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ABSTRACT

The structures of DNA–protein complexes have illu-
minated the diversity of DNA–protein binding
mechanisms shown by different protein families.
This lack of generality could pose a great challenge
for predicting DNA–protein interactions. To address
this issue, we have developed a knowledge-based
method, DNA-binding Domain Hunter (DBD-Hunter),
for identifying DNA-binding proteins and associated
binding sites. The method combines structural com-
parison and the evaluation of a statistical potential,
which we derive to describe interactions between
DNA base pairs and protein residues. We demon-
strate that DBD-Hunter is an accurate method for
predictingDNA-binding function of proteins, and that
DNA-binding protein residues can be reliably inferred
from the corresponding templates if identified. In
benchmark tests on �4000 proteins, our method
achieved an accuracy of 98% and a precision of 84%,
which significantly outperforms three previous
methods. We further validate the method on DNA-
binding protein structures determined in DNA-free
(apo) state.We show that the accuracy of ourmethod
is only slightly affected on apo-structures compared
to the performance on holo-structures cocrystallized
with DNA. Finally, we apply the method to �1700
structural genomics targets and predict that 37 tar-
gets with previously unknown function are likely to
be DNA-binding proteins. DBD-Hunter is freely avail-
able at http://cssb.biology.gatech.edu/skolnick/
webservice/DBD-Hunter/.

INTRODUCTION

With the progress of structural genomics projects, an
increasing number of protein structures have become
available (1). As of early February 2008, a total of 160 792
proteins have been registered as targets by structural
genomics centers worldwide, with the structures of 5396

targets already deposited in the PDB (http://targetdb.
pdb.org/). Since many targets are representatives of pre-
viously uncharacterized protein families, the function of a
large number of these proteins is unknown. Identifying
their function is an important challenge. In recent years,
many computational methods have been developed to
assist in functional annotation (2–4). Compared to experi-
mental studies, computational methods have the advan-
tage of high efficiency and low cost. Most are based on
the idea of functional inference through homology.
While sequence comparison methods (5,6) are very power-
ful (7–9), they may offer limited help with the task of
assigning functions for structural genomics targets
because many have low-sequence similarity to previously
characterized proteins. Structure-based methods may
provide additional clues to a protein’s function because
structure is better conserved than sequence (10). However,
since a common fold may be shared by proteins with very
different functions, it remains a challenge to infer protein
function on the basis of structure alone (11).

An area where protein structure could potentially be
useful is in the identification of DNA-binding proteins.
Such proteins play an essential role in a cell and are
involved in transcription, replication, packaging, repair
and rearrangement. It has been estimated that 2–3% of
prokaryotic proteins and 6–7% of eukaryotic proteins
bind DNA (12). To understand the basic rules, many
efforts have investigated the patterns of DNA–protein
interactions observed in the structures of DNA–protein
complexes (13–15). In contrast to the strict base pairing
rule observed in double-stranded DNA (dsDNA), it is
now clear that there is no simple code for protein–DNA
recognition. Instead, numerous mechanisms are exhibited
by different protein families (12).

Given the structure of a protein whose function is
unknown, one wishes to answer the following questions:
(i) Does this protein have a DNA-binding function?
(ii) If so, where are its DNA-binding sites? (iii) What
specific DNA sequences, if any, does the protein recog-
nize? To address the first problem, several knowledge-
based approaches have been developed (16–20). Shanahan
et al. (18) used structural comparison to detect three types
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of well-defined DNA-binding structural motifs, helix-turn-
helix (HTH), helix-hairpin-helix (HhH) and helix-loop-
helix (HLH), which appear in �30% of 54 structural
families based on an earlier classification of DNA–protein
complex structures (12). Sophisticated machine-learning
methods have also been attempted (16,17,19,20). These
utilize techniques such as neural networks (16,19), logistic
regression (20) and support vector machines (17). Features
used by these methods include the composition of amino
acids, the charge/dipole moment of the protein molecule
and the presence of positively charged surface patches. On
average, these studies reported sensitivities ranging from
70% to 90% and specificities ranging from 65% to 95%.
To address the second question, similar machine-learning
methods have been developed to predict individual DNA-
binding residues on proteins (21–23), with an average
accuracy ranging from 65% to 80%. To address the third
problem, statistical models have been introduced to
characterize the specificity of DNA sequences for a given
DNA-binding protein (13,24–26), with a few successful
examples reported.

SinceDNA-binding proteins likely comprise only a small
fraction of structural genomics targets, for practical
applications, it is necessary to develop a method with
high precision. Otherwise, the number of false positives
could easily outnumber the true positives, rending such an
approach is impractical for automatic function assignment.
All machine-learning methods mentioned above, however,
reported relatively low specificities for non-DNA-binding
proteins (16,17,19,20). In addition, these rates were
obtained on small sets of less than 250 structures. It is not
clear whether similar specificity would be obtained on a
much larger data set of thousands of structures, a scenario
relevant to proteomic-scale applications. To address these
issues, we describe a new method, DNA-binding Domain
Hunter (DBD-Hunter), for the prediction of DNA-binding
proteins and associated DNA-binding sites. The method
uses both structural comparisons and a DNA–protein
statistical potential to assess whether or not a given protein
binds DNA. We demonstrate that DBD-Hunter achieves
an extremely high specificity of 99.5% and a precision of
84% in benchmark tests, with a sensitivity of 47% obtained
on unbound and a sensitivity of 58% on DNA bound
protein structures. By way of illustration as to its appli-
cability, we apply our method to 1697 structural genomics
targets and predict that 37 previously unknown targets are
DNA-binding proteins.

METHODS

Availability

All datasets listed below, the statistical potential para-
meters and a web-server implementation of DBD-Hunter
are available at http://cssb.biology.gatech.edu/skolnick/
files/.

Data sets

DB179. A set of 179 DNA–protein complex structures
(DB179) were selected by the following procedure:
The July 2007 release of the PDB was queried to retrieve

all X-ray structures of protein–DNA complexes with
resolution better than 3.0 Å. The resulting 1045 complex
structures were further partitioned into chains and
analyzed. We only consider protein–DNA complexes
that satisfy the following three conditions: (i) the protein
has a minimum of 40 amino acids; (ii) the DNA molecule
is dsDNA with at least six base pairs and (iii) the protein
has at least five protein residues within 4.5 Å of the DNA
molecule. The analysis led to 1676 DNA-binding protein
chains. An all-against-all global sequence alignment was
performed on these protein chains using the ALIGN0
program (27) from the FASTA2 package. Pairwise
sequence identity is defined as the ratio of the number of
identical residues over the length of the shorter sequence.
We used the number of DNA–protein contacts, structure
resolution and the available literature to select only
one representative among protein chains with larger
than 35% sequence identity, leading to a nonredundant
set such that any two protein chains have <35% sequence
identity. SCOP annotations (28) and visual inspection
were used to identify the DNA-binding domain (DBD)
for each protein chain. The resulted 179 DNA-binding
protein domains and associated DNA chains are listed in
Supplementary Table 1.

