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Highlights

● Uses functional assay data collectively to improve the estimation of allelic variant effects

● Infers the impact of variants not experimentally screened, broadening the utility of assays

● Improves the discrimination of clinically actionable variants within ClinVar

● Significantly separates patients at risk for cancer syndromes in the UK Biobank

Summary

Deep mutational scanning assays enable the functional assessment of variants in high

throughput. Phenotypic measurements from these assays are broadly concordant with clinical

outcomes but are prone to noise at the individual variant level. We develop a framework to

exploit related measurements within and across experimental assays to jointly estimate variant

impact. Drawing from a large corpus of deep mutational scanning data, we collectively estimate

the mean functional effect per AA residue position within each gene, normalize observed

functional effects by substitution type, and make estimates for individual allelic variants with a

pipeline called FUSE (Functional Substitution Estimation). FUSE improves the correlation of

functional screening datasets covering the same variants, better separates estimated functional

impacts for known pathogenic and benign variants (ClinVar BRCA1, p=2.24x10-51), and

increases the number of variants for which predictions can be made (2,741 to 10,347) by

inferring additional variant effects for substitutions not experimentally screened. For UK Biobank

patients who carry a rare variant in TP53, FUSE significantly improves the separation of patients

who develop cancer syndromes from those without cancer (p=1.77x10-6). These approaches

promise to improve estimates of variant impact and broaden the utility of screening data

generated from functional assays.
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Graphical Abstract
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Introduction

Mapping germline variants to personalized clinical risk is a major goal in precision medicine.1

While clinical sequencing has advanced dramatically, the interpretation of monogenic variants

remains challenging, even in established disease genes.2 Despite extensive diagnostic testing,

most variants have only been observed in a few cases or controls, if at all.3 As a result, the vast

majority are classified as Variants of Uncertain Significance (VUS), preventing their use in

clinical management,4 as disclosure guidelines recommend such results not be communicated

to patients and providers.5 Extensive prior work to estimate variant functional effects includes

the use of evolutionary conservation data,6–8 structural features,9 and aggregated assay data to

measure the concordance and relative effects across substitution types and contexts.10

Deep mutational scanning (DMS) assays enable the functional assessment of thousands of

coding variants which are installed in a cell line, typically replacing the native gene

sequence.11–17 These in vitro assay results are highly concordant with clinical phenotype data,

and such estimates have been used to systematically resolve VUSs in genes associated with

clinically actionable syndromes.18,19 One study which used DMS data to classify variants in

BRCA1 found that functional evidence could be used to reclassify 11% of VUS as pathogenic

(297/2,701).14 The ACMG/AMP sequence variant interpretation guidelines specify that

‘well-established’ functional studies are considered strong sources of evidence (criteria

PS3/BS3).2 Methods to improve the utility of functional data could help resolve the large number

of VUSs in variant databases such as ClinVar.20

The emergence of precise CRISPR-Cas9 techniques such as base and prime editing has begun

to increase the scale of functional screening dramatically, allowing interrogation of variants

across many genes.15,21,22 However, individual predictions of functional effect are prone to

sources of statistical noise due to variance in assay readouts or editing efficiency.23 In addition,
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some approaches such as base editing cannot yet experimentally measure functional effects of

all possible missense variants, leading to incomplete assay coverage of clinically important

variants.

Here, we develop a framework to improve the estimation of variant functional effects by

integrating data across experimental observations. Given that there are often many related

measurements in high-throughput screens, we make use of the entirety of the data to identify

sources of correlated noise in order to improve the estimation of functional impacts. We find that

this approach can significantly improve the concordance of functional assays covering the same

substitutions, improve our ability to discriminate between established pathogenic and benign

variation, and can significantly separate patients who may be at increased clinical risk in

population cohorts.

Results

We developed FUSE (Functional Substitution Estimation), a joint estimation pipeline that

collectively uses assay data to improve the accuracy of functional estimates. The FUSE pipeline

reduces variance inherent in experimental assays, drawing from related observations of

mutational effects at each AA residue, and throughout each protein. FUSE also imputes values

for the functional impact of a substantially larger set of amino acid substitutions when assay

data is incomplete (Graphical Abstract, Methods).

FUSE draws from a library of comprehensive DMS datasets in human genes. It first estimates

the mean functional effect of variation at each AA residue (‘positional mean effect’) using

shrinkage estimation (James-Stein Estimator, JSE), which provides a baseline positional
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estimate of the expected impact for any amino acid substitution in each residue. Next, FUSE

uses these mean positional scores to normalize the functional effects for each amino acid

substitution (‘substitution effect’), resulting in a functional substitution matrix (FUNSUM). Finally,

to make estimates of functional impact for individual allelic variants, FUSE first estimates the

mean positional effect at each AA residue from any observed data, and then adjusts the

positional mean using the residual value for the specific substitution type from the FUNSUM

matrix (Methods). We applied the FUSE pipeline to improve the estimation of functional impact

for coding variants in experimental assays across a set of cancer predisposition genes, and

measured its utility in separating established pathogenic and benign variants, as well as rare

missense variants in a large patient cohort.

