graphical models with same structure

Shown are examples of two directed graphical models developed in different

research areas.

(A) Graph idiom for the classical simultaneous localization and mapping

(SLAM) problem.23 z
ftg
s is the state at time t, z

ftg
a is the action at time t, z

fig
map is the

i’th pixel in a grid map, and x
ftg
p is the perceived information at time t.

(B) Graph idiom for aMarkov decision process.24 z
ftg
s is the state at time t, z

ftg
a is

the action at time t, and x
ftg
O is an ‘‘observed’’ optimality variable at time t.

ll
OPEN ACCESS Article
a model, and flowcharts represent the steps in an algorithm or

workflow. The hybrid representation illustrates the order in which

samples of random variables in a probabilistic program are

generated and how these samples influence the distributions

used to generate other samples. For this reason, we call this

hybrid representation a generative flow graph.

To exemplify the utility of the generative flow graph representa-

tion, consider the graphical model for a classic Markov decision

process and the simultaneous localization and mapping (SLAM)

problem depicted in Figure 3. With the classic semantics of

directed graphical models, it is often the case that size limitations

of figures coerce authors to removesomevariables from the figure

and represent them indirectly by, e.g., dashed arrows, as in

Figures 3A and 3B. Similarly, the classic semantics of directed

graphicalmodelsdonot represent the influence fromother param-

eters or variables that are not given a probabilistic treatment even

though such variables and parameters might have equal impor-

tance for a model. This is especially true when they are not fixed

and have to be learned; e.g., when one wants to incorporate artifi-

cial neural networks into a model. The classic semantics of
6 Patterns 3, 100533, July 8, 2022
directed graphical models also cannot represent dependency

structures depending on conditionals giving the illusion that a var-

iable alwaysdepends on all of its possible parents and that all vari-

ables in thegraphare relevant inall situations.Althoughtheseman-

tics of directed graphical models allows us to represent the

structure of the joint distribution, p(Z,X), its ability to explicitly ex-

press the structure of the posterior distribution, p(Z|X), is limited.

Finally, there is no standardized way of representing a fragment

of a graphical model, which hinders discussions at different levels

of abstraction. Probabilistic programs allow us to easily incorpo-

rate the above in ourmodels, and, thus, amore appropriate repre-

sentation is needed. The semantics of generative flow graphs

shown inTableS1alleviate theseproblems.Utilizing these seman-

tics, we can redraw the directed graphical model in Figure 3A in

multiple ways with different levels of information, as in Figure 4.

Note that the choice of node collections is not unique.

One advantage of the semantics of directed graphical models

is that, for graphswith no cycles,22 suchmodels represent a spe-

cific factorization of the joint probability of all of the random vari-

ables in the model of the form:

p
�
xf1;ng; zf1;mg� =

Yn
n = 1

p
�
xfng

��PaZ�xfng�� Ym
m = 1

p
�
zfmg��PaZ�zfmg��

(Equation 1)

where x{n} and z{m} are the n’th observed and the m’th latent

random variable in the model, respectively. In principle, this is

also true for the generative flow graph representation when it

does not contain any cycles, just with the additional explicit rep-

resentation of dependency on parameters. For generative flow

graphs, we can, similar to Equation (1), write up a factorization

by including a factor of the form

pPaqðzfmgÞ
�
zfmg��PaZ�zfmg��

for each latent random variable node z{m} in the graph, a factor of

the form

pPaqðxfngÞ
�
xfng

��PaZ�xfng��

for each observed random variable node x{n} in the graph, and

finally a factor of the form

pQ; PaQðCfkgÞ
�
Z; XjPaZ

�
Cfkg

��
(Equation 2)

for each node collection C{k}={Z;X;Q}. If a parent node of y is a

node collection {Z;X;Q}, then PaZ(y)=Z and Paq(y)=Q, unless a

subset of the variables or parameters in the node collection is

explicitly specified next to the parent link. If the internal structure

of a node collection is known from somewhere else, then the fac-

tor in Equation (2) can of course be replaced by the correspond-

ing factorization. The catch, however, is that a probabilistic pro-

gram, and, thus, generative flow graphs, can potentially denote

models with an unbounded number of random variables and pa-

rameters, making it impossible to explicitly write up the full

factorization. On the other hand, this just emphasizes the need

for alternative ways of representing probabilistic programs other

than pseudo-code.

A B

C

Figure 4. Generative flow graphs for SLAM

(A–C) Three semantically equivalent generative flow graphs with different

levels of abstractions corresponding to the directed graphical model in

Figure 3A.

ll
OPEN ACCESSArticle
Besides the possibility of expressing a factorization of the joint

prior distribution, the detached link allows us to express addi-

tional structure for the posterior distribution p(z|x). Consider the

two generative flow graphs in Figure 5. By applying standardma-

nipulations, we can obtain the factorization in Equation (3) for the

graph in Figure 5A.

pqa ;qb ðza; zbjxa; xbÞ
= pqa ; qb ðzbjza; xa; xbÞpqa ; qb ðzajxa; xbÞ
= pqa ; qb ðzbjza; xbÞpqa ;qb ðzajxa; xbÞ

(Equation 3)

whereas from the definition of the detached link, we can write the

factorization in Equation (4) for the graph in Figure 5B.

pqa ;qb ðza; zbjxa; xbÞ
= p�qa ; qb

ðzbj�za; �xa; xbÞpqa ðzajxaÞ
= p�qa ; qb

ðzbj�za; xbÞpqa ðzajxaÞ
(Equation 4)

The main difference between these two factorizations is the

distribution over the latent variable za. In Equation (3), thedistribu-

tion over the latent variable za depends on the evidence provided

by observations xa and xb and is influenced by parameters qa and

qb. In Equation (4), the distribution over zadepends only on the ev-

idence provided by the observation xa and is only influenced by

the parameter qa. Therefore, the inference problem of obtaining

the posterior distribution over za is independent of the inference
problem of obtaining the posterior distribution over zb but not

conversely. In general, for a model consisting of a node collec-

tions, CðaÞ = fZðaÞ; XðaÞ; QðaÞg, connected only by detached

links, we can write the factorization of the posterior as

pQðZjXÞ =
Ya
a = 1

pQfag ; Pa�QðCfagÞ
�
Zfag��Pa �Z

�
Cfag

�
; Xfag

�

(Equation 5)

where the breves are used to emphasize that the variables and

parameters are related through a detached link. The possible

benefit of being able to express such structure will become clear

under Inference algorithms.

Another benefit of the generative flow graph representation is

to express models by different levels of abstraction. As an

example, consider the three different factorization of the simulta-

neous localization and mapping problem given in Equations

(6)–(8):

p
�
zf0; tgs ; zf0; t� 1g

a ; xf1; tgp ; zf0; Igm

�

= p
�
zf0; tgs ; zf0; t� 1g

a ; xf1; tgp

���zf0gs ; zf0;Igm

� (Equation 6)

,p
�
zf0gs

�YI

i = 1

p
�
zfigm

�
= p

�
zf0gs

�YI

i = 1

p
�
zfigm

�
(Equation 7)

,
Yt
t = 1

0
B@p

�
xftgp

���zftgs ; zft� 1g
a ; zf0; Igm

�

$p
�
zftgs ; zft� 1g

a

��zft� 1g
s

�
1
CA

= p
�
zf0gs

�YI

i = 1

p
�
zfigm

�
(Equation 8)

,
Yt
t = 1

0
@p

�
xftgp

���zftgs ; zft� 1g
a ; zf0; Igm

�

p
�
zftgs

��zft� 1g
a ; zft� 1g

s

�
p
�
zft� 1g
a

�
1
A

The generative flow graphs in Figures 4A–4C correspond

directly to the factorization in Equations (8), (7), and (6), respec-

tively. They represents different levels of abstractions for the

same model. Generative flow graphs simply yield better

expressibility compared with their directed graphical model

counterparts.