NB3797. A control set of 3797 non-DNA-binding protein
chains (NB3797) was created from a nonredundant set
of 7037 protein structures, which comprise the
PROSPECTOR threading template library built from
the May 2006 PDB release by clustering all PDB protein
structures using a 35% global sequence identity cutoff and
choosing one representative from each cluster (29). From
these 7037 chains, we select the 5636 proteins with SCOP
annotations. We further discarded any chain if its PDB
record contains a DNA molecule or its SCOP annotation
contains the keyword ‘hypothetical’. Protein chains were
manually inspected to determine whether its SCOP super-
family, family and domain annotations contain the key-
word ‘DNA’. Those whose function is associated with
DNA-binding were removed. All ribosomal proteins were
also excluded. For each of the resulting 3911 protein
chains, the keyword ‘DNA’ was searched in the title,
abstract and keyword sections of its primary citation.
Positive hits were inspected by reading the literature to
exclude DNA-binding proteins. The final 3797 protein
chains compose NB3797.

APO104/HOLO104. A total of 104 pairs of DNA-
binding protein structures determined both in the absence
and presence of DNA were constructed from the PDB
May 2007 release. The PDB was queried to retrieve two
sets of proteins: the holo structure set consists of 759
proteins cocrystallized with a dsDNA molecule; the apo
set comprises 35 899 crystal/NMR structures determined
without any DNA. An all-against-all sequence alignment
between the two sets was performed following the same
procedure described above. The alignment procedure
resulted in 679 holo–apo pairs, which have sequence
identity >35% between each pair. The 679 holo chains
were further culled by excluding redundant sequences
with an identity cutoff of 35%. One representative was
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selected among proteins with pairwise sequence identity
>35%, using literature and structure resolution informa-
tion for guidance. The final results are 104 holo-structures
and their corresponding apo-structures, denoted as
HOLO104 and APO104, respectively. Most of these
holo–apo pairs have high-sequence identity, 100% for 62
pairs and >95% for 91 pairs. The remaining 13 pairs,
which have sequence identities ranging from 45% to 95%
are composed of apo–holo homologs from the same
SCOP family.

SG1697. A set of structural genomics targets was selected
from the Jan 2008 PDB release. The PDB was queried
with the classification keyword ‘structural genomics’,
resulting in 1886 PDB entries. These were split into
protein chains, which were further clustered at a 90%
sequence identity cutoff with the program CD-HIT (30).
From each cluster, we randomly select one representative.
These 1697 representatives compose the set SG1697.

Statistical pair potential

To derive a statistical pair potential for describing DNA–
protein interactions, we consider a contact between a
protein residue and a functional group of DNA defined as
that when at least one heavy atom from the protein resi-
due is within 4.5 Å of at least one heavy atom from the
corresponding DNA functional group. Four types of
functional groups were considered for DNA nucleotides
(Figure 1). Pyrimidines C and T have the phosphate (PP),
the sugar (SU) and the pyrimidine (PY) groups. In addi-
tion, purines A and G have a fourth group, the imidazole
(IM) group. Note that all DNA groups are residue
specific. To differentiate them, we add their nucleotide
names as prefixes, e.g. A.PP represents the phosphate
group of an adenine.
A knowledge-based statistical pair potential was devel-

oped from an analysis in the DNA–protein complex set
DB179 (Supplementary Figure 1). The derivation of the
potential was based on the assumption that the frequencies
of observed pair interaction states follow a Boltzmann
distribution (31,32). The pair interaction energy between

protein residue type and a reducedDNA atom is defined as:

e�� ¼ � ln
Nobs

��

Nexp
��

� �
1

where Nobs
�� is the number of observed contacts for the ad

pair and Nexp
�� is the number of expected contacts assuming

no preferential interaction. The reference state, Nexp
�� ,

is defined by the product of the total number of observed
contacts Nobs

total and the mole fractions of a and d, namely

Nexp
�� ¼ Nobs

total f� f� 2

The statistical potential energy E (also named the
interfacial energy) of a DNA–protein complex structure
is defined as the sum of pair interactions for all protein–
DNA contacts.

The Z-score of a native complex structure is defined as:

Z-score ¼
Enat � Eave

�

� �
3

where Eave and s are the average and SD of the statistical
potential energies of all random structures, and Enat is the
statistical potential energy of the native complex. In speci-
ficity tests, random structures were obtained by replacing
interfacial DNA or protein residues with random nucleo-
tides or amino acids. We assume that a contact is formed
in a random structure at the same location as observed
in the native structure. Since the imidazole group only
appears in purines, we ignore any contact involving
a purine imidazole group if the purine is replaced by a
pyrimidine.

DNA-binding interaction prediction protocol

Using structural alignment and the statistical potential,
we developed a new method, DBD-Hunter, to predict
DNA–protein interactions, given a target structure. First,
the target structure is scanned against the template library
DB179 for similar protein structures with the structural
alignment program TM-align (9). Only Ca backbone
coordinates are used for the structural alignment and
for root mean squared deviation (RMSD) calculations.
A TM-score >0.4 indicates significant structural align-
ment (9). To reduce the number of false positives,
we employed the higher TM-score threshold of 0.55 for
template selection (see below). For templates with a TM-
score better than the threshold, the statistical potential
energy between the target protein and the template DNA
is calculated by evaluating contacts within the structurally
aligned regions. The contact evaluation follows the similar
procedure adopted in structure threading by replacing
original template protein residues with corresponding
aligned template residues (29). The templates are then
ranked according to their interfacial energies. If the lowest
interfacial energy is below a (to be determined) energy
threshold, the target is predicted to be a DNA-binding
protein. If no template is found in either the structural
alignment or satisfying the energy criterion, the target
is classified as a non-DNA-binding protein. For proteins
predicted as a DNA-binding protein, we further infer
DNA-binding protein residues from their templates.

Figure 1. Scheme of DNA nucleotide functional groups considered for
protein–DNA contact analysis. The phosphate, sugar, pyrimidine and
imidazole groups are colored in green, orange, red and blue,
respectively. Note that the functional groups are base specific, e.g.
the phosphate group of adenine is different from the phosphate group
of thymine.
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A DNA-binding protein residue is defined as a residue
with at least one heavy atom within 4.5 Å of a DNA
functional group.

Optimization of parameters for DNA-binding protein
prediction

The DNA-binding protein prediction method requires two
threshold parameters: the TM-score threshold and the
statistical potential energy threshold. Here, we present two
strategies for optimizing these two parameters by max-
imizing the Matthews correlation coefficient (MCC) (33)
of predictions on DB179 and NB3797. In the first strategy,
we simply search for the best parameter pair that gives the
highest MCC. Supplementary Figure 2 shows the contour
representation of MCC in threshold space. The best MCC
of 0.64 is given by a TM-score threshold of 0.62 and an
energy threshold of �4.8, corresponding to a sensitivity
of 0.49 and a specificity of 0.997. The high (>0.60) MCC
region is located within the TM-score threshold range
from 0.53 to 0.67 and the energy threshold range from
�10 to �2.5. As the TM-score threshold increases, the
optimal energy threshold corresponding to the highest
MCC at a given TM-score threshold increases as well.
This can be easily understood: since structures with higher
similarity are more likely to share a similar function, the
energy criterion can be softened as the level of structural
similarity increases and vice versa.