Generating a Functional Substitution Matrix

We developed a Functional Substitution Matrix (FUNSUM) to generalize information about

observed functional effects associated with each amino acid substitution using previously

generated DMS assay data. Using the approach outlined in the Graphical Abstract, we

calculated the estimated functional effect of each substitution, adjusting for the positional mean

effect within each AA residue position. We then used shrinkage estimation (JSE) to aggregate

the effects of each substitution type, and combined them into the FUNSUM matrix (Figure 1).

We found that across a broad set of cell lines and screening strategies used in 13 functional

assays, the functional effects captured by FUNSUM are not driven by one gene or assay. To

measure this, we generated 13 alternative FUNSUM matrices in which one assay was omitted,

and conducted a leave-one-out correlation analysis. We found high correlation among the

alternative matrices (Figure S1, R2>0.95). Finally, using hierarchical clustering, we identified the

9 most correlated genes and used these to develop a final FUNSUM matrix (STAR Methods

and Figure S2).
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In contrast to the widely used BLOSUM62 matrix (rescaled for comparison), the FUNSUM

substitution matrix may capture distinct information useful in functional estimation analysis.

FUNSUM is asymmetric, providing estimates of functional impact for substitutions in both

directions (A->V vs. V->A). The correlation between FUNSUM and BLOSUM62 is substantial

(R2 = 0.70) but incomplete, indicating that FUNSUM is likely capturing information about amino

acid substitutions distinct from the evolutionary impact reflected by BLOSUM62. We found that

in estimating impacts of functional effects, FUNSUM is superior to BLOSUM62 for both natively

sequenced and inferred data (Figure S3).

Improving the estimation of functional effects from assay data

We first evaluated whether FUSE can improve correlation between datasets which have been

experimentally screened using orthogonal approaches. A broad set of variants in BRCA1 have

been screened using both base editing16 and saturation genome editing profiling.14 A total of 192

variants were screened on both platforms, and the Pearson correlation between these originally

published functional scores is 0.06 (p-value = 0.395). After processing the base editing assay

results with FUSE, the correlation increased substantially to 0.33 (p-value = 4.20x10-6). FUSE

also infers additional variants which were not natively screened on the base editing assay. A

total of 749 variants overlap between the full FUSE set (including inferred sites), and inclusion of

these variants increased the correlation to 0.36 (p-value to 2.2x10-16).

Improving the assessment of clinically actionable variants

Next, we measured whether FUSE can significantly improve the estimation of variants with

clinical assertions in ClinVar. We first evaluated functional scores for variants previously

classified as pathogenic (P/LP) or benign (B/LB) with a high quality evidence base, using a set
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of 2,741 variants covered in a BRCA1 base editing assay.16 Prior to using FUSE, the original

functional scores significantly separated pathogenic variants from benign (Figure 2A,

Kolmogorov-Smirnov [KS], p=0.00235). After refining functional estimates on the same set of

2,741 variants using FUSE, we observed greater significance in separation between pathogenic

and benign variant groups (Figure 2D, KS p=1.22x10-26). We were also able to expand our

estimated functional scores to a total of 10,347 variants (including 7,606 not directly assayed)

by estimating the positional mean at each AA residue and adjusting it to make allelic estimates

using FUNSUM (Figure 2F). Pathogenic variants in this expanded set of estimated functional

scores were significantly different from benign variants (Figure 2E, KS p=7.66x10-72).

To evaluate whether FUSE could improve the classification of actionable variants, we drew from

variants with existing classifications in ClinVar in BRCA1. First, we trained two logistic

regression models using pathogenic and benign variants in 9 DMS dataset genes (not including

BRCA1), using functional scores from the original assays and functional scores estimated by

FUSE. Then, we evaluated the classification performance of these two models on a BRCA1

base editing dataset using the original functional score and FUSE estimates, respectively. The

model trained and tested on the FUSE estimated functional scores significantly outperformed

the other, demonstrating the applicability of functional estimation to predict variant clinical

significance (Figure 2G, AUC=0.93).

Base editing efficiency and the frequencies of edited outcomes can differ depending on

sequence context. We used BE-Hive23 to predict the outcomes of edited variants and their

associated probabilities for all gRNAs in the same BRCA1 base editing assay, restricting our

analysis to 2,113 edited variants with over 50% outcome probability. Using the BE-Hive pipeline

and FUSE together, we estimated functional scores for 12,088 variants, including 9,975 variants
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which were not directly assayed. Among these variants, we observed greater separation

between the P/LP and B/LB variant groups with functional scores estimated by FUSE (Figure

S4B, KS p=3.28x10-77). Furthermore, we were able to improve the separation of P/LP and B/LB

variants in a broader multi-gene base editing assay covering DNA Damage Response (DDR)

genes (Figure S4C, KS p=2.9x10-5) from the original functional scores (KS p=0.0884),

dramatically increasing the number of variants with functional scores from the original 1,643

variants to 12,096 variants.