Probabilistic programming idioms

We already discussed how probabilistic programming idioms

can be seen as a means to achieve functional elegance. In this

section, we describe how such idioms can be discovered by in-

specting generative flow graphs. We define probabilistic pro-

gramming idioms as follows:

‘‘Probabilistic programming idioms are reusable code frag-

ments of probabilistic programs sharing an equivalent semantic

role in their enclosing probabilistic programs.’’

To identify such probabilistic programming idioms, we can

look for node collections containing the same nodes and with

the same internal structure in at least two different probabilistic

programs. Consider, for example, the node collection fzftgs ;

z
ft� 1g
a ; ; g, highlighted with a green border in the generative
Patterns 3, 100533, July 8, 2022 7

A

B

Figure 6. Generative flow graphs for a Markov decision process

(A and B) Two semantically equivalent generative flow graphs corresponding

to the directed graphical model in Figure 3B.

A B

Figure 5. Generative flow graphs with or without a detached link
(A and B) Two generative flow graphs representations of a simple model with

two parameters, two latent variables, and two observed variables. In both

graphs, qa and za are needed to generate zb, but in (B) we explicitly constrained

the inference of zb to not influence the learning of qa and inference of za. Thus,

the evidence provided by xb is not allowed to have an influence on qa and za.

Therefore, the model represented by the nodes on the left side of the dashed

line in (B) can be seen as an independent problem.

ll
OPEN ACCESS Article
flow graph for the SLAM problem and Markov decision process

depicted in Figures 4 and 6, respectively. From Figures 4A and

6A, it is clear that the internal structure of this node collection

is identical in both graphs and that it represents the factorization

p
�
zftgs

��zft� 1g
s ; zft� 1g

a

�
p
�
zft� 1g
a

�
:

Assuming that the distributions pðzftgs

���zft� 1g
s ; z

ft� 1g
a Þ and

pðzft� 1g
a Þ are the same in both models, we could possible create

a probabilistic program for this node collection once and then re-

use it in both models. This probabilistic program should then

take a sample z
ft� 1g
s as input. From this input, the program

could sample z
ftg
s and z

ft� 1g
a from ‘‘hard-coded’’ distributions

pðzftgs

���zft� 1g
s ; z

ft� 1g
a Þ and pðzft� 1g

a Þ using the sample function

or keyword of the probabilistic programming language. Finally,

the program should return both of these samples. Although

this approach might work perfectly for some applications, the

two distributions pðzft� 1g
s

���zft� 1g
s ; z

ft� 1g
a Þ and pðzft� 1g

a Þ are usu-

ally application specific, limiting the usability for an idiom in

which they are ‘‘hard coded.’’ A far more general approach

would be to allow the probabilistic program to instead take the

two distributions as input or having these distributions as free

variables, allowing us to re-use the code fragment even for prob-

lems where these distributions are not necessarily the same.

Rather than fully defining a model of a part of cognition, such a

probabilistic program would constitute a template method for

the generative flow of that part of cognition. Specific utilization

of themodel could then be done via a function closure specifying

the free distributions. Although the benefits of this examplemight

arguably be limited because the internal structure of the node

collection is relatively simple, it is not hard to imagine more com-

plex structures. Consider, for instance, the node collection high-
8 Patterns 3, 100533, July 8, 2022
lighted with a blue border in Figure 6. By constructing an appro-

priate probabilistic program for this node collection, we have

defined a probabilistic programming idiom constituting the foun-

dation for optimal control and reinforcement learning.

When we have developed such probabilistic programming

idioms, it empowers us to mix and match them to construct

higher-level intelligence without worrying about all details of

the underlying models. Figure 7 implies that the output of a spe-

cific model for the SLAM problem is used as the input to a Mar-

kov decision process but leaves out details about the internal

structures.
Inference algorithms
As stated under Probabilistic programs, a probabilistic program

is a simultaneous representation of a joint distribution pQ(Z,X)

and a conditional distribution pQ(X|Z). Having defined a model

as such distributions, we are usually interested in answering

queries about the unconditioned/latent random variables Z,

given information about the conditioned/observed random vari-

ables X = X. In the combined navigation problem illustrated in

Figure 7, we are interested in determining which action to take,

z
ftg
a , given prior perceived information x

ftg
p for t˛1,.,t and future

optimality variables x
ftg
O for t˛t+1,.,T. Often queries of interest

are statistics, such as the posterior mean and variance of spe-

cific random variables or the posterior probability of a random

variable being within a given set. Still, it could also simply be to

sample from the posterior, pQ(Z|X=X). All of these queries are

somehow related to the posterior distribution given by

pQðZjX = XÞ =
pQðX = X; ZÞ
pQðX = XÞ

=
pQðX = X; ZÞR
pQðX = X;ZÞdZ:

(Equation 9)

The marginalization by the integral in the denominator of

Equation (9) in general does not have an analytical solution or is

Figure 7. Composition of generative flow graphs

A combination of the generative flow graphs for the SLAM problem and the

Markov decision process shown in Figures 4 and 6, respectively, could

potentially constitute end-to-end navigation behavior for a mobile robot.

ll
OPEN ACCESSArticle
intractable to computation inmost realistic problems, and approx-

imate inference is therefore necessary.25Over time, anabundance

of algorithms has been developed to find an approximation to the

posterior in specific problems. Unfortunately, many of these algo-

rithmscannot be applied to general probabilistic programs,mainly

because of the possible unbounded number of random vari-

ables.19 Possible applicable inference algorithms can roughly be

divided into Monte Carlo-based algorithms, such as sequential

Monte Carlo, Metropolis-Hastings, and Hamiltonian Monte Carlo,

and optimization-based variational inference algorithms, such as

stochastic variational inference. As the size and complexity of

modelsof cognition increase, thecomputational efficiencyof infer-

ence algorithms becomes a paramount necessity to achieve suffi-

cient efficiency of the framework presented under Generalized

cognitive hourglass model. Although Monte Carlo methods often

converge on the true posterior in the limit, convergence can be

slow. Conversely, variational inference algorithms are often faster,

although they can suffer from simplified posterior approxima-

tions.25 Also, because variational inference methods are based

on optimization, they provide a natural synergy with data-driven

discriminative techniques such as deep learning. By accepting

that robots are not necessarily supposed to behave optimally but

should behave as agents with bounded rationality, this

characteristicmakes variational inferencealgorithmsanespecially

interesting choice for cognitive robotics. Variational inference is

devoted to giving the reader an introduction to the overall concept

of variational inference. Message-passing and Stochastic varia-

tional inference present two specific solution approaches

commonly used in variational inference: message-passing algo-

rithms and stochastic variational inference, respectively. Both ap-

proaches have their weaknesses. Therefore, under Stochastic

message-passing, we outline a way of combining these two ap-

proaches to overcome their weaknesses. The idea of combining

message-passing with stochastic variational inference we have

presented before,26 but here we generalize the idea to generative

flow graphs.
Variational inference

Variational inference is an optimization-based approach to

approximate one distribution p(Z) by another simpler distribution

q(Z). q(Z) is usually called the variational distribution. In general,

variational inference is not only used to approximate conditional

distribution pðZjX = XÞ, as in Equation (9). However, with the

presented framework in mind, we limit our presentation to this

case and focus on variational inference problems in the form

q�ðZÞ = arg min
qðZÞ˛Q

DðpQðZjX = XÞkqðZÞÞ (Equation 10)

whereD is ameasure of the similarity between p andq often called

a divergence measure, and Q is the family of variational distribu-

tions fromwhich the approximation should be found. The notation

D(p||q) denotes a divergencemeasure and that the order of the ar-

guments, p and q, matters. The choice of the family of variational

distributions, Q, is a compromise between computational effi-

ciency and how precise an approximation one wants. Q should

be chosen so that we can easily answer given queries. It is impor-

tant to stress that any variational inference method is more or less

biased via the choice of the family of variational distributionsQ. As

a consequence,we cannot view the originalmodel in isolation and

have to consider the variational distribution q(Z) as an implicit part

of the cognitive model. Besides the family of variational distribu-

tions, the choice of the divergence measure D can substantially

affect the properties of the approximation. However, empirical re-

sults suggest that, for the family of a divergences, subsuming the

commonly used Kullback-Leibler divergence, all choices will give

similar results as long as the approximating family Q is a good fit

for the true posterior distribution.27

Message-passing

Message-passing algorithms solve a possible complicated vari-

ational inference problem as defined by Equation (10) by

breaking it down into a series of more tractable sub-problems.27

The methods are known as message-passing algorithms

because of the way the solution to one sub-problem is distrib-

uted to the other sub-problems. Message-passing algorithms

assume that the model of a problem, p(Z|X), can be factorized

into a product of probability distributions

pðZjXÞ =
Y
a˛A

pfagðZjXÞ: (Equation 11)

