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1  |  INTRODUCTION

While chronological age is arguably the strongest determinant of 
risk for major chronic diseases, it alone is not sufficient to reflect 
the state of biological aging. Individuals with similar chronological 
ages are heterogeneous in their physiological states, and subse-
quent health risks, due to differences in both the rate and manner 

of biological aging. As a result, efforts have been launched to de-
velop measures that can capture the concept of biological age (BA) 
(Ferrucci et al., 2020). Typically, these measures encompass single 
or composite biomarkers found to be associated with a surrogate 
of biological age, usually chronological age or mortality. In principle, 
a valid BA measure needs to outperform chronological age in pre-
dicting lifespan and a wide range of age- sensitive tests in multiple 
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Abstract
Biological age measures outperform chronological age in predicting various aging 
outcomes, yet little is known regarding genetic predisposition. We performed 
genome- wide association scans of two age- adjusted biological age measures 
(PhenoAgeAcceleration and BioAgeAcceleration), estimated from clinical biochem-
istry markers (Levine et al., 2018; Levine, 2013) in European-descent participants 
from UK Biobank. The strongest signals were found in the APOE gene, tagged by the 
two	major	protein-	coding	SNPs,	PhenoAgeAccel—	rs429358	(APOE	e4	determinant)	
(p = 1.50 × 10−72);	BioAgeAccel—	rs7412	 (APOE e2 determinant) (p = 3.16 × 10−60). 
Interestingly, we observed inverse APOE	 e2	 and	 e4	 associations	 and	 unique	 path-
way	enrichments	when	comparing	the	two	biological	age	measures.	Genes	associated	
with BioAgeAccel were enriched in lipid related pathways, while genes associated 
with PhenoAgeAccel showed enrichment for immune system, cell function, and car-
bohydrate homeostasis pathways, suggesting the two measures capture different 
aging domains. Our study reaffirms that aging patterns are heterogeneous across in-
dividuals, and the manner in which a person ages may be partly attributed to genetic 
predisposition.

K E Y WO RD S
APOE, biomarkers, cardiac aging, inflammaging, polygenic risk score

www.wileyonlinelibrary.com/journal/acel
mailto:
https://orcid.org/0000-0003-4452-2380
https://orcid.org/0000-0003-4919-9068
mailto:
https://orcid.org/0000-0001-9890-9324
http://creativecommons.org/licenses/by/4.0/
mailto:morgan.levine@yale.edu
mailto:kuo@uchc.edu


2 of 17  |     KUO et al.

physiological	and	behavioral	domains	 (Butler	et	al.,	2004).	BA	pre-
dictors may help discover drivers of the aging process and can be 
used for secondary prevention by identifying at- risk individuals prior 
to disease onset. Additionally, they have been proposed as tools to 
monitor intervention or treatment effects aimed at targeting the 
aging process.

A variety of data modalities, covering different biological levels 
of	organization,	have	been	used	to	develop	BA	predictors,	for	exam-
ple,	DNA	methylation	data,	gene	expression	data,	proteomic	data,	
metabolomic data, and clinical chemistry measures (Jylhävä et al., 
2017). A study comparing 11 BA predictors found low agreement 
between	those	based	on	DNA	methylation,	clinical	biomarkers,	and	
telomere length, in terms of both their correlations with each other 
and their relative associations with healthspan- related characteris-
tics: balance, grip strength, motor coordination, physical limitations, 
cognitive decline, self- rated health, and facial aging (Belsky et al., 
2018). These findings suggest that different BA predictors may be 
capturing distinct aspects of the aging process. Furthermore, a re-
cent paper (Ahadi et al., 2020) combining various omics data iden-
tified distinct “ageotypes”, which represent diverse aging patterns 
across individuals.