To measure the utility of the FUSE pipeline on different functional screening approaches, we

estimated effects in a DMS assay covering variants in TP5317 and a saturation genome editing

assay of BRCA1.14 In the TP53 assay, we observed slightly increased score separation at the

margins for some variants, but found similar overall significance of separation using our

estimated functional scores (Figure 3D, KS p=2.44x10-45) when compared with the original

scores (Figure 3A KS p=1.38x10-43). In the BRCA1 assay, we found similar results with FUSE

separating variant groups (Figure S5B, KS p=3.55x10-20) compared with the original scores (KS

p=4.11x10-22), noting that there are very few B/LB variants (n=31) overlapping with the functional

dataset. Finally, we estimated functional impacts using DMS data across 10 genes, and again

found similar significance in separating the P/LP and B/LB variant groups (Figure S5C, KS,

p=8.41x10-58, training described in STAR Methods) compared to the original functional scores

(KS, p=7.47x10-56). These assays have nearly complete coverage of possible coding variants,

so they had a limited number of additional sites imputed by the FUSE pipeline.

Validation using patient cancer outcomes in the UK Biobank

Next, we evaluated whether the FUSE pipeline can separate carriers of rare missense variants

at increased clinical risk of cancer in the UK Biobank.24 We first used the FUSE pipeline on
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functional data from TP53 and BRCA1 assays, blinded to patient phenotypic status (Methods),

and then assessed the significance of separation of patients who develop or do not develop

related cancer syndromes. In a TP53 DMS assay, functional impacts estimated by FUSE were

better at separating patients who develop Li-Fraumeni syndrome (LFS) related cancer

syndromes from those without LFS-related cancer syndromes (Figure 4D, p=1.77x10-6) when

compared with the original functional scores (Figure 4A, p=2.26x10-4). In a BRCA1 saturation

genome editing assay, the pipeline better separated patients who developed early-onset breast

cancer from those without breast cancer (Figure S6A, KS p=0.025). Similarly, in a BRCA1 base

editing assay, we found that FUSE increased the number of carriers for whom predictions can

be made from functional data (803 to 2,680), and improved the separation between early breast

cancer patients from non-breast cancer patients (Figure S6D, KS p=0.00993).

Discussion

Experimental assays provide a unique lens into the functional effects of missense variants. Prior

methods have used deep mutational scanning data to resolve VUSs, to estimate the functional

effects of amino acid substitution types, and to inform library design.23,28 While functional assays

are excellent proxies of the impact of variants, these measurements may be individually noisy.

As deep mutational scanning methods generate nearly complete information about substitutions

in a protein region, there is a great deal of correlated information. FUSE takes advantage of

such repeated and related measurements to reduce variance and improve estimates of

functional effect. Additionally, screening techniques such as base editing assays can only install

a subset of possible coding variants. FUSE is able to make estimates for these variants which

could not be experimentally screened, dramatically expanding the overlap with clinical variant

datasets.
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In the clinical domain, reclassifying VUSs is a critical translational gap: for most patients who

have no clinical indication for testing (those prospectively screened, or in biobanks), current

practice guidelines discourage the reporting of VUSs in the context of screening or secondary

findings,5 even though they may confer increased risk. However, it is still challenging to

determine which are likely to be highly impactful versus those which may have limited or no

effects. When patients and clinicians have incomplete or incorrect information, it can result in

serious clinical and/or sociological consequences, including unnecessary surveillance or

irreversible prophylactic surgery.25,26 In one retrospective study of BRCA1 or BRCA2 VUS

carriers, 39% of individuals without cancer opted to receive a bilateral mastectomy, and among

all patients with and without cancer, and 21 of 97 or 22% of patients had a VUS reclassified,

with 95% downgraded to benign.27 While the evidence base has significantly improved with

extensive diagnostic sequencing and expert review panels, resolving the many outstanding VUS

classifications remains an important goal.

At present, there are a limited number of comprehensive DMS datasets for human genes.

These datasets were ascertained due to their clinical importance for a set of phenotypes, which

could affect the generalizability of these results. As additional screening data become available

in public repositories such as MaveDB and through screening consortia such as IGVF (Impact

of Genomic Variation on Function), we expect the quality and generalizability of FUNSUM and

FUSE to improve.