This factorization need not be unique, and each factor p{a}(Z|X)

can depend on any number of variables of p(Z|X). The variational

distribution q(Z) should be chosen so that it factorizes into a

similar form

qðZÞ =
Y
a˛A

qfagðZÞ: (Equation 12)

With these assumptions, define the product of all other than

the a’th factor of q(Z) and p(Z|X), respectively, as

q\aðZÞ =
Y

b˛A=a

qfbgðZÞ; (Equation 13)

p\aðZjXÞ =
Y

b˛A\a

pfbgðZjXÞ: (Equation 14)
Patterns 3, 100533, July 8, 2022 9

Algorithm 1. Pseudo-code for the generic message-passing al-
gorithm. The loop in line 2 canpotentially be run in parallel and in
a distributed fashion

1 Initialize q{a}*(Z) for all a ˛ A.

2 Repeat.

3 Pick a factor A ˛ A.

4 Solve Equation (15) to find q{a}*(Z)

5 until q{a}*(Z) converges for all a ˛ A.

ll
OPEN ACCESS Article
With these definitions, it is possible to rewrite the problem in

Equation (10) into a series of approximate sub-problems on

the form.

qfag�ðZÞz
arg min

qfag˛Qfag
D
�
pfagðZjXÞq\aðZÞkqfagðZÞq\aðZÞ� (Equation 15)

where q\a(Z) is assumed to be a good approximation and, thus, is

kept fixed. If the factor families Q{a} from which q{a} can be cho-

sen have been chosen sensibly, then the problem in Equation (15)

can be more tractable than the original problem, and an approx-

imate solution to the original problem can then be obtain by iter-

ating over these coupled sub-problems, as shown in Algorithm 1.

In principle, we can even use different divergence measures for

each sub-problem to do mismatched message-passing, which

could make some of the sub-problems easier to solve, as

described previously.25

In general, the approach is not guaranteed to converge, and

Equation (15) might still be a hard problem to solve. In the

past, this has limited the approach to relatively simple problems,

such as fully discrete or Gaussian problems, for which Equa-

tion (15) can be solved analytically.27 Therefore, the true power

of themethod is the principal way in which it allows solving prob-

lems in a distributed and parallel fashion, which can be a huge

benefit for large models. If the sub-problems are sparsely con-

nected, meaning that sub-problems do not depend on the solu-

tion to all of the other sub-problems, then the amount of commu-

nication needed can be significantly reduced.

Stochastic variational inference

The approach taken by Stochastic Variational inference (SVI) is

to reformulate a variational inference problem—e.g., Equations

(10) or (15)—to a dual maximization problem with an objective

L that can be solved with stochastic optimization.28 SVI assumes

that the variational distribution q is parameterized by some

parameters F. To obtain the dual problem and the objective

function L of the resulting maximization problem, the steps and

assumptions needed depend on whether we have chosen the

Kullback-Leibler divergence28–30 or a divergences.31 Regard-

less, the resulting problem ends up being in the form

F� = argmax
F

LðpQðZ; X = XÞ; qFðZÞÞ|ffl{zffl}
EZ�qF ðZÞ ½lðZ; Q; FÞ�

: (Equation 16)

This dual objective function L does not depend on the poste-

rior pQðZjX = XÞ but only on the variational distribution qF(Z) and

the unconditional distribution pQðZ;X = XÞ, making the problem

much easier to work with. Besides being dual to Equation (10),
10 Patterns 3, 100533, July 8, 2022
for the family of a divergences with a>0, L is also a lower bound

on the log evidence logðpQðZÞÞ.31 Because the log evidence is a

measure of how well a model fits the data, we can instead

consider the optimization problem32

Q�; F� = argmax
Q; F

LðpQðZ; X = XÞ; qFðZÞÞ|ffl{zffl}
EZ�qF ðZÞ ½lðZ;Q;FÞ�

: (Equation 17)

which allows us to simultaneously fit the posterior approximation

qF and model parametersQ to the data X. An unbiased estimate

of the gradient VWL of this dual objective L, whereW={Q,F}, can

be obtained by utilizing the REINFORCE gradient33 or the repar-

ameterization trick.32,34,35 The objective can then be optimized

iteratively by stochastic gradient ascent via the update equation

Wflg = Wfl� 1g + rfl� 1gVWL
flg�

Wfl� 1g
�

(Equation 18)

where superscript {l} is used to denote the l’th iteration. Stochas-

tic gradient ascent converges to a maximum of the objective

function L when the sequence of learning rates r{l�1} follow the

Robbins-Monro conditions given by

XN
l = 1

rflg = N;
XN
l = 1

�
rflg

�2
<N: (Equation 19)

Because Equation (17) is dual to the original minimization

problem, this maximum also provides a solution to the original

problem. Although Robbins-Monro conditions are satisfied, it

is often necessary to apply variance reduction methods to obtain

unbiased gradient estimators with sufficiently low variance.

Reduction methods can often be applied automatically by prob-

abilistic programming libraries/languages such as Pyro.36 One

benefit of solving variational inference problems with stochastic

optimization is that noisy gradient estimates are often relatively

cheap to compute because of, e.g., subsampling of data.

Another benefit is that use of noisy gradient estimates can cause

algorithms to escape shallow local optima of complex objective

functions.28 The downside of SVI is that it is inherently serial and

that it requires the parameters to fit in thememory of a single pro-

cessor.37 This could potentially be a problem for cognitive ro-

botics, where large models with lots of variables and parameters

are presumably necessary to obtain a high level of intelligence

and where queries have to be answered within different time

scales; i.e. signals to motors have to be updated frequently,

whereas high-level decisions can be allowed to take longer.

Stochastic message-passing

To summarize the previous sections, message-passing algo-

rithms exploit the dependency structure of a given variational

inference problem to decompose the overall problem into a se-

ries of simpler variational inference sub-problems that can be

solved in a distributed fashion.27 Message-passing algorithms

do not give specific directions on how to solve these sub-prob-

lems and, thus, classically required tedious analytical derivations

that effectively limit the usability of the method. On the other

hand, modern SVI methods directly solve such variational infer-

ence problems by utilizing stochastic optimization while learning

model parameters. By fusion of these two approaches, we

could potentially overcome the serial nature of SVI to solve

ll
OPEN ACCESSArticle
large-scale complex problems in a parallel and distributed

fashion. However, to do so, we need to find an appropriate

factorization of a given problem. Again, we can make use of

the semantics of generative flow graphs. Assuming that we

can divide all nodes of a given generative flow graph into a set

C{A} of node collections Cfag = fZfag; Xfag; Qfagg and a set of

‘‘global’’ observed variable nodes XG having more than one

node collection as parent, we can write the posterior

factorization

pQðZjXÞ
= pQ

�
ZfAg��XfAg; XG

�

=
1

p
�
XGjXfAg

�pQ

�
ZfAg; XGjXfAg

�

=
p
�
XGjZfAg; XfAg

�

pQ

�
XGjXfAg

� pQ

�
ZfAg��XfAg

�

=
p
�
XGjZfAg

�

pQ

�
XGjXfAg

�pQ

�
ZfAg��XfAg

�

(Equation 20)