The observation leads to the second optimization
strategy: rather than using a constant energy threshold,
the optimal energy threshold can be dependent on the
value of the TM-score. Specifically, we divided the TM-
score range from 0.4 to 1.0 into nine regions (Table 1).
Starting from template hits within the top region, we select
the optimal energy threshold that gives the highest MCC
of predictions on DB179 and NB3797. Positive targets
under the optimal energy criteria were removed from both
sets, and we re-run predictions on the reduced target sets
for the next TM-score region of template hits. The process
was repeated for all nine TM-score regions and generated
an optimal energy threshold for each region. However, for
TM-scores below 0.55, the number of false positives
greatly exceeds the number of true positives at the
maximum MCCs, which are invariably low (<0.15).
Therefore, the minimum TM-score threshold is set at
0.55 to reduce false positives. The list of optimized
parameters is provided in Table 1. Using these parameters,
a sensitivity of 0.58 and a specificity of 0.995 were
achieved on the training set DB179 and NB3797, with a
corresponding MCC of 0.69. The optimal parameters were
used in validation tests on APO104/HOLO104 and the
application on SG1697.

Assessment of DNA-binding protein prediction methods

We compared our prediction method with three different
approaches: TM-align (9), PSI-BLAST (5) and the method
proposed by Szilagyi and Skolnick (denoted as the SS
method) (20). The protein structures of DB179 were used
as the template library for TM-align. When applying
TM-align, a target is classified as a DNA-binding protein
if it hits a template with a TM-score higher than a specified

threshold. Otherwise, the target is classified as non-DNA-
binding. When applying PSI-BLAST (version 2.2.17),
up to four rounds of scanning on the NCBI-NR non-
redundant protein sequence library (the July 2007 release)
were performed to derive a position-specific sequence
profile for each target sequence. An inclusion E-value
threshold of 0.001 and the default values for other
arguments were employed. Using this profile, a last PSI-
BLAST run was performed on the DB179 sequence
library. If a target hits a template with an E-value higher
than the specified threshold, the target is classified as a
DNA-binding protein; otherwise, it is classified as a non-
DNA-binding protein. The default parameters were
employed for the SS method. During the benchmark
tests on DB179, APO104 and HOLO104, homologs with
global sequence identity >35% were excluded from the
template library.
The prediction outcome can be classified and counted

for each method. The numbers of true positives, false
positives, true negatives and false negatives are designated
as TP, FP, TN and FN, respectively. Performance
measures are defined as the following:

Sensitivity¼Recall¼
TP

ðTPþFNÞ

FPR¼
FP

ðTNþFPÞ

Specificity¼
TN

ðTNþFPÞ

Accuracy¼
ðTPþTNÞ

ðTPþFNþTNþFPÞ

Precision¼
TP

ðTPþFPÞ

MCC¼
ðTP�TN�FP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFNÞðTPþFPÞðTNþFPÞðTNþFNÞ
p

4

where FPR denotes false positive rate.

Table 1. Optimization of TM-score and energy threshold parameters

for DBD-Hunter on DB179 and NB3797

TM-score
threshold
range

Energy
threshold

TP FN FP TN Precision Max.
MCC

0.74–1.00 1.1 52 8 6 63 0.90 0.78
0.62–0.74 �4.8 43 23 10 368 0.81 0.69
0.58–0.62 �9.5 4 23 2 568 0.67 0.30
0.55–0.58 �12.3 4 28 1 968 0.80 0.31
0.52–0.55 �2.8 16 34 188 1496 0.08 0.11
0.49–0.52 �3.0 17 31 321 2029 0.05 0.09
0.46–0.49 �14.1 4 34 20 2676 0.17 0.12
0.43–0.46 �2.3 22 16 981 2070 0.02 0.06
0.40–0.43 �13.7 2 14 36 2189 0.05 0.07

The optimal energy threshold that gives the highest MCC of pre-
dictions is listed for each TM-score range. When TM-scores are below
0.55, the numbers of false positives greatly exceed the number of true
positives at the maximum MCCs. Therefore, we set the minimum TM-
score threshold at 0.55. The optimized threshold values adopted in this
study were represented in bold.
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RESULTS

We first develop the statistical potential and examine its
specificity to both protein sequences and DNA sequences.
The statistical potential energy and structural similarity,
two features used by our DNA–protein prediction method,
were analyzed on DB179/NB3797. The performance of our
method was assessed by leave-one-out cross-validation and
compared to the three other methods described above.
Conformational changes occurred during the apo-to-holo
transition were subsequently studied for DNA-binding
proteins. The performance of our method was tested on
both apo- and holo-structure sets APO/HOLO104.
Finally, a total of 1679 structural genomics targets were
scanned for DNA-binding proteins as a real world test of
the methodology.

Statistical pair potential

The pair potential parameters have been derived for 20
amino acids and 14 nucleotide functional groups using the
Boltzmann principle (Supplementary Figure 1). A total of
12 771 DNA–protein contacts observed in the nonredun-
dant DNA–protein complex structure set DB179 have
been considered. The positively charged amino acids Arg
and Lys are the most preferred contact partners by DNA
nucleotides. The result is expected due to the negative
charge carried by DNA. The polar amino acids Asn, His,
Tyr, Gln, Thr and Ser are attracted to the DNA backbone
phosphate and sugar groups, but are less preferred by base
groups. The hydrophobic residue Leu and positively
charged residue Glu have the most energetically unfavor-
able interactions with DNA nucleotides. In general, DNA
base groups have more specific interactions with amino
acids than backbone groups. Imidazole groups, for
example, are favored by only two to three amino acids.
One case of such favorable pairs is the guanine imidazole
group and Arg, which is expected because hydrogen
bonding between them has been frequently observed. By
comparison, most polar and positively charged amino
acids are attracted to the phosphate and sugar groups.
A basic requirement for any good statistical potential is

the capability to characterize favorable energetic interac-
tions, given a DNA–protein complex structure. To exam-
ine whether our potential meets this requirement, as
shown in Figure 2, we performed both a self-consistent
test and a jackknife test on DB179. In the self-consistent
test, the interfacial energy E for a complex structure is
evaluated with the parameter set determined from all 179
complexes. The result shows that 97% of these complexes
have a favorable interfacial energy (E< 0). In the jack-
knife test, also termed leave-one-out cross-validation, the
target structure is excluded from the statistical potential
derivation, and the interfacial energy for the target struc-
ture is then calculated with the corresponding parameter
set. As shown in Figure 2, energies calculated from both
tests are closely correlated with a correlation coefficient
>0.99. The average potential energy from the jackknife
test is �24.2, which is 2.1 kT units higher than the
average of �26.3 from the self-consistent test. The fraction
of complexes with favorable interfacial energy in the

jackknife test is 94%, which is 3% lower than the self-
consistent test.