There are also challenges in integrating multiple datasets into a single functional substitution

matrix. Given that functional screens use different experimental platforms, screening strategies,

phenotypic readouts, and experimental conditions (e.g., treatment groups), the ability to

combine these datasets may pose challenges. Furthermore, there may be differing functional
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effects across proteins or protein domains and regions, which may require the pre-selection of

regions which are likely to have functional impact, such as regions under negative selection,

experimentally identified as deleterious, or statistically enriched in cases. Finally, though the

FUSE pipeline improves the global estimation of variants (JSE has been shown to dominate the

maximum likelihood estimator (MLE) in terms of total squared error), JSE is a biased estimator,

which could negatively affect individual estimates which are indeed outliers. The larger the

variance is within any population of variants, the more biased the estimation of the population

mean will be towards the global mean.

Future work may focus on the integration of computational predictions of variant effect with

FUSE estimates, and in rational library design which makes use of this pipeline, as the search

space of all possible non-synonymous variants is intractably large for even the most

high-throughput approaches. We demonstrated that the FUSE estimation pipeline improves

correlation among functional studies, better separates variants which have been previously

classified as pathogenic or benign, and significantly separates variation in individuals with and

without disorders. In conclusion, this approach promises to improve the quality and broaden the

utility of data generated from deep mutational scanning assays.

STAR★Methods

Key resources table

REAGENT or

RESOURCE

SOURCE IDENTIFIER

Deposited Data
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BRCA1 base editing

dataset

Sangree AK, Griffith AL, Szegletes ZM, et al.

Benchmarking of SpCas9 variants enables deeper

base editor screens of BRCA1 and BCL2. Nat

Commun. 2022

Supplementary Dataset 5

Supplementary Dataset 6

DNA damage

response variants

base editing dataset

Cuella-Martin R, Hayward SB, Fan X, et al.

Functional interrogation of DNA damage response

variants with base editing screens. Cell. 2021

Table S6 (Relevant sgRNAs

MCF10A)

DMS datasets of

ADRB2, HRAS,

MAPK1, UBE2I,

SUMO1, CALM1,

TPK1

Livesey BJ, Marsh JA. Using deep mutational

scanning to benchmark variant effect predictors

and identify disease mutations. Mol Syst Biol. 2020

Figshare identifier:

12369359.v1

VKOR DMS dataset Chiasson MA, Rollins NJ, Stephany JJ, et al.

Multiplexed measurement of variant abundance

and activity reveals VKOR topology, active site and

human variant impact. Elife. 2020

Supplementary file 6

BRCA1 SGE dataset Findlay GM, Daza RM, Martin B, et al. Accurate

classification of BRCA1 variants with saturation

genome editing. Nature. 2018

Supplementary file 2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 7, 2023. ; https://doi.org/10.1101/2023.01.06.23284280doi: medRxiv preprint 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28884-7/MediaObjects/41467_2022_28884_MOESM9_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28884-7/MediaObjects/41467_2022_28884_MOESM10_ESM.xlsx
https://www.cell.com/cms/10.1016/j.cell.2021.01.041/attachment/6d9a15e7-fa20-4305-8054-99735cb3cd15/mmc6.xlsx
https://figshare.com/articles/dataset/Raw_variant_effect_predictions_and_DMS_data_for_benchmarking_variant_effect_predictors_/12369359/1
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTgwMjYvZWxpZmUtNTgwMjYtc3VwcDYtdjEuY3N2/elife-58026-supp6-v1.csv?_hash=K9Cej66q0D8H2rZuLN3Hm6VpMVjMsa7clkQm015qZEI%3D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181777/bin/NIHMS1501643-supplement-2.xlsx
https://doi.org/10.1101/2023.01.06.23284280
http://creativecommons.org/licenses/by-nc-nd/4.0/


TP53 DMS dataset Giacomelli AO, Yang X, Lintner RE, et al.

Mutational processes shape the landscape of TP53

mutations in human cancer. Nat Genet. 2018

Supplementary Table 3

DMS datasets of

PTEN and TPMT

Matreyek KA, Starita LM, Stephany JJ, et al.

Multiplex assessment of protein variant abundance

by massively parallel sequencing. Nat Genet. 2018

Supplementary Dataset 1

Supplementary Dataset 2

NUDT15 DMS dataset Suiter CC, Moriyama T, Matreyek KA, et al.

Massively parallel variant characterization identifies

NUDT15 alleles associated with thiopurine toxicity.

Proc Natl Acad Sci U S A. 2020

Dataset_S01

Software and Algorithms

R The R project v4.1.2

tidyverse CRAN v1.3.1

openxlsx CRAN v4.2.4

hrbrthemes CRAN v0.8.0
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Resource availability

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact,

Christopher Cassa ccassa@bwh.harvard.edu.

Materials availability

This study did not generate new unique reagents.

Experimental model and subject details

No experimental models were utilized as part of this publication. No novel subjects were

collected as part of this publication.