=
p
�
XGjZfAg

�

pQ

�
XGjXfAg

� (Equation 21)

,
Y
a˛A

p
Qfag ;Pa^QðCfagÞ

�
Zfag��PaZ^

�
Cfag

�
; Xfag

�

where Equation (20) follows from conditional independence be-

tween XG and X{A} given Z{A}, and Equation (21) follows from

Equation (5). Following the procedure of message-passing, we

choose a variational distribution that factorizes as

qFðZÞ =
Y
a˛A

qFfag

�
Zfag

�
(Equation 22)

In Equation (22), we have exactly one factor for each

node collection, and this factor only contains the latent variables

of that node collection. This is unlike Equation (12), where

a latent variable could be present in multiple factors. By

combining Equations (21) and (22), we can write an approximate

posterior distribution related to the a’th node collection pðZjXÞz
~pfagðZjXÞ, where

~pfag
Qfag ðZjXÞ =

pQfag ;Pa^QðCfagÞ
�
Zfag��PaZ^

�
Cfag

�
; Xfag

�

,
p
�
XGjZfAg

�

~p
fag

�
XGjXfag

� Y
b˛A\a

q�Ffbg

�
Zfbg

�

~pfagðXG

���XfagÞ is defined in Equation (S1). Based on Equa-

tion (15), we can then define approximate sub-problems as

min
Ffag

D
h
qFfag ðZÞk~pfag

Qfag ðZjXÞ
i

(Equation 23)
Each of these sub-problems can then be solved successively

or in parallel, potentially on distributed compute instances, as

outlined in Algorithm 1 and utilizing SVI as described under Sto-

chastic variational inference. To see how this choice of factoriza-

tion affects the posterior approximations and learning of model

parameters Q, consider the Kullback–Leibler (KL) divergence

as a divergence measure. Considering the KL divergence, we

can rewrite the objective in Equation (23) as shown in Equa-

tion (S2) through Equation (S9) to obtain the following local

dual objective for SVI

Lfag
KL

�
Qfag;Ffag� =

E
Z�~q

fag
Pa �Z

h
LogEvd

fag
XG ; X

fag
�
Qfag�i � C

�DKL

h
qFfag ðZÞk~pfag

Qfag ðZjXÞ
i (Equation 24)

where C is a constant with respect to Q{a} and F{a}, and

LogEvdfagðXG; X
fagÞ is the joint log-evidence over global

observed variables XG and observed variables X{a} local to the

a’th node collection. Because the first term on the right side is

constant with respect toF{a}, maximizing this local dual objective

with respect to F{a} will minimize the KL divergence. Because

DKL½qFfag ðZÞk~pfag
Qfag ðZjXÞ�R0, by definition, it follows from Equa-

tion (24) that

E
Z�~q

fag
Pa �Z

h
LogEvdfag

�
XG; X

fag
�i

� C

RL
fag
KL

�
Qfag;Ffag�

Therefore, by maximizing the local dual objective L
fag
KL

ðQfag;FfagÞ with respect to the local model parameters Q{a} we

push the expected joint log-evidence over the global XG and

the local X{a} observed variables higher, where the expectation

is taken with respect to the joint variational distribution over

latent variables parent to the a’th node collection. This means

that we can simultaneously fit our local model parameters Q{a}

to the evidence and obtain an approximate local posterior distri-

bution qFfag ðzfagÞ. Although these derivations were made for the

KL divergence, similar derivations can be done for the more gen-

eral family of a divergences.

To evaluate this local dual objective, we only need information

related to the local node collection, its parents, and other node

collections having the same global observed variables as chil-

dren, providing substantially computational speedups for gener-

ative flow graphs with sparsely connected node collections and

global observed variables. To use this procedure with a standard

probabilistic programming language, we would have to create a

probabilistic program fragment for each node collection, the cor-

responding variational distribution, and the global observed vari-

ables. These fragments would then have to be composed

together to form the local objectives, potentially in an automated

fashion.

So far, in this section, we assumed that all sub-problems are

solved through a variational problem as in Equation (23). How-

ever, there are, in principle, no reasons why we could not use es-

timates of sub-posteriors, q(z{b}), obtained through other means

in Equation (23), as long as we can sample from these sub-pos-

teriors, making the outlined method very flexible to combine with
Patterns 3, 100533, July 8, 2022 11

Figure 8. Generative flow graph for planning

Shown is an excerpt of the generative flow graph representation of the idiom

used in the abstract class ‘‘Planning.’’50 Red, green, and blue relate node

collections to the methods of the UML class diagram in Figure 9. The variables

z
ftg
p , z

ftg
i , and z

ftg
c represent progress, information gain, and constraints,

respectively. z
ftg
s represents the robot’s internal state representation at time t.

z
ftg
Mb represents the actions of the robot at time t contained in the ‘‘motor buffer’’

(Mb). x
ftg
A quantifies the amount of attention the robot should give to a given

state z
ftg
s through weighting of the progress, information gain, and constraint

variables.

ll
OPEN ACCESS Article
other methods, but analysis of the results obtained through the

combined inference becomes more difficult. It is also important

to stress that the factorization used above is not unique. It would

be interesting to investigate whether other factorizations

could be employed and for which problems these factorizations

could be useful.

If we can divide a generative flow graph representing an overall

model of cognition into node collections and global observed

variables, then we can utilize the combination of message-pass-

ing and SVI presented in this section to distribute the computa-

tional burden of performing inference within this model. At the

same time, we can learn local model parameters, yielding a

very flexible tool allowing us to fully specify the part of a model

we are certain about and potentially learn the rest.

Probabilistic programming languages
So far, our focus has been on representation of models defined

by probabilistic programs and on how to answer queries related

to thesemodels viamodern probabilistic inference. However, we

have not considered how this is made possible by probabilistic

programming languages and their relation to deterministic pro-

gramming languages. Here we will not give a detailed introduc-

tion to probabilistic programming and refer interested readers

to other sources.19,38,39 Instead, we will give a short overview

of languages relevant to modeling cognition.

As already mentioned under Probabilistic programs, the main

characteristics of a probabilistic program are a construct for

sampling randomly from distributions and another construct for

condition values of variables in the program. The purpose of
12 Patterns 3, 100533, July 8, 2022
probabilistic programming languages is to provide these two

constructs and to handle the underlying machinery for imple-

menting inference algorithms and performing inference from

these constructs. As with any other programming language,

design decisions are not universally applicable or desirable,

and different trade-offs are made purposefully to achieve

different goals. This fact, combined with theoretical advance-

ments, has resulted in several different probabilistic program-

ming languages. For an extensive list, see van de Meent

et al.19 Some of these are domain specific, aimed at performing

inference in a restricted class of probabilistic programs, such as

STAN.40 These restrictions are usually employed to obtain more

efficient inference. More interesting for the framework presented

under Generalized cognitive hourglass model, however, are lan-

guages self-identifying as universal or general purpose, such as

Pyro36 and Venture.41,42 These languages aim to perform infer-

ence in arbitrary probabilistic programs, maximizing flexibility

for modeling cognition.

A recent trendhasbeen tobuild probabilistic programming lan-

guages on top of deep-learning libraries such as PyTorch43 and

TensorFlow.44 This is done to use the efficient tensor math, auto-

matic differentiation, and hardware acceleration these libraries

provide and to get tighter integration of deep-learning models

within probabilistic models. Examples of such languages are

Pyro36 and ProbTorch,45 built on PyTorch, and Edward,46 built

on TensorFlow. Again, when considering use within the frame-

work presented under Generalized cognitive hourglass model,

languages based on PyTorch or TensorFlow 2.0 could potentially

haveanadvantageover othersbecauseof thedynamic approach

to constructing computation graphs. This is because dynamic

computation graphs more easily allow us to define dynamic

models that include recursion and unbounded numbers of

random choices.19 Constructs potentially being indispensable

for models of higher-level cognition supposed to evolve.