We	hypothesize	that	 individual	susceptibility	to	one	biological	
aging domain versus another may be due in part to underlying ge-
netic mechanisms. To test the hypothesis, we used data from the 
UK Biobank study to understand genetic predisposition to accel-
erated aging, measured by two validated biological age predictors, 
PhenoAge (Levine et al., 2018) and BioAge (Levine, 2013). PhenoAge 
and BioAge were previously trained for mortality and chronologi-
cal age, respectively, as surrogates of biological age, using the bio-
marker	data	 from	 the	National	Health	 and	Nutrition	Examination	
Survey	(NHANES)	III	in	the	United	States	(US).	Biomarkers	were	se-
lected based on associations with the biological age surrogates for 
both measures and knowledge regarding their role or dependency 
in the aging process also for BioAge. Details on variable selection 
and methods to construct PhenoAge and BioAge are provided in 
the	Methods.	PhenoAge	is	a	function	of	chronological	age,	albumin,	
creatinine, C- reactive protein (CRP), alkaline phosphatase, glucose, 
lymphocyte percentage, mean corpuscular volume, red blood cell 
distribution width (RDW), and white blood cell count. BioAge is a 
function of chronological age, albumin, creatinine, CRP, and alkaline 
phosphatase (also in PhenoAge), plus glycated hemoglobin (HbA1c), 
systolic blood pressure, and total cholesterol. Both aging mea-
sures have been shown to be robust predictors of aging outcomes 
(Levine, 2013; Levine et al., 2018; Liu et al., 2018) yet are clearly 
distinct. Biological age acceleration measured by either biological 
age measure adjusted for chronological age (PhenoAgeAccel or 
BioAgeAccel) was similarly associated with morbidity and mortality 
in	the	full	sample	and	subgroups	of	National	Health	and	Nutrition	
Examination	 Survey	 (NHANES)	 IV,	 but	 PhenoAgeAccel	 outper-
formed BioAgeAccel in those disease- free and with normal body 
mass index (Liu et al., 2018). We applied PhenoAge and BioAge that 
were	previously	 trained	using	the	US	NHANES	 III	data	 to	 the	UK	
Biobank	 for	 genome-	wide	 association	 studies	 (GWASs).	 Overall,	

this study is fully supported by UK Biobank, featured by a large 
sample and extensive genetic and phenotypic data.

2  |  RESULTS

451,367	 genetically-	determined	 Europeans	 were	 identified	 in	 UK	
Biobank. Of whom, 379,703 unrelated participants were included 
in	 analyses.	 Among	 the	 included	 samples	 (Table	 S1),	 204,736	
(54%)	 participants	 were	 female.	 After	 a	 mean	 follow-	up	 time	 of	
11.49	years	(standard	deviation	(SD)	=	1.55)	to	April	26,	2020	(last	
death in the data), 23,060 participants died with the mean age at 
death	69.06	years	(SD	=	7.21,	range:	40.84	to	82.50).	A	summary	of	
PhenoAge or BioAge biomarkers is provided in Table S1.

Participants were biologically younger than their chronological 
ages,	with	the	mean	PhenoAge	and	BioAge,	54.43	years	(SD	=	9.56)	
and 56.16 years (SD = 8.17) versus the mean chronological age 
56.74	 years	 (SD	 =	 8.02).	 PhenoAge	 acceleration	 (PhenoAgeAccel)	
estimated	 by	 residualizing	 PhenoAge	 based	 on	 chronological	 age	
via a linear regression model was weakly correlated (r = 0.23) with 
BioAge acceleration (BioAgeAccel) that was similarly defined. Both 
BioAgeAccel and PhenoAgeAccel were significantly associated with 
all- cause mortality in this young cohort (p < 2 × 10−6),	with	the	haz-
ard	 ratio	 (HR)	 1.100	 (95%	CI:	 1.097	 to	 1.102)	 per	 year	 increase	 in	
PhenoAgeAccel	and	1.054	(95%	CI:	1.046	to	1.062)	per	year	increase	
in BioAgeAccel. In the above models, sex was included, additional to 
chronological age and PhenoAge or BioAge. When both PhenoAge 
and	 BioAge	 were	 included,	 the	 hazard	 ratio	 with	 PhenoAgeAccel	
was	little	changed	(HR	=	1.099,	95%	CI:	1.097	to	1.102)	but	that	with	
BioAgeAccel	(HR	=	1.000,	95%	CI:	0.992	to	1.008)	was	reduced	to-
ward the null.

The data was split with a 1 to 2 ratio, where PhenoAge was avail-
able	for	107,460	participants	in	the	training	set	and	for	214,192	par-
ticipants	in	the	testing	set.	Similarly,	BioAge	was	available	for	98,446	
participants	 in	 the	training	set	and	for	195,847	participants	 in	 the	
testing set. The training set was used to perform genome- wide asso-
ciation	analysis	and	the	GWAS	summary	statistics	were	used	to	con-
struct polygenic risk scores (PRSs) in the testing set, evaluated for 
the use of risk stratification for a variety of age- related outcomes. 
Demographics and PhenoAge or BioAge biomarker levels were quite 
balanced between the training and testing sets (Table S2).