Method details

Selection and pre-processing of existing deep mutational scanning datasets

We make use of prior deep mutational scanning (DMS) assays generated across a variety of

genes which span a variety of experimental platforms and cell types11–13,29 as input for building a

functional substitution matrix (FUNSUM), on the basis of their nearly-complete coverage of

possible amino acid substitutions, and a correlation analysis of functional effects across genes

(Figure S5). DMS and base editing data from BRCA1, and DMS data from TP53 were held

aside for validation purposes, given their clinical significance and the many variants in these

genes annotated in ClinVar.

To make use of the data collectively, we normalize functional effects across experiments. For

each DMS dataset, median standardization was used (functional scores were standardized by

subtracting the median functional score and then dividing by the standard deviation of all
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scores.) Next, we use known pathogenic and benign variants from ClinVar to align the direction

of effect of the functional score to ensure the score of mean pathogenic variants is greater than

the mean score of benign variants. In genes where benign variants were not present in ClinVar,

the mean of all variant scores was used in place to align the direction of DMS scores.

FUSE pipeline overview

The functional effect of an amino acid substitution can be influenced by both the position of the

amino acid within the protein, as well as the impact of the specific substitution. Thus, we dissect

the functional effect into a positional component and a substitution component. The positional

component can be estimated as the mean functional effect of all possible coding

non-synonymous substitutions at a given AA residue position, when accounting for the specific

substitutions which are measured. The substitution component represents the remaining

expected variation in functional effect after being positionally normalized.

The estimation pipeline makes use of the James-Stein estimator (JSE), a shrinkage estimator

that brings the sample mean of individual populations closer to the global mean of all

populations. The pipeline has several stages: 1) using a large set of previously generated deep

mutational scanning (DMS) data, we estimate the positional mean value for mutations at each

AA residue in 8 genes, which is then used to 2) calculate the positionally-normalized activity of

each possible observed amino acid substitution across the genes, 3) using these normalized

observations, we then estimate the mean substitution value and assemble it as the functional

substitution matrix (FUNSUM), which captures the impact of substitutions, regardless of the

effect of gene and amino acid positions. 4) To apply this pipeline on new functional assay data,

the scores need to be first normalized by median and standard deviation, and their positional
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means estimated by JSE, and 5) then individual scores are calculated as the sum of the

positional mean estimate and the substitution scores in FUNSUM.

Estimating positional mean functional values from reference datasets

For each of the pre-processed DMS datasets, functional scores can be arranged into a n by m

matrix, where n is the total number of amino acid positions with functional scores, and m is the

21 possible amino acid substitutions (including the stop codon) that can occur (Figure 1, step

1). The mean functional values for the n amino acid positions can be calculated simultaneously

using the James-Stein Estimator (JSE). JSE considers all observed values simultaneously and

outperforms MLE mean estimates in terms of total squared errors when three or more

dimensional data is available.30,31 As n >> 3, JSE should be able to yield better positional

estimates than MLE. Let mbar be the global mean functional score, muMLE be a vector of

positional mean functional scores calculated via MLE, and s2 be the global variance, then the

vector of positional mean functional scores estimated via JSE, muJSE,  can be calculated as

.𝑚𝑢
𝐽𝑆𝐸

 =  𝑚𝑏𝑎𝑟 +  (𝑚𝑢
𝑀𝐿𝐸

 −  𝑚𝑏𝑎𝑟) ×  (1 −  (𝑛 − 2) × 𝑆2 

Σ(𝑚𝑢
𝑀𝐿𝐸

 − 𝑚𝑏𝑎𝑟)2 )

Developing an amino acid substitution matrix derived from functional data

For a given amino acid position, individual functional scores can be positionally normalized by

subtracting the positional mean functional value estimated via JSE (Figure 1, step 2). Here we

aggregate the positionally normalized functional scores from all 9 reference DMS datasets, and

re-organize them based on the reference (wild-type) amino acid. Functional scores associated

with the same reference amino acid can be further arranged into an n by m matrix, where n is

the 21 possible amino acid substitutions (including the stop codon) that can occur, and m is the

total number of occurrences of the substitutions. Similarly, we use JSE to estimate the mean

functional effects for the n amino acid substitutions simultaneously (Figure 1, step 3). Finally,
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the mean functional effects of substitutions from all possible reference amino acids can be

combined to form the FUNSUM (Functional Substitution Matrix) amino acid substitution matrix.

Making estimates of functional effect for individual allelic variants

To improve estimates for individual allelic variants in a new functional dataset, we order the

functional scores into an n by m matrix, where n is the total number of amino acid positions with

functional scores, and m is the 21 possible amino acid substitutions (including the stop codon)

that can occur. The positional mean effect for each amino acid position is estimated using JSE

(Figure 1, step 4). Next, for an allelic variant, we start with the positional mean value, and then

add or subtract the residual value from the FUNSUM matrix, using the value for the specific

amino acid substitution caused by the allelic variant. Using this approach, it is possible to infer

the functional effects of variants for which we do not have primary measurements.