Python, as a high-level general-purpose programming lan-

guage, makes modeling effortless in these languages. However,

being based on Python, the computational efficiency of these

languages is potentially limited by the need for interpretation.

For this reason, the relatively recent project called NumPyro47

is in active development. NumPyro provides a backend to Pyro

based on NumPy48 and JAX,49 which enables just-in-time

compilation and, thus, could potentially provide much better

computational efficiency, which is essential for any practical ro-

botic system.

The choice of which probabilistic programming language to

use depends on the flexibility needed to model cognition. How-

ever, universal or general-purpose languages based on deep-

learning libraries, possibly with just-in-time compilation and

hardware acceleration, seem promising for general modeling

of cognition and especially for cognitive robotics.

Application examples
To demonstrate the concepts presented in this paper and the

utility of the framework, we have begun an initiative to imple-

ment some generally applicable probabilistic programming id-

ioms with basis in the ‘‘Standard Model of the Mind,’’10 which

is available as a GitHub repository.50 The repository currently

contains one such idiom, called ‘‘__WM_planning_model(.)’’

implemented within the ‘‘Planning’’ class. The purpose of this

Figure 9. UML class diagram for ‘‘planning’’

Shown is an excerpt of the UML class diagram for the abstract class ‘‘Plan-

ning.’’50 For simplicity, we only included the methods relevant for discussion in

this manuscript. Italic text designates abstract classes and methods, + des-

ignates public methods, PP designates an argument of the type probabilistic

program, and red, green, and blue designate the methods implementing the

node collections with corresponding colors in Figure 8.

Figure 10. UML class diagram for ‘‘RobotPlanning’’
Shown is an excerpt of the UML class diagram for the class ‘‘ RobotPlanning’’

used for robot exploration.51 The model for robot exploration aligned well with

the idiom in Figure 8 and could be implemented as a child class inheriting from

the abstract ‘‘Planning’’ class.

ll
OPEN ACCESSArticle
idiom is to provide basic functionality to plan future actions of a

robot based on cognitive concepts of desirability, progress, in-

formation gain, and constraints. Figure 8 illustrates an excerpt

of the generative flow graph representation of the idiom. For

an in-depth presentation of the inner workings of the idiom,

we refer the reader to our other paper.51 As shown in Figure 8,

the idiom can be divided into a hierarchical structure of node

collections in which the red node collection internally depends

on the blue node collection, which, in turn, depends on the

green node collection and recursively on itself. Rather than im-

plementing the idiom as one large probabilistic program, this

hierarchical structure allows us to implement the idiom as mul-

tiple smaller probabilistic programs. To keep the idiom gener-

ally applicable, it is implemented within an abstract Python

class with a method for each of the node collections shown

in Figure 8, which depends on some abstract methods that

need to be specified on a per-application basis. Figure 9 shows

a simplified UML class diagram of the main methods of the

class. The method for each of the node collections in the idiom

contains the main structure and functionality of the idiom. How-

ever, without implementation of the abstract methods, it is

inoperative, and it is implementation of, e.g., the probabilistic

program for the state transition ‘‘p_z_s_tau(.)’’ that makes it

application specific.

In the simplest use case, the user can use the idiom simply by

creating a child class that inherits the ‘‘Planning’’ class and im-

plements the abstract methods. The user can then call the public

method ‘‘makePlan(.)’’, which performs SVI on the idiom and

returns K samples from the approximate posterior

z
ft:t +Tg;fkg
Mb � q

�
z
ft:t +Tg
Mb

�
zp

�
z
ft:t +Tg
Mb

���xft:t +Tg
A

�
(Equation 25)

constituting an optimal plan of future actions according to the id-

ioms notion of progress, information gain, and constraints. The

abstract methods that need to be implemented are rather non-

restrictive, and most are only assumed to be probabilistic pro-

grams developed in Pyro,36 making the idiom very versatile. Be-

sides the ‘‘Planning’’ class containing the idiom, the repository

also contains applications examples for robot exploration and

multi-robot navigation, demonstrating different use cases of

the idiom.
Robot exploration

The purpose of this use case is to demonstrate high-level robot

motion planning with the goal of exploring an environment repre-

sented by a grid map in the long-term memory with a lidar

mounted on a robot.51 In this particular case, themodel of cogni-

tion aligned perfectly with the ‘‘__WM_planning_model(.)’’

idiom. Thus, the application was implemented simply as a child

class implementing the abstract methods inherited from the ab-

stract parent class ‘‘Planning’’ as illustrated in Figure 10. There-

fore, the implementation for this application was greatly

simplified.

In the related paper,51 the approach was tested on 35,126 2D

floor plans available in the HouseExpo dataset, utilizing a modi-

fied version of the accompanying PseudoSLAM simulator.52 Fig-

ure 11 shows a snapshot of one of the simulations.

In this extensive simulation study, it was demonstrated that

the method was indeed capable of planning actions to guide a

robot toward new knowledge, exploring a large part of most of

the floor plans. During these simulations, only 0.25& of actions

taken based on the ‘‘__WM_planning_model(.)’’ idiom resulted

in collisions, demonstrating the ability of the approach to avoid

constraints. Currently, the implementation for this application

uses down to approximately 1 s on planning depending on the

settings. This is deemed sufficient for high-level planning in ro-

botics applications, and, thus, this simulation study also hints to-

ward sufficient efficiency of the framework, which will only be

corroborated by further code optimization.

Multi-robot navigation

The second application example relies heavily on the stochastic

message-passing approach described under Stochastic mes-

sage-passing to implement a simplistic form of communication

between robots.26 In this application, N unicycle type robots

have to plan low-level actions toward their goals while avoiding

collisions with the other robots, given knowledge about the other

robots’ expected future path, as illustrated in Figure 12. Figure 13

shows a generative flow graph of the model derived for this

problem.26

By comparing Figures 13 and 8, it is clear that the models are

not exactly the same. However, the differences are encapsu-

lated within the node collections marked by a green boarder in

both diagrams. Thus, by creating a child class inheriting the
Patterns 3, 100533, July 8, 2022 13

Figure 11. Robot exploration simulation

Shown are results of a simulation of high-level robot motion planning with the

goal of exploring an unknown environment with a lidar as the perceptual input.

Gray indicates unexplored parts of the environment, white indicates unoccu-

pied areas, black indicates obstacles, the green circle with a black border

shows the current location of the robot, the green dashed line shows the ro-

bot’s past path, the solid green lines indicate samples from the future optimal

path distribution, black stars indicate the mean of these samples, and trans-

parent blue circles illustrate the lidar’s range at these positions.

Figure 13. Generative flow graph for multi-robot navigation

Shown is a generative flow graph of the model derived for each of the robots in

a multi-robot navigation problem.26 z
ftg
s represents the robots internal repre-

sentation of its own state as well as the state of the other robots at time t. z
ftg
Mb

represents the actions of the robot itself as well as the communicated planned

actions of the other robots at time t. x
ftg
O quantifies how ‘‘optimal’’ the robot’s

own state is in regard to getting closer to its own goal state zg. x
ftg;fng
c repre-

sents the global constraints of avoiding collision with each of the N-1 other

robots; i.e. XG from Stochastic message-passing.

ll
OPEN ACCESS Article
‘‘Planning’’ class but overwriting the ‘‘__WM_planning_logic(.)’’

method, it was possible to re-use a large part of the

‘‘__WM_planning_model(.)’’ idiom, greatly simplifying the im-

plementation process. Figure 14 illustrates an excerpt of the

UML class diagram used for this application. Because the robots

in this application had to plan low-level actions and keep track of
Figure 12. Multi-robot navigation simulation

Shown is a snapshot of a simulation with 12 robots utilizing the ‘‘Planning’’

idiom to plan actions toward their goal while avoiding collision with each other.