Specificity of the statistical potential

The requirement of favorable energy interaction of the
native DNA–protein complex is a necessary, but not suff-
icient condition for characterizing specific recognitions
between proteins and DNA. We further assess the speci-
ficity of our potential parameter set by generating random
DNA or protein sequences separately for each complex.
The DNA/protein specificity is measured by the Z-score
(Equation 3) of the native potential energy compared with
energies calculated for random DNA/protein sequences.
All energies were calculated with the individual jackknife
parameter set corresponding to each target complex.

In the DNA specificity test, up to one million DNA
sequences were randomly generated for the interfacial
DNA base pairs of each complex. Equal probabilities of
0.25 were assigned for the four types of nucleotides. For
structures with less than 10 DNA base pairs, we conducted
an exhaustive investigation of all possible combinations.
As shown in Figure 3A, 109 proteins with specific DNA
recognition, e.g. transcription factors and restriction
endonucleases, have an average Z-score of �1.2, which
is one unit lower than the average Z-score of �0.2 for 70
proteins recognizing nonspecific DNA. The result demon-
strates a modest Z-score difference between specific DNA
recognition and nonspecific DNA recognition on average.

In the protein specificity test, one million random
protein sequences were generated for DNA-binding
protein residues of each complex. To avoid overrepresen-
tation of rare amino acids, we assign the frequency of an
amino acid type observed in DB179 as the probability
of the corresponding amino acid in random sequences.
As shown in Figure 3B, the mean and SD of the Z-score
for native complex structures is �3.2 and 1.1. Only seven,

Figure 2. Distribution of the statistical potential energy for 179 DNA–
protein complexes in the self-consistent test. The insert shows the
potential energy calculated in a Jackknife test versus the energy
calculated in the self-consistent test.
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or 3.9%, of the complex structures have a Z-score higher
than �1.0. The result suggests that the statistical potential
is reasonably specific to DNA-binding proteins. We can,
therefore, utilize the statistical potential as a feature to
discriminate DNA-binding proteins from non-DNA-
binding proteins.

Characteristic features of DNA-binding proteins

For the purpose of discriminating DNA-binding from
non-DNA-binding proteins, we consider two features:
structure similarity and statistical potential energy. In our
approach, a target structure is scanned against the
template library DB179 for similar structures with TM-
align. Using the TM-score as the structural similarity
metric, we identify templates that have a score higher than
a given TM-score threshold. The statistical potential
energy is then calculated for the target using the structural
alignment to a qualified template. The two features were
examined on DB179 and the non-DNA-binding set
NB3797. In the test of DB179, the target structure was
excluded from the template library for both the template
scanning and the statistical potential derivation.

The distributions of the top TM-score-ranked template
for DB179 and NB3797 are shown in Figure 4A. About
93% of DNA-binding proteins and 70% of non-DNA-
binding proteins hit at least one template with a TM-score
higher than a significant value of 0.50. As one raises the
value of the TM-score threshold, the fraction of non-
DNA-binding protein structures with a qualified template
decreases more rapidly than that of DNA-binding protein
structures. At a TM-score threshold of 0.62, only 10% of
non-DNA-binding proteins have at least one template hit,
whereas 68% of DNA-binding proteins satisfy this
criterion. However, since the size of NB3797 is much
larger than that of DB179, the absolute number of
positives from NB3797 is over three times the number of
positives from DB179.

To further reduce false positives, we use the statistical
potential energy to re-rank the templates preselected from
the structural alignment procedure. Figure 4B shows the
distribution of the top energy ranked template for DB179
and NB3797 at a TM-score threshold of 0.62. About 1.3%
(69) of non-DNA-binding proteins and 57% (102) of
DNA-binding proteins have a template with a favorable

energy value (E< 0). At an energy threshold of �4.8, the
fraction of DNA-binding proteins satisfying the energy
criterion drops slightly to 49%, while only 0.003% (12)
of non-DNA-binding protein’s top templates satisfy the
same criteria. Use of the statistical potential dramatically
reduces the number of false positive hits.
We have not employed the Z-score of the target

sequence/structure relative to the randomized target
sequence aligned to the selected template, as we find that
the performance is essentially the same as when the energy
cutoff is used. Since about 25% of DNA-binding residues
are missed on average by the structural alignment and the
DNA sequence is that of the template, the average Z-score
of �2.1 for the top Z-score ranked template is not
surprisingly larger (less negative) than that for the native
protein–DNA complex whose average is �3.2. Given the
rather small range of Z-scores, this is the origin of the
comparable performance as to whether an energy cutoff
or Z-score criterion is used.

Assessment of DNA-binding protein prediction methods

By combining structural comparison with a statistical
potential, we developed DBD-Hunter for DNA-binding
protein prediction (see Methods section for details).
To assess the performance of our method, we compared
it with three other methods: the SS method, PSI-BLAST
and TM-align. Figure 5 shows the receiver operator
characteristic (ROC) curves and precision-recall (PR)
curves for benchmark tests on DB179 and NB3797. The
ROC and the PR curves of our method were obtained by
varying the energy threshold while fixing the TM-score
threshold at 0.62. For the other three methods, the vari-
able used to obtain the ROC and PR curves are: the
threshold defined in ref. (20) for SS, the E-value for PSI-
BLAST and the TM-score for TM-align. For comparison,
the results of DBD-Hunter using TM-score-dependent
optimized energy threshold, denoted as DBD-Hunteropt,
are also provided; the corresponding sensitivity of 58%,
specificity of 99.5%, precision of 84% and MCC of 0.69
are the best in our benchmark tests (Table 2).
Clearly, our method outperforms all other three

methods within the low FPR regime (<10%), which is
relevant for practical applications. The maximum MCCs
of the four methods are listed in Table 2. DBD-Hunter

Figure 3. (A) Distribution of native structure Z-scores among randomly generated DNA sequences. (B) Distribution of native structure Z-scores for
randomly generated protein sequences.
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achieves the highest maximum MCC of 0.69, compared
with 0.47 for TM-align, 0.56 for PSI-BLAST and 0.31 for
SS. As shown in the ROC plot (Figure 5A), the sensitivity
of our method jumps to 49% at a very low FPR of 0.3%,
then gradually increases to 60% at a FPR of 1.6% and
finally reaches a plateau of 68% at a FPR of 6.6%. The
68% sensitivity limit is due to the TM-score threshold
imposed. If one only considers structural similarity,
inferior performance was obtained. For example, TM-
align gives a sensitivity of 50% with a FPR of 2.8%, which
is more than nine times the FPR of our method at the
same sensitivity. PSI-BLAST is generally less sensitive
than the structure-based methods. At a permissive FPR
of 4%, PSI-BLAST recognizes about half of the targets.

The performance of the SS method is the worst among
these methods. We note that its FPR is much higher on
NB3797 than previous reported FPRs on small control
sets (20). The threshold used to obtain an FPR of 2% on
smaller sets yield an FPR of 5.7% on NB3797. One
advantage of our method is that it delivers a high precision
at a reasonable sensitivity. As shown in the PR plot
(Figure 5B), the precision of DBD-Hunter stays at a high
level above 88% for a sensitivity up to 50%. By
comparison, none of the other three methods can achieve
this level of precision at a sensitivity better than 30%. The
high precision is important for application to targets on
a proteomic scale.