Validation using clinical diagnostic (ClinVar) and patient data (UK Biobank)

We used variants with known clinical significance in Clinvar to assess how well the functional

scores of pathogenic variants can be separated from benign variants. We retrieved all known

pathogenic (P/LP) and benign (B/LB) variant annotations for all genes. The distribution of

normalized functional scores, the positional component scores, the substitution component

scores, the improved scores, and the improved scores with predictions were compared between

benign variants and pathogenic variants. The Kolmogorov-Smirnov (KS) test was used to test

for significant differences between the scores of the benign group and the pathogenic group.

Patient data from UK Biobank was used to identify cancer and non-cancer patient groups

related to each functional dataset, and similarly the KS test was used to quantify the distance

between the variant scores of the cancer and the non-cancer groups. For both the BRCA1 DMS

dataset, we identified BRCA1 variants that were carried by breast cancer patients and BRCA1
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variants that were carried by non-breast cancer patients. For the BRCA1 base editing dataset,

the cancer group was further filtered to include only patients less than 50 years old, and the

non-cancer group only included patients more than 65 years old to test for early onset of breast

cancer. For the TP53 DMS dataset, we identified variants that were carried by patients with

cancers associated with Li-Fraumeni Syndrome (LFS) and TP53 variants that were carried by

patients without LFS-associated cancers. UK Biobank recorded cancer types that were

associated with LFS included skin cancer, brain cancer, adrenal cancer, non-hodgkin's

lymphoma, bone metastases, leukemia, acute myeloid leukemia, breast cancer, and

fibrosarcoma.

Clinical diagnostic variants

We analyze all nsSNVs in ClinVar,32 and label variants as pathogenic, or P/LP if the Clinical

Significance label is ‘Pathogenic’, ‘Likely pathogenic’, and ‘Pathogenic/Likely pathogenic’, and

benign, or B/LB if the Clinical Significance label is ‘Benign’, ‘Likely benign’, and ‘Benign/Likely

benign’.

UK Biobank: study design, setting, and participants

The UK Biobank (UKB) is a prospective cohort of over 500,000 individuals recruited between

2006 and 2010 of ages 40-69 years.24 200,625 participants with exome sequencing data were

included in this analysis. Analysis of the UKB data was approved by the Mass General Brigham

Institutional Review Board (Protocol 2020P002093). Analysis was performed under UKB

application #41250.

Exome sequencing and variant annotation

Exome sequencing was performed for UKB participants as previously described.24 Variant allele

frequencies were estimated from the Genome Aggregation Database (gnomAD v2.1 exomes
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N=125,748). Variants were included with population maximum allele frequencies of <=0.005

(Ensembl gnomAD plugin)33 or if not present in gnomAD. Functional annotations are derived

from Variant Effect Predictor (v106).34 Variant functional consequences are calculated for the

canonical transcript, and include synonymous, missense, or predicted LOF variants. The

predicted LOF category includes nonsense variants.

Clinical endpoints

The primary clinical endpoints were specific to each condition: breast cancer (BC) for BRCA1

variants and Li-Fraumeni syndrome (LFS) for TP53 variants. Case definitions for BC and LFS

use phenocodes for each related syndrome in the UKB based on hospitalization records,

cancer, and death registries, previously described at the disorder level.35

Correlation analysis for gene-specific and leave-one-out FUNSUM matrices

To measure the correlation between each gene and its associated DMS assay data, we built

gene-specific FUNSUM matrices using only normalized DMS data from each gene, and

measured the Pearson correlation between matrices from every possible gene pair (Figure S2).

We found that FUNSUM matrices built using the SUMO1, CALM1 and TPK1 datasets had a

lower correlation with the FUNSUM matrices built from DMS datasets of other genes.

Accordingly, we excluded SUMO1, CALM1, and TPK1 when building the final version of

FUNSUM.

To confirm the functional effects which are captured by FUNSUM are not driven by any specific

dataset, we conducted a leave-one-out correlation analysis using 13 alternative FUNSUM

matrices, each using the DMS functional scores from 12 out of 13 genes as input. High

correlation was consistently observed among the alternative FUNSUM versions and the final
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version of the FUNSUM (Figure S1, R2>0.95), indicating that the functional effects captured by

FUNSUM are stable and not biased by any single functional assay.

Robustness of the pipeline to improve the estimation of variants

For each DMS dataset from the 10 genes, we estimated the functional scores using an

alternative FUNSUM generated without that particular dataset. The estimated functional scores

were aggregated across 10 genes, and were similarly validated on the ClinVar variants with

clinical assertions. For the variants originally included in the assays, the estimated functional

scores showed greater significance in separating the P/LP and B/LB variant groups (Figure

S5C, KS, p=8.41x10-58) compared to the original functional scores (KS, p=7.47x10-56). It shows

that the pipeline can consistently enhance the functional effect from the assays despite slight

changes in FUNSUM.