Colored circles with a black border indicate the current location of the robots,

solid colored lines indicate samples of their future planned path distribution,

colored circles indicate their current goals, and transparent colored circles

indicates their last goal.

14 Patterns 3, 100533, July 8, 2022
the state of the other robots, the implementations of abstract

methods like, e.g., ‘‘p_z_MB_tau(.)’’ and ‘‘p_z_s_tau(.),’’ also

had to be different from the ones used in the robot exploration

application.

In the paper related to this use case,26 the approach used was

verified through an extensive simulation study and a real-world

experiment. From simulations of 2–32 robots, it was concluded

that the approach performs as well as, if not better than, the

state-of-the-art algorithm B-UAVC53 made exclusively for the

problem of multi-robot collision avoidance. This was despite

the fact that the approach required far less analytical analysis

because only a relatively simple model of the problem had to

be derived before the general concepts for performing inference
Figure 14. UML class diagram for ‘‘UniCycleRobotPlanning’’

Shown is an excerpt of the UML class diagram for the class ‘‘Uni-

CycleRobotPlanning’’ used for multi-robot navigation.26 A large part of the

model formulti-robot navigation alignedwith the idiom in Figure 8 and could be

implemented as a child class inheriting from the abstract ‘‘Planning’’ class

overwriting the parts of the model that did not align.

ll
OPEN ACCESSArticle
in such a model presented within this paper could be applied.

The approach was also tested in a real-world experiment

with two TurtleBot3 Burger robots equipped with an Intel

NUC10FNK each for performing the necessary computations.

The success of this real-world experiment demonstrated that

sufficient computational efficiency is possible on standard hard-

ware as well as the real-world applicability of concepts pre-

sented n this paper.

Application discussion

The point of these examples is not that the method necessarily

performs better than any other method or that the applications

could not have been implemented in another way. The point is

that, by following the concepts of the framework presented in

this manuscript, it is possible to develop generally applicable

models of cognition that can easily be adapted and/or

extended to new use cases, mitigating the complexity and

burden of creating cognitive architectures for robotics

applications.

Although the repository currently does not contain a broad

range of cognitive capabilities, the two examples demon-

strates most of the concepts presented under Probabilistic

programs through probabilistic programming languages. Spe-

cifically, the examples demonstrate combined usage of prob-

abilistic programming, inference in probabilistic programs,

generative flow graphs, probabilistic programming idioms,

and stochastic message-passing for two real-world robotics

applications.

Besides the present features of the idiom and ‘‘Planning’’

class, based on experiences from solving themulti-robot naviga-

tion problem, the ‘‘__WM_planning_model(.)’’ idiom is currently

being extended with a desirability variable for reaching goal

states and detection of impasse. Currently, the ‘‘Planning’’ class

makes use of SVI. However, if, in the future, we want to use

another algorithm for inference, we can simply inherit the ‘‘Plan-

ning’’ class and overwrite the ‘‘makePlan(.)’’ method to accom-

modate this inference algorithm. Because the idiom is imple-

mented via the probabilistic programming language Pyro,

we do not need to re-implement the idiom itself to accommo-

date this inference algorithm. All of this, together with the

fact that the two vastly different applications are implemented

from the same probabilistic programming idiom, demonstrates

how models developed in the proposed framework can

encourage cooperation and re-use of existing results and inspire

new work.
DISCUSSION

Conclusion
Inspired by Sigma’s cognitive hourglass model,4 we have out-

lined a framework for developing cognitive architectures for

cognitive robotics. With probabilistic programs at the center,

this framework is sufficiently general to span the full spectrum

of emergent, symbolic, and hybrid architectures. By dividing

cognitive architectures into a series of layers, this framework

provides levels of abstractions between models of cognition

and the algorithms that implement them on computational de-

vices. Some of these layers also directly relate to other fields

of research, encouraging better cooperation.
We also presented a graphical representation of probabilistic

programs we call generative flow graphs. We showed how

such generative flow graphs can help identify important universal

fragments of probabilistic programs and models, fragments that

could potentially be re-used in development of other cognitive

architectures, encouraging cooperation and easier re-use of ex-

isting results.

We introduced the problem of inference within probabilistic

programs. We briefly reviewed possible approaches and argued

that variational inference approaches seem interesting for cogni-

tive robotics. We introduced two commonly used approaches:

message-passing and SVI. We also outlined the weaknesses

of each approach and proposed a combined approach we call

stochastic message-passing. The proposed approach provides

a principal way of distributing the computational burden of infer-

ence and parameter learning.

To support implementation within the framework, we reviewed

existing probabilistic programming languages providing the

necessary machinery to implement inference algorithms for

and perform inference in probabilistic programs.

Finally, we provided a brief introduction to an initiative that pro-

vides evidence of the applicability of the framework and con-

cepts presented within this paper but also functions as a starting

point and tool for researchers who want to work within the

framework.

The main topics in this paper have been the framework itself,

representation of cognitive models, and computational burden.

These topics are essential ingredients of the framework and

are interesting research directions.
Limitations of the study
The section Application examples is limited to action selection

through planning and control, and to fully demonstrate the flex-

ibility of the proposed framework, applications to other cognitive

tasks remain to be demonstrated. We see no reason why the

same principles could not be applied to other aspects of cogni-

tion, such as perception, attention, memory, social interaction,

metacognition, and even emotion.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information can be directed to the lead contact, M.R.D., at

mrd@es.aau.dk.

Materials availability

This study did not generate new unique materials.

Data and code availability

This study did not generate new data or code. However, the data and code

related to the two studies presented and discussed under Application exam-

ples are available online as a GitHub repository.50 More specifically, the data

and code related to the robot exploration study presented under Robot explo-

ration are available via Zenodo.54 Similarly, the data and code related to the

multi-robot exploration study presented under Multi-robot navigation are

available at the repository branch.55
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100533.
Patterns 3, 100533, July 8, 2022 15

mailto:mrd@es.aau.dk
https://doi.org/10.1016/j.patter.2022.100533
https://doi.org/10.1016/j.patter.2022.100533

ll
OPEN ACCESS Article
AUTHOR CONTRIBUTIONS

Conceptualization, M.R.D., R.P., and T.B.; Investigation, M.R.D.; Methodol-

ogy, M.R.D.; Formal Analysis, M.R.D.; Visualization, M.R.D.; Writing – Original

Draft, M.R.D.; Writing – Review & Editing, M.R.D., R.P., and T.B.; Supervision,

R.P., and T.B.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 3, 2021

Revised: April 20, 2022

Accepted: May 27, 2022

Published: July 8, 2022

REFERENCES

1. Haazebroek, P., van Dantzig, S., and Hommel, B. (2011). A computational

model of perception and action for cognitive robotics. Cogn. Process. 12,

355–365. https://doi.org/10.1007/s10339-011-0408-x.

2. Zhong, J., Ling, C., Cangelosi, A., Lotfi, A., and Liu, X. (2021). On the gap

between domestic robotic applications and computational intelligence.

Electronics 10, 793. https://doi.org/10.3390/electronics10070793.

3. Kotseruba, I., and Tsotsos, J.K. (2020). 40 years of cognitive architectures:

core cognitive abilities and practical applications. Artif. Intell. Rev. 53,

17–94. https://doi.org/10.1007/s10462-018-9646-y.

4. Rosenbloom, P.S., Demski, A., and Ustun, V. (2017). The sigma cognitive

architecture and system: towards functionally elegant grand unification.