Prediction of DNA-binding residues on proteins

Since DBD-Hunter identifies a template for each target, it
is attempting to infer DNA-binding sites from the
template, whose DNA-binding site is known. The most
straightforward way is to assign DNA-binding function to
target residues aligned with DNA-binding residues of the
template. This approach was conducted on 103 proteins
predicted as DNA-binding proteins by DBD-Hunter using
the TM-score-dependent optimal thresholds. These pro-
teins include 42 enzymes, 48 transcription factors and

Figure 4. Discriminatory feature analysis for DNA-binding and non-DNA-binding proteins. (A) Distribution of the highest TM-score-ranked
template on DB179/NB3797. The numbers of template hit are given above the histogram bars. (B) Cumulative faction of the top energy-ranked
template versus the statistical potential energy. Only templates higher than the TM-score threshold of 0.62 were considered.

Figure 5. Performance comparison of methods for DNA-binding protein prediction. All tests were performed on DB179 and NB3797. The result
obtained by DBD-Hunter using optimized threshold parameters is indicated by a star symbol. (A) ROC (sensitivity versus FPR) curves. (B) PR
(precision versus sensitivity) curves.

Table 2. Comparison of the maximum MCC by four DNA-binding

protein prediction methods on DB179/NB3797

Method Max. MCC Sensitivity FPR Precision

DBD-Hunteropt 0.69 0.58 0.005 0.84
DBD-Hunter 0.64 0.49 0.003 0.87
TM-align 0.47 0.52 0.028 0.47
PSI-BLAST 0.56 0.44 0.007 0.76
SS 0.31 0.40 0.044 0.93
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13 other types of DNA-binding proteins. For each target
structure, we make a binary prediction (DNA binding or
non-DNA binding) on each residue aligned with the top
energy-ranked template. Performance measures, sensitiv-
ity, specificity, accuracy and precision were calculated for
each target structure. The box plot of the results is shown
in Figure 6. On average, a sensitivity of 72%, a specificity
of 93%, an accuracy of 90% and a precision of 71% were
obtained. For 81% of the target structures, we achieved
a precision >60%. The results imply that the closely
related target-template pairs were correctly identified in
most cases.

Examples of DNA-binding protein prediction

Six examples of successful predictions by our method are
illustrated in Figure 7A–F. In these examples, the
sequence identity between a target and its template
ranges from 9% to 17%. The lack of sequence similarity
makes it difficult for the sequence-based PSI-BLAST
method to identify these templates. In fact, none of them
was hit by PSI-BLAST for the corresponding targets.

In the first example (Figure 7A), the target, the bipartite
DBD of Tc3 transposase Tc3A (34), consists of two sub-
domains that belong to the homeodomain-like super-
family defined in SCOP. The target hits three templates
above a TM-score threshold of 0.62. As expected, they all
share a homeodomain-like structure with a classic HTH
DNA-binding motif. Each template yielded an interfacial
energy strong enough for making a positive prediction,
despite the fact that only one sub-domain of the target was
aligned with the template. The best energy-ranked
template, telomeric protein TRF1 DBD (35), has the
lowest TM-score of 0.64 among these three templates, but
it generated the most correct predictions of DNA-binding

residues (15 versus 10 for both of the other two cases) and
only one false positive.
The second example involves the target, the DBD of

catabolite gene activator (36), and the template, the DBD
of replication terminator protein (Figure 7B) (37). They
share a similar structure, the winged helix DBD, which is
a common DNA-binding motif. In fact, the target hits 10
templates with a TM-score higher than 0.62. The top
energy-ranked template has the lowest TM-score among
these 10 templates, but it made the highest number of
correct predictions for DNA-binding residues (12 of 14).
In the third example, we examine the target, acute

myeloid leukemia 1 protein RUNT domain (38), and the
template, the DBD of p53 tumor suppressor (Figure 7C)
(39). They closely resemble each other with a b-sandwich
fold. Although the DNA-binding sites are located in a
largely disordered region composed of two loops and two
b-strands, the target was successfully predicted through
the template. We note that the same template was hit by
15 non-DNA-binding proteins above the TM-score
threshold of 0.62. Fourteen of these negative cases are
correctly classified as non-DNA-binding by the energy
criterion, because they exhibit repulsive energies. The only
exception, actinoxantin (PDB code 1acx_), belongs to
an antitumour antibiotic chrompoprotein family, whose
members recruit chromophores that cleave DNA sub-
strates (40). Although it is not clear whether actinoxantin
itself binds to DNA, our prediction suggests that
actinoxantin binds DNA and that this leads to subsequent
DNA cleavage by the chromophore.
Two restriction endonucleases, HinP1I (41) and MspI

(42), are presented in the fourth example. Both consist of
two domains, aligned with an RMSD of 3.3 Å, the largest
among these examples. The two enzymes extensively
interact with DNA; there are 47 DNA-binding residues
in the target HinP1I and 36 in the template MspI. Our
method successfully identified 22 DNA-binding residues
and produced nine false positives.
In the fifth example, we investigate the target, tran-

scriptional repressor CopG (43), and the template, the
DBD of methionine repressor MetJ (44). A DNA-binding
motif, the so-called ribbon-helix-helix motif, is selected.
The interfacial energy of �7.8 is relatively weak, mainly
due to the small number of DNA-binding residues
involved. All seven DNA-binding residues of the target
are correctly predicted.
In the last example, the target, the DBD of Epstein-Barr

nuclear antigen 1 (45), hits the template, the DBD of
human papillomavirus-18 E2 (46). The two virus proteins
share a low-sequence identity of 10%, yet have high-
structural similarity with a TM-score of 0.75. Their
structure is a ferredoxin-like fold, which was found in
many non-DNA-binding proteins. In fact, 41 non-DB
proteins from NB3797 hit the same template. All, but one,
of these false hits were eliminated on the basis of the
interfacial energy.

Conformational changes between apo- and holo-forms

For any structure-based method for DNA-binding protein
prediction, it is necessary to examine its performance

Figure 6. Performance on the prediction of DNA-binding residues. A
total of 103 DNA-binding proteins predicted by DBD-Hunter were
examined. The lower, middle and upper quartiles of each box are 25th,
50th and 75th percentile, respectively. Whiskers extend to a distance of
up to 1.5 times the interquartile range. Outliers and averages are
represented by circles and squares, respectively.
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on structures determined in the absence of DNA. The
reason is that the conformational changes occurring on
DNA binding may affect the accuracy of the method. To
address this issue, we have collected 104 pairs of apo- and
holo-form DNA-binding proteins (APO104/HOLO104)
and analyzed their conformational changes. Two RMSD
metrics were calculated: RMSDglobal measures the overall
conformational changes by superposing the two forms in
the sequence aligned regions; and RMSDTM measures the

conformational changes in the structural aligned regions
identified by TM-align. As shown in Supplementary
Figure 3, the majority (70%) of pairs have a RMSDglobal