Statistical Tests

We use the one-sided Kolmogorov-Smirnov test when determining differences in functional

scores for each variant or patient distribution, performed using R version v4.1.2, tidyverse

v1.3.1, shiny v1.7.1, vroom v1.5.7, and DT v0.21. Figures were made using R version v4.1.2,

and tidyverse v1.3.1.

Data and code availability

Pretrained models, usage examples, and documentation of downloadable code can be found on

GitHub at github.com/cassalab/fuse. The online version of FUSE is available at

https://tyu7.shinyapps.io/FUSE. Fully downloadable processed scores for each variant used in

this study is available at

figshare.com/articles/dataset/FUSE_estimated_score_figshare_xlsx/21644711.
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Figures

Figure 1: FUNSUM and BLOSUM62 substitution matrices. The FUNSUM matrix is generated
by calculating the residual effects of each amino acid substitution, using a multi-stage pipeline
that leverages shrinkage estimation (James-Stein estimator). For comparison purposes, both
the FUNSUM and BLOSUM62 substitution matrices were normalized by standard deviation.
Higher scores reflect more deleterious substitutions, with unavailable data colored in gray. The
FUNSUM matrix identifies strong functional effects from known damaging changes, including
substitutions to proline or termination codons.
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Figure 2: Distribution of estimated functional impact from base editing data for clinically
significant variants. Clinically significant variants were categorized into benign/likely benign
group (B/LB, blue) and pathogenic/likely pathogenic group (P/LP, red) based on ClinVar
annotations. For each score component below, the Kolmogorov–Smirnov (KS-test) is used to
measure the significance of difference between the B/LB and the P/LP groups. [A] Normalized
variant functional scores from a published BRCA1 base editing dataset. [B] Positional mean
effect as estimated by JSE, the mean effect of any substitution at the AA residue position. [C]
Substitution impact estimated from the FUNSUM amino acid substitution matrix. [D] FUSE
estimated functional scores for variants in the original assay. [E] FUSE estimated functional
scores for variants that were assayed or can be predicted. [F] The number of assayed and
predicted variants with functional impact score estimated by FUSE. [G] Receiver operating
characteristic curve (ROC) for classification of variants with existing clinical assessments
(ClinVar). Logistic regression models were trained on the functional scores of pathogenic and
benign variants in the DMS datasets of 10 genes, and were used to classify pathogenic and
benign variants in a separate BRCA1 base editing dataset. One model was trained and tested
on functional scores from the original assay (red), and the other model was trained and tested
on the functional score estimated by FUSE.
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Figure 3: Density distribution of estimated functional impact from deep mutational
scanning (DMS) data for clinically significant variants. Clinically significant variants were
categorized into benign/likely benign group (B/LB, blue) and pathogenic/likely pathogenic group
(P/LP, red) based on ClinVar annotations. For each score component below, the
Kolmogorov–Smirnov (KS-test) is used to measure the significance of difference between the
B/LB and the P/LP groups. [A] Normalized variant functional scores from a published TP53
DMS dataset. [B] Positional mean effect as estimated by JSE, the mean effect of any
substitution at the AA residue position. [C] Substitution impact estimated from the FUNSUM
amino acid substitution matrix. [D] FUSE estimated functional scores for variants in the original
assay. [E] FUSE estimated functional scores for variants that were assayed or can be predicted.
[F] The number of assayed and predicted variants with functional impact score estimated by
FUSE.
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Figure 4: Density distribution of estimated functional impact of variants in patient groups
categorized by UKBB patient characteristics. The patients who carried TP53 variants were
categorized by whether they had Li-Fraumeni syndrome associated cancers (LFS, red), or did
not have Li-Fraumeni syndrome associated cancers (Non-LFS, blue). The patient score was
represented by the functional score of the TP53 variants detected. Patients with multiple TP53
variants were very rare and not included. The numbers of patients in each group are indicated
by their corresponding color. For each score component below, the Kolmogorov–Smirnov
(KS-test) is used to measure the significance of difference between the non-cancer and cancer
groups. [A] Normalized variant functional scores from a published TP53 DMS dataset. [B]
Positional mean effect as estimated by JSE. [C] Substitution impact estimated from the
FUNSUM amino acid substitution matrix. [D] FUSE estimated functional scores for variants in
the original assay. [E] FUSE estimated functional scores for variants that were assayed or can
be predicted. [F] The number of patients that carry variants with functional impact score
assayed or predicted by FUSE.
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Supplementary Figures