J. Artif. Gen. Intell. 7, 1–103. https://doi.org/10.1515/jagi-2016-0001.

5. Laird, J.E., Yager, E.S., Hucka, M., and Tuck, C.M. (1991). Robo-Soar: an

integration of external interaction, planning, and learning using Soar.

Robot. Auton. Syst. 8, 113–129. https://doi.org/10.1016/0921-8890(91)

90017-F.

6. Huntsberger, T. (2010). Envisioning cognitive robots for future space

exploration. Proc. SPIE Int. Soc. Optical Eng. 7710, 77100D. https://doi.

org/10.1117/12.853284.

7. Bustos, P., Martı́nez-Gómez, J., Garcı́a-Varea, I., Rodrı́guez-Ruiz, L.,

Bachiller, P., Calderita, L., et al. (2013). Multimodal interaction with Loki.

In Proceedings of Workshop of Physical Agents (WAF2013), pp. 53–60.

8. Tanevska, A., Rea, F., Sandini, G., Cañamero, L., and Sciutti, A. (2020). A

socially adaptable framework for human-robot interaction. Front. Robot.

AI 7, 126. https://doi.org/10.3389/frobt.2020.00121.

9. Domingos, P., and Lowd, D. (2009). Markov Logic: An Interface Layer for

Artificial Intelligence, First Edition (Morgan and Claypool Publishers).

10. Laird, J.E., Lebiere, C., and Rosenbloom, P.S. (2017). A standard model of

the mind: toward a common computational framework across artificial in-

telligence, cognitive science, neuroscience, and robotics. AI Mag. 38,

13–26. https://doi.org/10.1609/aimag.v38i4.2744.

11. Keynote: Steve Deering (1998). Watching the waist of the protocol hour-

glass. Keynote at ICNP ’98. https://ant.isi.edu/csci551/images/3/32/

Deering98a.pdf.

12. Fadlil, M., Ikeda, K., Abe, K., Nakamura, T., and Nagai, T. (2013).

Integrated concept of objects and human motions based on multi-layered

multimodal LDA. In 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IEEE), pp. 2256–2263.

13. Taniguchi, A., Hagiwara, Y., Taniguchi, T., and Inamura, T. (2020).

Improved and scalable online learning of spatial concepts and language

models with mapping. Auton. Robots 44, 927–946. https://doi.org/10.

1007/s10514-020-09905-0.

14. Taniguchi, A., Hagiwara, Y., Taniguchi, T., and Inamura, T. (2020). Spatial

concept-based navigation with human speech instructions via probabi-

listic inference on Bayesian generative model. Adv. Robot. 34, 1213–

1228. https://doi.org/10.1080/01691864.2020.1817777.
16 Patterns 3, 100533, July 8, 2022
15. Miyazawa, K., Horii, T., Aoki, T., and Nagai, T. (2019). Integrated cognitive

architecture for robot learning of action and language. Front. Robot. AI 6,

1–20. https://doi.org/10.3389/frobt.2019.00131.

16. Nakamura, T., Nagai, T., and Taniguchi, T. (2018). SERKET: an architec-

ture for connecting stochastic models to realize a large-scale cognitive

model. Front. Neurorobot. 12, 25. https://doi.org/10.3389/fnbot.2018.

00025.

17. Taniguchi, T., Nakamura, T., Suzuki, M., Kuniyasu, R., Hayashi, K.,

Taniguchi, A., Horii, T., and Nagai, T. (2020). Neuro-SERKET: development

of integrative cognitive system through the composition of deep probabi-

listic generative models. New Gen. Comput. 38, 23–48. https://doi.org/10.

1007/s00354-019-00084-w.

18. Kschischang, F., Frey, B., and Loeliger, H.A. (2001). Factor graphs and the

sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519. https://doi.

org/10.1109/18.910572.

19. van deMeent, J.W., Paige, B., Yang, H., andWood, F. (2018). An introduc-

tion to probabilistic programming. Preprint at arXiv. https://doi.org/10.

48550/arXiv.1809.10756.

20. Simon, H.A. (1956). Rational choice and the structure of the environment.

Psychol. Rev. 63, 129–138. https://doi.org/10.1037/h0042769.

21. Gordon, A.D., Henzinger, T.A., Nori, A.V., and Rajamani, S.K. (2014).

Probabilistic programming (association for computing machinery). In

FOSE 2014, 1 (Association for Computing Machinery), pp. 167–181.

22. Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models:

Principles and Techniques - Adaptive Computation and Machine

Learning (The MIT Press).

23. Durrant-Whyte, H., and Bailey, T. (2006). Simultaneous localization and

mapping: part I. IEEE Robot. Autom. Mag. 13, 99–110. https://doi.org/

10.1109/MRA.2006.1638022.

24. Levine, S. (2018). Reinforcement learning and control as probabilistic

inference: tutorial and review. Preprint at arXiv. https://doi.org/10.48550/

arXiv.1805.00909.

25. Zhang, C., B€utepage, J., Kjellström, H., and Mandt, S. (2019). Advances in

variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2008–

2026. https://doi.org/10.1109/TPAMI.2018.2889774.

26. Damgaard, M.R., Pedersen, R., and Bak, T. (2022). Study of variational

inference for flexible distributed probabilistic robotics. Robotics 11, 38.

https://doi.org/10.3390/robotics11020038.

27. Minka, T. (2005). Divergence Measures and Message Passing (Microsoft).

Technical Report. https://www.microsoft.com/en-us/research/publication/

divergence-measures-and-message-passing/.

28. Hoffman, M.D., Blei, D.M., Wang, C., and Paisley, J. (2013). Stochastic

variational inference. J. Mach. Learn. Res. 14, 1303–1347.

29. Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational infer-

ence. In Proceedings of the Seventeenth International Conference on

Artificial Intelligence and Statistics (PMLR, Reykjavik, Iceland), 33, S.

Kaski and J. Corander, eds., pp. 814–822. Proceedings of Machine

Learning Research.

30. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D.M. (2017).

Automatic differentiation variational inference. J. Mach. Learn. Res.

18, 1–45.

31. Li, Y., and Turner, R.E. (2016). Rényi divergence variational inference. In

Advances in Neural Information Processing Systems, 29, D. Lee, M.

Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds. (Curran

Associates, Inc), pp. 1–9.

32. Kingma, D.P., and Welling, M. (2014). Auto-encoding variational bayes. In

2nd International Conference on Learning Representations, Conference

Track Proceedings, Y. Bengio and Y. LeCun, eds., pp. 1–14.

33. Williams, R.J. (1992). Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Mach. Learn. 8, 229–256. https://

doi.org/10.1007/BF00992696.

34. Salimans, T., and Knowles, D.A. (2013). Fixed-form variational posterior

approximation through stochastic linear regression. Bayesian Anal 8,

837–882. https://doi.org/10.1214/13-ba858.