<3 Å, but a few (14%) have an RMSDglobal >5 Å. The
latter are mainly due to flexible termini or relative domain
movement of multiple-domain proteins (see examples
below). If we consider structural alignment instead, the
corresponding RMSDTM is <5 Å for all pairs and is within
3 Å for 89% of pairs. The corresponding coverage of the

Figure 7. Examples of DNA-binding protein predictions on DB179. (A–F) Structural alignment of the target structure and the template in cartoon
representations. In each panel, the left snapshot shows the overall alignment, together with the cocrystallized DNA molecules. The color codes for
protein and DNA representations are red and purple for the target, and green and cyan for the template, respectively. The right snapshot highlights
DNA-binding residues of both the target and the template in the same color code as the left snapshot. Non-DNA-binding residues of the target were
dimmed in gray. For a clear view of the binding interface, the two snapshots were taken from different orientations. In parentheses, each structure
was labeled in the format of xxxxX, where xxxx is the four-digit PDB code and X is the chain identifier of the protein. If the PDB record contains no
chain identifier, X is replaced with an underscore. Sequence identity (SID), TM-score (TMS), RMSD and the statistical potential energy E are
provided at the bottom of each panel. Graphic images were made with the program VMD (62).
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structural alignment is usually high, better than 90% of the
shorter chain for 87% of the pairs (Supplementary Figure 3
insert). The results reveal that apo-to-holo conformational
changes are mostly localized with a RMSD <3 Å for more
than 70% of DNA-binding proteins.

Prediction of DNA binding using apo-structures

We further benchmarked our method on APO104/
HOLO104 using the optimized threshold parameters
determined on DB179/NB3797. For a given target, any
template with sequence identity >35% was excluded from
the template library and the statistical potential derivation
in our tests. As shown in Figure 8A, about the same
number of APO104 and HOLO104 members hit at least
one template above the TM-score threshold of 0.52, 94 for
HOLO104 versus 95 for APO104. However, the distribu-
tions of the best structural templates are somewhat
different. The holo target set hit more closely resembled
templates than the apo set did. The latter has 28% less
templates above the TM-score cutoff of 0.68 than the
former. In particular, nine holo queries have one template
with a TM-score better than 0.88, but no apo-structure
has a template with such a high level structural similarity.
Despite the relatively lower structural similarity to their
templates, APO104 yielded only slightly fewer number of
correct predictions as HOLO104 by DBD-Hunter. The
number of positive predictions is 57 for the holo set and 49
for the apo set. These numbers correspond to a sensitivity
of 55% for HOLO104 and 47% for APO104, compared
with the value of 58% observed for DB179. DNA-binding
residues were further inferred from the top-ranked
template for predicted DNA-binding proteins from the
apo/holo sets (Figure 8B), except for target 2frhA that has
a controversial DNA-binding site (see examples below).
On average, the predictions yield sensitivities of 68%/
66%, specificities of 93%/93%, accuracies of 89%/87%
and precisions of 67%/66% for HOLO104/APO104.

Our method was compared with PSI-BLAST on
APO104. For a fair comparison, an E-value of 1E-8.5
was chosen for PSI-BLAST such that it provided a similar
precision rate (82%) to DBD-Hunter (precision rate 84%)
on DB179/NB3797. Only 31 apo-structures were identified

correctly as DNA-binding proteins by PSI-BLAST. DBD-
Hunter, therefore, is about 60% more sensitive than PSI-
BLAST on APO104. A much more permissive E-value of
0.001 generates 45 hits for PSI-BLAST, which is still 10%
less than the correct predictions made by our method.

Examples of DNA-binding protein prediction
on apo-structures

Four positive predictions on APO104 are illustrated in
Figure 9A–D. In these examples, the target apo-forms and
their holo-forms exhibit large RMSDglobe values ranging
from 3 to 19 Å. Despite these significant conformational
changes upon DNA binding, the apo-structures were
successfully predicted as DNA-binding proteins.
The first example is the bacteriophage � integrase

protein, a tyrosine recombinase possessing two DBDs,
the catalytic domain and the central domain (Figure 9A).
The latter domain is missing in the apo-structure (47),
but is present in the holo-structure (48). In the apo-to-holo
transition, dramatic movement occurred at the C-terminal
region (residues 331–356) of the catalytic domain, which
brought a crucial catalytic residue Tyr342 in contact with
a scissile phosphate of DNA from a distance of 20 Å away.
The movement made the major contribution to the large
RMSDglobal of 10 Å, because the remainder (residues 170–
330) of the catalytic domain is virtually unchanged with an
RMSDTM of 0.4 Å. It is the static core region of the target
that allows a hit to a template, the N-terminal domain
of Flp recombinase (49). The target and the template have
a high TM-score of 0.71, in spite of a low-sequence
identity of 12%. Major DNA-binding sites, including the
catalytic triad of Arg212-His308-Arg311, were correctly
identified as DNA-binding residues. Based on the strong
interfacial energy of �24, a positive prediction was made
for the target apo-structure.
The second example is the Max protein, a transcription

factor from the basic/HLH/zipper (bHLH-Zip) family of
DNA-binding proteins (Figure 9B). Members of this
family form a stable dimeric structure when complexed
with DNA, but they are notoriously difficult to stabilize
under DNA-free conditions. The NMR structures of
the apo-form were determined after cross-linking two

Figure 8. Prediction of DNA-binding interactions for APO104 and HOLO104. (A) Distribution of the top TM-score ranked templates. Using the
statistical potential energy threshold parameters optimized on the benchmark set DB179, DBD-Hunter predicted 48 and 57 targets of DNA-binding
proteins for APO104 and HOLO104, respectively. For each predicted DNA-binding protein, DNA-binding residues were predicted. The performance
measures of these predictions were shown in (B). The box plots are drawn as in Figure 6.
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monomers at the C-termini and introducing two stabiliz-
ing point mutations (50). As shown in Figure 9B, the apo-
structure closely resembles the holo-form (51), except for
the first 14N-terminal amino acids of the basic region,
which are unfolded in the apo-structure but form a helix in
the presence of DNA. Nevertheless, half of the 14 DNA-
binding residues are aligned with DNA-binding residues
of the template from the sterol regulatory element binding
protein (52), and the apo-structure is correctly classified
as a DNA-binding protein.
The third example is the p65 subunit (also known as

RelA) of nuclear factor-kB (Figure 9C). The p65 subunit
consists of two b-sandwich domains connected by a
flexible 10 amino acid linker. In the DNA-bound form
of p65, the N-terminal domain provides most of the DNA-
binding residues, while the C-terminal domain interacts
with the p50 subunit (not shown) to form a heterodimer
complex (53). The DNA-binding activity of p65 can be
inhibited by IkBa, a protein recognizing p65 that induces
a domain rotation of p65 (54). As shown in Figure 9C, the
N-terminal domains from the apo- and the holo-structures
overlap, whereas the C-terminal domain undergoes about
a 408 rotation around the interdomain linker. Similar
conformational changes have also been observed in the
alignment of the target to the template NFAT1, a nuclear

factor of activated T cell (55). Despite such a dramatic
in-block movement of the C-terminal domain, p65 was
correctly classified as a DNA-binding protein because
most DNA-binding residues located in its N-terminal
domain were correctly identified through the template.