Figure S1: Pearson correlation of various versions of FUNSUM and BLOSUM62.
To test the robustness of FUNSUM, alternative FUNSUMs were generated by pooling
all available DMS data while excluding data from one gene each time. High correlation
was observed among the alternative FUNSUMs and the final FUNSUM, while a lower
degree of correlation was observed between the FUNSUM and BLOSUM62 matrices.
The BLOSUM62 matrix was inverted to match the direction of FUNSUM.
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Figure S2: Pearson correlation of FUNSUM generated using DMS data from
individual genes. FUNSUM generated from SUMO1, CLAM1 and TPK1 had lower
correlation with the FUNSUM generated from the rest of the DMS data, and was
therefore excluded from the input DMS data used for generating the final version of the
FUNSUM. The black box shows the hierarchical clustering result for 2 clusters.
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Figure S3: Comparison between FUNSUM and BLOSUM62 in estimating impacts
of functional effects using FUSE pipeline. Clinically significant variants were categorized
into benign/likely benign group (B/LB, blue) and pathogenic/likely pathogenic group (P/LP, red)
based on ClinVar annotations. The numbers of variants included in the B/LB and the P/LP
groups are indicated by their corresponding color. For each score and score component, the
Kolmogorov–Smirnov (KS-test) was performed to evaluate how much separation can be
achieved between the B/LB and the P/LP groups. [A] FUSE estimated functional scores for
variants in the original assay, using FUNSUM as the substitution matrix. [B] FUSE estimated
functional scores for variants that were assayed or can be predicted, using FUNSUM as the
substitution matrix. [C] FUSE estimated functional scores for variants in the original assay, using
normalized BLOSUM62 as the substitution matrix. [D] FUSE estimated functional scores for
variants that were assayed or can be predicted, using normalized BLOSUM62 as the
substitution matrix.
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Figure S4: Density plots of predicted functional impact from base editing data for
clinically significant variants. Clinically significant variants were categorized into benign/likely
benign group (B/LB, blue) and pathogenic/likely pathogenic group (P/LP, red) based on ClinVar
annotations. There are three sets of analyses: [A] a large base editing assay in BRCA1, [B] the
same large base editing assay in BRCA1 with substitutions predicted by the BE-Hive algorithm,
and [C] another large base editing assay in a set of DNA Damage Repair related genes. Within
each analysis, there are five row panels: 1) The normalized variant functional scores from the
original base editing dataset, 2) the mean positional score as estimated by James-Stein
estimation, 3) the predicted impact of the substitution using FUNSUM, 4) the estimated
functional score for each variant using the FUSE pipeline, on the originally assayed set of
variants, and 5) the estimated functional score for each variant that was assayed or can be
inferred using the FUSE pipeline. Numbers of variants in each analysis are included in the
legend. For each score and score component, the Kolmogorov–Smirnov (KS-test) was
performed to evaluate how much separation can be achieved between the B/LB and the P/LP
groups.
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Figure S5: Score density plot for clinically significant variants in deep mutational
scanning (DMS) datasets. Clinically significant variants were categorized into benign/likely
benign group (B/LB, blue) and pathogenic/likely pathogenic group (P/LP, red) based on ClinVar
annotations. There are three sets of analyses: [A] a DMS assay in TP53, [B] a saturation
genome editing assay in BRCA1, and [C] a collection of DMS datasets in 10 genes, where each
gene’s variant scores were estimated by FUSE with a version of FUNSUM constructed without
this gene’s DMS data. Within each analysis, there are five row panels, 1) The normalized variant
functional scores from the original base editing dataset, 2) the mean positional score as
estimated by James-Stein estimation, 3) the predicted impact of the substitution using
FUNSUM, 4) the estimated functional score for each variant using the FUSE pipeline, on the
originally assayed set of variants, and 5) the estimated functional score for each variant that
was assayed or can be inferred using the FUSE pipeline. Numbers of variants in each analysis
are included in the legend. For each score and score component, the Kolmogorov–Smirnov
(KS-test) was performed to evaluate the separation between the B/LB and P/LP groups.
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Figure S6: Score density plots for patient groups categorized by UKBB patient
characteristics in DMS and base editing datasets. The patient score was calculated as the
average variant score of BRCA1 or TP53 variants detected in each patient. For BRCA1, the
patients were categorized by whether they had breast cancer (red), or did not have breast
cancer (blue). For TP53, the patients were categorized by whether they had Li-Fraumeni
syndrome associated cancers (LFS, red), or did not have Li-Fraumeni syndrome associated
cancers (Non-LFS, blue). n is the number of patients with a score available. For each score and
score component, KS-tests were performed to evaluate the dissimilarity of distributions in the
non-cancer group and the cancer groups. [A] Patient scores derived from BRCA1 DMS dataset.
[B] Patient scores derived from TP53 DMS dataset. [C] Patient scores derived from BRCA1
base-editing dataset, amino acid changes annotated by the original paper. [D] Patient scores
derived from BRCA1 base-editing dataset, amino acid changes predicted by BE-Hive algorithm.
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