https://doi.org/10.1007/s10339-011-0408-x
https://doi.org/10.3390/electronics10070793
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1515/jagi-2016-0001
https://doi.org/10.1016/0921-8890(91)90017-F
https://doi.org/10.1016/0921-8890(91)90017-F
https://doi.org/10.1117/12.853284
https://doi.org/10.1117/12.853284
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref7
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref7
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref7
https://doi.org/10.3389/frobt.2020.00121
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref9
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref9
https://doi.org/10.1609/aimag.v38i4.2744
https://ant.isi.edu/csci551/images/3/32/Deering98a.pdf
https://ant.isi.edu/csci551/images/3/32/Deering98a.pdf
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref12
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref12
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref12
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref12
https://doi.org/10.1007/s10514-020-09905-0
https://doi.org/10.1007/s10514-020-09905-0
https://doi.org/10.1080/01691864.2020.1817777
https://doi.org/10.3389/frobt.2019.00131
https://doi.org/10.3389/fnbot.2018.<?show [?tjl=20mm]&tjlpc;[?tjl]?>00025
https://doi.org/10.3389/fnbot.2018.<?show [?tjl=20mm]&tjlpc;[?tjl]?>00025
https://doi.org/10.1007/s00354-019-00084-w
https://doi.org/10.1007/s00354-019-00084-w
https://doi.org/10.1109/18.910572
https://doi.org/10.1109/18.910572
https://doi.org/10.48550/arXiv.1809.10756
https://doi.org/10.48550/arXiv.1809.10756
https://doi.org/10.1037/h0042769
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref21
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref21
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref21
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref22
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref22
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref22
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.48550/arXiv.1805.00909
https://doi.org/10.48550/arXiv.1805.00909
https://doi.org/10.1109/TPAMI.2018.2889774
https://doi.org/10.3390/robotics11020038
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref28
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref28
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref29
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref29
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref29
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref29
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref29
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref30
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref30
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref30
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref31
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref31
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref31
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref31
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref32
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref32
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref32
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1214/13-ba858

ll
OPEN ACCESSArticle
35. Rezende, D.J., Mohamed, S., and Wierstra, D. (2014). Stochastic back-

propagation and approximate inference in deep generative models. In

Proceedings of the 31st International Conference on International

Conference on Machine Learning -ICML’14, 32 (JMLR.org). II–1278–

II–1286.

36. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N.,

Karaletsos, T., Singh, R., Szerlip, P.A., Horsfall, P., and Goodman, N.D.

(2019). Pyro: deep universal probabilistic programming. J. Mach. Learn.

Res. 20, 28.

37. Zhang, J., Raman, P., Ji, S., Yu, H.F., Vishwanathan, S., and Dhillon, I.

(2019). Extreme stochastic variational inference: distributed inference for

large scale mixture models. In Proceedings of the Twenty-Second

International Conference on Artificial Intelligence and Statistics (PMLR),

89, K. Chaudhuri and M. Sugiyama, eds., pp. 935–943. Proceedings of

Machine Learning Research.

38. Davidson-Pilon, C. (2015). Bayesian Methods for Hackers: Probabilistic

Programming and Bayesian Inference, 1st edition (Addison-Wesley

Professional).

39. Pfeffer, A. (2016). Practical Probabilistic Programming, 1st edition

(Manning Publications Co.).

40. Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B.,

Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017).

Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32.

https://doi.org/10.18637/jss.v076.i01.

41. Mansinghka, V., Selsam, D., and Perov, Y. (2014). Venture: a higher-order

probabilistic programming platform with programmable inference.

Preprint at arXiv. https://doi.org/10.48550/arXiv.1404.0099.

42. Mansinghka, V.K., Schaechtle, U., Handa, S., Radul, A., Chen, Y., and

Rinard, M. (2018). Probabilistic programming with programmable infer-

ence. SIGPLAN Not 53, 603–616. https://doi.org/10.1145/3296979.

3192409.

43. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: an

imperative style, high-performance deep learning library. In Advances in

Neural Information Processing Systems, H.M. Wallach, H. Larochelle, A.

Beygelzimer, F. d’Alché Buc, E.B. Fox, and R. Garnett, eds. (NeurIPS),

pp. 8024–8035.

44. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system

for large-scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16) (USENIX

Association), pp. 265–283.

45. Siddharth, N., Paige, B., van de Meent, J.W., Desmaison, A., Goodman,

N.D., Kohli, P., Wood, F., and Torr, P.H. (2017). Learning disentangled rep-

resentations with semi-supervised deep generative models. In

Proceedings of the 31st International Conference on Neural Information

Processing Systems (Curran Associates Inc.), pp. 5927–5937. NIPS’17.

46. Tran, D., Hoffman, M.D., Saurous, R.A., Brevdo, E., Murphy, K., and Blei,

D.M. (2017). Deep probabilistic programming. Preprint at arXiv. https://

doi.org/10.48550/ARXIV.1701.03757.

47. Phan, D., Pradhan, N., and Jankowiak, M. (2019). Composable effects for

flexible and accelerated probabilistic programming in NumPyro. Preprint

at arXiv. https://doi.org/10.48550/arXiv.1912.11554.

48. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., and Smith, N.J. (2020).

Array programming with NumPy. Nature 585, 357–362. https://doi.org/

10.1038/s41586-020-2649-2.

49. Frostig, R., Johnson, M.J., and Leary, C. (2018). Compiling machine

learning programs via high-level tracing. Syst. Mach. Learn. 23–24.

50. Damgaard, M.R. (2022). ProbMind (GitHub Repository). https://github.

com/damgaardmr/probMind.

51. Damgaard, M.R., Pedersen, R., and Bak, T. (2022). A probabilistic pro-

gramming idiom for active knowledge search. Preprint at arXiv. https://

doi.org/10.48550/arXiv.2202.09555.

52. Li, T., Ho, D., Li, C., Zhu, D., Wang, C., and Meng, M.Q.H. (2020).

HouseExpo: a large-scale 2D indoor layout dataset for learning-based al-

gorithms on mobile robots. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 5839–5846. https://doi.org/10.

1109/IROS45743.2020.9341284.

53. Zhu, H., Brito, B., and Alonso-Mora, J. (2022). Decentralized probabilistic

multi-robot collision avoidance using buffered uncertainty-aware Voronoi

cells. Auton Robots 46, 401–420. https://doi.org/10.1007/s10514-021-

10029-2.

54. Damgaard, M.R. (2022). probMind Release for ‘‘A Probabilistic

Programming Idiom for Active Knowledge Search’’ (Zenodo Archive).

https://doi.org/10.5281/zenodo.5841292.

55. Damgaard, M.R. (2022). Multi Robot Planning Simulation (GitHub

Repository). https://github.com/damgaardmr/probMind/tree/d0ba27687

b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning.
Patterns 3, 100533, July 8, 2022 17

http://refhub.elsevier.com/S2666-3899(22)00130-1/sref35
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref35
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref35
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref35
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref35
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref36
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref36
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref36
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref36
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref37
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref37
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref37
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref37
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref37
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref37
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref38
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref38
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref38
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref39
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref39
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.48550/arXiv.1404.0099
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/3296979.3192409
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref43
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref43
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref43
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref43
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref43
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref43
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref44
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref44
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref44
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref44
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref44
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref45
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref45
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref45
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref45
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref45
https://doi.org/10.48550/ARXIV.1701.03757
https://doi.org/10.48550/ARXIV.1701.03757
https://doi.org/10.48550/arXiv.1912.11554
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref49
http://refhub.elsevier.com/S2666-3899(22)00130-1/sref49
https://github.com/damgaardmr/probMind
https://github.com/damgaardmr/probMind
https://doi.org/10.48550/arXiv.2202.09555
https://doi.org/10.48550/arXiv.2202.09555
https://doi.org/10.1109/IROS45743.2020.9341284
https://doi.org/10.1109/IROS45743.2020.9341284
https://doi.org/10.1007/s10514-021-10029-2
https://doi.org/10.1007/s10514-021-10029-2
https://doi.org/10.5281/zenodo.5841292
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning

	PATTER100533_proof_v3i7.pdf
	Toward an idiomatic framework for cognitive robotics
	Introduction
	Results
	Sigma’s cognitive hourglass model
	Generalized cognitive hourglass model
	Preliminaries
	Probabilistic programs
	Generative flow graphs
	Probabilistic programming idioms

	Inference algorithms
	Variational inference
	Message-passing
	Stochastic variational inference
	Stochastic message-passing

	Probabilistic programming languages
	Application examples
	Robot exploration
	Multi-robot navigation
	Application discussion

	Discussion
	Conclusion
	Limitations of the study

	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Supplemental information
	Author contributions
	Declaration of interests
	References