The last example, the protein SarA, is the most
intriguing (Figure 9D). The apo-structure (56) of the
single-domain transcription factor adopts a dramatically
different topology from its holo-structure (57). The
RMSDglobal is 19 Å between these two structures. A nota-
ble difference is a winged HTH motif present in the apo-
structure but missing in the holo-form, which instead has
a unique DNA-binding motif. However, it has been sug-
gested that the apo-structure represents the native form of
SarA and that the unique DNA-binding mode observed in
the holo-structure is due to crystallization artifacts (56).
In our test, the winged HTH motif of the apo-structure
was predicted to be DNA-binding by three templates
(1qbjB, 1sfuA and 1cpgA). In particular, Arg90 is
predicted to be a DNA-binding residue. This is consis-
tent with the mutagenesis study (56), which shows that
the residue is critical to the DNA-binding function of the
SarA. Overall, our prediction provides evidence for the
hypothesis that the apo-form structure is functionally
relevant.

Figure 9. Examples of DNA-binding protein prediction on APO104. (A–D) In each panel, the left snapshot shows the structural alignment of the
apo-structure and its corresponding holo-structure, and the right snapshot shows the alignment of the target apo-structure versus its template.
The apo-, holo- and template structures are colored in red, blue and green, respectively. In (B), all proteins are composed of two monomers. The
monomer studied is shown in solid color, while the other monomer is dimmed. PDB codes are given in parentheses.
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Application to structural genomics targets

Finally, we have applied our method to 1697 protein
structures of unknown function determined by the
structural genomics initiative. The optimized threshold
parameters corresponding to a precision of 84% were
employed for this application. A total of 37 targets pre-
dicted to be DNA-binding proteins are listed in Table 3.
Fourteen of these targets were previously hypothesized to
have a function associated with DNA binding, such as
transcription factor activity. Three targets (1nogA, 1t6sA
and 1vbkA) have a putative function not related to DNA
binding. These three predictions are probably false
positives. The putative function of the remaining 20 targets
was not assigned. By comparison, PSI-BLAST predicted 29
targets as DNA-binding proteins using an E-value of
1E-8.5, which corresponds to a similar precision of 82% in
benchmark tests. Among PSI-BLAST predictions, eight
targets have a putative DNA-binding function and two
targets have a putative function not related to DNA
binding. One (1i60A) of the latter two targets has the fold
of endonuclease IV, a DNA repair enzyme, but it has
been proposed to have a function other than that of

endonuclease IV due to an altered Zn-binding site (58).
DBD-Hunter identified an endonuclease IV template for
1i60A with a high TM-score of 0.76 and predicts that the
target is non-DNA-binding based on a repulsive statistical
potential energy. Since all but four DNA-binding targets
predicted byDBD-Hunter have sequence identity<25% to
their templates, it is difficult for PSI-BLAST to identify
these targets due to low-sequence similarity. In fact, only
nine positive predictions are common to both methods.
Among targets predicted by PSI-BLAST but missed by
DBD-Hunter, only one target has a putative function
related to DNA binding. In principle, one can combine
these two methods to improve sensitivity.

DISCUSSION

The main goal of the current study is to develop a know-
ledge-based method for predicting DNA-binding proteins
and associated DNA-binding residues from structural
genomics targets. For this purpose, the method
had to satisfy three conditions: First, it must be capable
of predicting DNA-binding proteins that have low or no

Table 3. A list of structural genomics targets predicted as DNA-binding proteins from SG1697

Target Template TM-score RMSD SID Energy Putative function

1j27A 2bdpA 0.63 2.40 0.035 �5.4 UK
1nogA 1sknP 0.58 3.28 0.043 �15.9 NB
1s7oA 1gdtA 0.67 1.46 0.116 �7.1 DB
1sfxA 1h0mD 0.59 2.76 0.155 �22.7 DB
1t6sA 1u8rJ 0.65 2.25 0.14 �7.3 NB
1tuaA 1jj4A 0.55 2.37 0.123 �14.8 UK
1vbkA 1jj4A 0.63 2.21 0.188 �5.0 NB
1wi9A 1qbjB 0.68 2.31 0.133 �12.2 UK
1wj5A 1qbjB 0.70 2.16 0.177 �16.0 UK
1x58A 1w0tA 0.87 1.22 0.275 3.8 DB
1xg7A 2bzfA 0.59 3.46 0.096 �13.4 UK
1z7uA 1h0mD 0.61 2.51 0.138 �15.6 DB
1zelA 1qbjB 0.61 2.65 0.183 �12.1 UK
2da4A 1pufA 0.64 1.72 0.211 �29.1 UK
2dceA 1qbjB 0.59 2.14 0.179 �10.2 UK
2e1oA 1jkqC 0.55 2.91 0.143 �21.4 UK
2eshA 1cgpA 0.62 1.56 0.137 �19.4 UK
2esnA 1u8rJ 0.62 2.21 0.121 �12.2 DB
2ethA 1u8rJ 0.71 1.84 0.186 �17.3 DB
2f2eA 1sfuA 0.65 1.89 0.143 �11.7 DB
2fiuA 1jj4A 0.66 2.50 0.057 �4.9 UK
2fmlA 1qbjB 0.57 2.44 0.075 �12.7 UK
2fnaA 1qbjB 0.66 1.83 0.204 �5.0 UK
2fyxA 2a6oB 0.79 1.67 0.289 �20.9 DB
2hytA 1jt0A 0.75 1.61 0.212 �14.1 DB
2g7uA 1cgpA 0.69 1.72 0.20 �15.2 DB
2iaiA 1jt0A 0.64 3.36 0.25 �5.4 DB
2jn6A 1gdtA 0.70 2.16 0.14 �10.7 UK
2nr3A 1sfuA 0.70 2.34 0.103 �10.3 UK
2nx4A 1jt0A 0.76 2.07 0.143 �2.6 DB
2od5A 1gdtA 0.58 2.36 0.122 �9.7 DB
2p8tA 1h0mD 0.57 2.27 0.123 �16.8 UK
2pg4A 1z9cF 0.72 2.05 0.181 �8.5 UK
2qc0A 1sfuA 0.65 2.18 0.111 �9.6 UK
2qvoA 1sfuA 0.72 1.94 0.043 �10.5 UK
3b73A 1cgpA 0.65 1.54 0.204 �23.7 UK
3bddA 1cgpA 0.65 1.48 0.259 �17.4 DB

RMSD and sequence identity were calculated for the structurally aligned region between the target and the template with TM-
align. Targets are labeled according to their putative function annotated in their PDB records: DB (DNA-binding), NB
(function not related to DNA-binding) and UK (unknown).
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sequence similarity (<35% identity) to their templates.
If a target has high-sequence similarity (>40%) to any
template, typically it can be detected using a sequence-
based method such as PSI-BLAST, which is computa-
tionally more efficient than structure-based approaches.
Second, the method must have a very low FPR because
only a small fraction of proteins bind DNA. Assuming
that a method with a 10% FPR and 90% sensitivity is
applied to a target set, 10% of which are DNA-binding
proteins, these numbers translate into a precision rate of
about 50%. That is, half of the predictions are false
positives, which is generally unacceptable for systematic
application on thousands of genomics targets. Third, the
method has to be validated on structures in the DNA-free
form, since all target structures with unknown DNA-
binding function are solved without DNA present. And
the concern that DNA-binding proteins undergo con-
formational changes during the apo-to-holo transition has
to be addressed. In the current study, we have demon-
strated that DBD-Hunter satisfies all three conditions. In
benchmark tests, it consistently outperforms the three
other knowledge-based methods: the sequence-based
method PSI-BLAST, the structural-based method TM-
align and the SS method, which uses both sequence and
structural information. Furthermore, we applied DBD-
Hunter to 1697 structural genomics targets and predicted
that 37 proteins bind DNA.
The current method employs two features, structural

similarity and the statistical potential energy, for the
purpose of discriminating DNA-binding proteins from
non-DNA-binding proteins. Since protein structures with
similar function are more likely conserved than their
sequences (10), this allows us to identify a target that has
low-sequence similarity but high-structural similarity to a
homologous template. In tests on DB179 and APO104, the
structural alignment procedure identifies 60%more DNA-
binding proteins than PSI-BLAST does. Six pairs of target/
template examples from DB179 are given in Figure 7.
Invariably, they have low-sequence identify (<17%) but
high-structural similarity (TM-score �0.62). In addition,
the vast majority of negatives were filtered out during the
structural comparison procedure. In the test on NB3797,
65% negatives were eliminated by structure alone.
To achieve high accuracy, however, structural similarity

to known DNA-binding proteins is not enough. We note
that the one-third of non-DNA-binding proteins from
NB3797 have a significant structural alignment to DNA-
binding proteins with a TM-score higher than 0.55.
To further reduce false positives, an interfacial potential
has been introduced. The potentials are specific to DNA-
binding proteins with an average Z-score of �3.2 in the
randomized sequence test. By requiring that the target
structure not only be structurally similar to a knownDNA-
binding protein but that it also has a favorable interfacial
potential, we reduced the number of false positives from
1327 to 19 in the test on NB3797, corresponding to an
extremely low FPR of 0.5%. By comparison, FPRs ranging
from 5% to 20% were reported in previous studies
(16,17,19,20). Due to the reasons mentioned above, these
high FPRs limit the potential application of these methods
to structural genomics targets.

In previous machine-learning studies (16,17,19,20),
the sizes of the non-DNA-binding protein sets used for
training were small, typically ranging from 100 to 250
structures. This raises the concerns that the discriminatory
features may be over-trained and that the FPR may be
under-estimated as a result. For example, we tested the SS
method (20) on a much larger control dataset NB3797.
Indeed, we found that the FPR on NB3797 is much higher
than that on smaller size data sets. The previously
reported FPR of 2% increases to a FPR of 5.7% on the
larger set. Since similar features such as the composition
of amino acids and/or the charge/dipole distribution have
also been used in the other studies (16,17,19), the FPRs
reported in these studies should be viewed with caution.

Amajor concern with the use of structure-basedmethods
is whether discriminatory features derived from holo-
structures are transferable to apo-form structures. Two
previous studies have examined performance on small sets
of apo-structures, 52 targets in ref. (20) and 11 targets in ref.
(19), and reported similar performance on both holo and
apo sets. Here, we constructed much larger apo/holo sets
composed of 104 targets for validation. We found that the
sensitivities of our method on these two sets are very close,
being just 8% lower on the apo set. The small difference can
be understood from structural comparison analysis. 89%
of apo–holo pairs have an RMSD of <3 Å in their
structurally aligned region (typically >90% coverage),
which is consistent with the suggestion that the conforma-
tional changes of DBDs are mostly localized (59). Notable
conformational changes can be categorized into two major
types: (i) refolding at the DNA-binding interface, e.g. the
basic region of the leucine-zipper-like protein Max
(Figure 9B), and (ii) domain reorientation of multiple-
domain proteins, e.g. p65 of NF-kB (Figure 9C). The
conformational changes observed at the binding interface
may cause difficulty for approaches using strict DNA-
binding motif comparisons. The HTH motif searching
method, for example, requires an RMSD of <1.6 Å bet-
ween the target and the template (60). Our method is less
restrictive because structural comparison is performed for
the entire DBD, the core region of which may have
relatively small conformational changes. This is reflected
by the similar performance on APO/HOLO104 sets, a few
examples of which are provided in Figure 9. In one rare
case, the transcription factor SarA adopts different folds in
the apo- and holo-forms (56,57). Surprisingly, a winged
HTH DNA-binding motif was observed in the apo-
structure but not in the holo-structure. Our method
correctly identified the DNA-binding region of the apo-
structure, including an Arginine crucial to the DNA-
binding function of SarA. The holo-structure, however, did
not yield a positive prediction. Our results support the view
that the apo-form of SarA more likely represents the native
conformation (56).

One advantage of a template-based approach is that one
can infer functionally relevant details from the template.
For example, specific DNA-binding sites can be trans-
ferred from the template. In this respect, DBD-Hunter
achieves an average sensitivity of 66% and an average
accuracy of 87% on predicted DNA-binding proteins
in their DNA-free conformation forms (Figure 8B).
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By comparison, machine-learning algorithms designed
specifically for DNA-binding site prediction provide an
average accuracy ranging from 60% to 82% (21–23).

Worldwide structural genomics centers have deposited
thousands of protein structures in the PDB. It is of great
importance to characterize the functions of these targets.
With respect to DNA-binding protein prediction, only one
method has been applied to structural genomics targets so
far, despite numerous methods proposed. In their report,
Jones et al. predicted one DNA-binding protein from 30
targets using a structural motif-based approach (60),
which is limited to DBDs with a HTH motif. In the
current study, we have applied our method to 1697
structural genomics targets and identified 37 potential
DNA-binding proteins. To our knowledge, this is the first
time a structural-based method for DNA-binding protein
prediction has been systematically applied on a genome
scale. These predictions provide valuable clues for
assessing protein function experimentally, and it is of
great interest to conduct experimental validations of these
predictions in the future.

Like all knowledge-based approaches, our method
is limited by the completeness of the template library.
It cannot predict DNA-binding proteins with novel struc-
tures or binding modes that are not included in the
template library, which is the main disadvantage of the
current approach.

Future work entails the extension of the methodology
to the case when the structure of the protein is not yet
solved but has to be predicted. Here, an unanswered
question is how good the predicted structure has to be to
provide for the accurate prediction of DNA binding.
Another issue is to attempt to model the conformation
change on DNA binding. While this is not crucial for the
majority of known DNA-binding proteins, it is important
for a significant minority of cases. One promising
approach is the extension of TASSER, a protein structure
prediction algorithm (61), to include DNA binding. Thus,
while DBD-Hunter is a promising approach, additional
extensions and improvements are required to increase its
range of applicability.
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