2.1  |  PhenoAgeAccelGWAS

In	the	Genome-	Wide	Association	Study	(GWAS)	of	PhenoAgeAccel,	
7,561 genetic variants were identified (p < 5 × 10−8)	(Manhattan	plot	
in	Figure	1,	including	the	top	10	mapped	genes	of	lead	SNPs	detailed	
in	Table	1).	The	SNP	p-	value	distribution	showed	sizable	deviation	
from the null distribution of no association. However, there was a 
lack of evidence of population stratification or cryptic relatedness 
(LD score regression intercept 1.02 with the standard error (SE) 
0.01, compared to the null value 1; genomic inflation factor 1.12), 
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and the proportion of inflation not explained by polygenic heritabil-
ity	was	only	6.33%	(SE	=	3.06%).

The	 SNP-	heritability	 for	 PhenoAgeAccel	 was	 estimated	 to	
be	 14.45%	 (SE	 =	 0.95%).	 We	 identified	 55	 independent	 signals	
(p < 5 × 10−8)	tagged	by	55	lead	SNPs.	Of	which,	29	were	near	genes	
(Table 1). Both APOE	isoform	coding	SNPs	(rs429358	and	rs7412	on	
chromosome	19)	were	 identified.	Multiple	 lead	SNPs	were	associ-
ated with CRP, glucose or HbA1c, and hematology traits, based on 
previous	GWAS	catalog	(Buniello	et	al.,	2019)	results	(Table	S3).	Lead	
SNPs	nearby	GCKR, FTO, ZPR1, and APOE were associated with var-
ious traits including cardiovascular diseases and/or PhenoAge bio-
markers (Table S3).

The	 Multi-	marker	 Analysis	 of	 GenoMic	 Annotation	 (MAGMA)	
gene set analysis identified 11 gene sets at the Bonferroni- corrected 
level	of	5%,	 including	regulation	of	signaling	and	transcription,	ho-
meostasis (carbohydrate homeostasis, homeostasis of number of 

cells, and myeloid cell homeostasis), and immune system process 
(Figure	2).	In	the	MAGMA	tissue	expression	analysis,	we	found	that	
genes expressed in whole blood and liver were more likely to be as-
sociated with PhenoAgeAccel than genes expressed in other tissues 
(Figure 3).

2.2  |  BioAgeAccelGWAS

In	 the	 GWAS	 for	 BioAgeAccel,	 996	 genetic	 variants	 were	 iden-
tified (p < 5 × 10−8)	 (Manhattan	plot	 in	Figure	1	 including	 the	 top	
10	mapped	genes	of	 lead	SNPs	detailed	 in	Table	2).	The	observed	
p- value distribution was significantly deviant from the expected 
under the null (Figure 2). However, there was no evidence to suggest 
population stratification or cryptic relatedness (LD score regression 
intercept = 1.02, SE = 0.01; genomic control factor 1.11), and the 

F IGURE 1 PhenoAgeAccel	(bottom)	and	BioAgeAccel	(top)	Manhattan	plots	(colors	to	separate	adjacent	chromosomes	without	other	
indications),	including	the	top	10	mapped	genes	of	lead	SNPs	(see	Tables	2	and	3)
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proportion of inflation not explained by polygenic heritability was 
small,	6.58%	(SE	=	3.78%).

The	 SNP-	heritability	 for	 BioAgeAccel	 was	 estimated	 to	 be	
12.39%	(SE	=	0.95%).	Twenty	lead	SNPs	were	identified	(p < 5 × 10−8) 
and 16 were nearby genes (Table 2). The strongest signal appeared 
in the APOE gene, tagged by the APOE	isoform	coding	SNP	rs7412.	
Several	lead	SNPs	were	associated	with	blood	pressures.	Other	lead	
SNPs	were	 associated	with	HbA1c,	 cardiovascular	 disease,	 and/or	
lipid	biomarkers	(Table	S4).

The	MAGMA	gene	set	analysis	 identified	10	 lipid-	related	gene	
sets	at	the	Bonferroni-	corrected	level	of	5%,	including	lipid	homeo-
stasis, lipid protein particle clearance, and triglyceride- rich plasma 
lipoprotein	particle	 (Figure	2).	None	of	 the	53	 tissues	showed	sig-
nificant specificity in gene expression for the genes associated with 
BioAgeAccel (Figure 3).

2.3  |  PhenoAgeAccelGWASvs
BioAgeAccelGWAS

PhenoAgeAccel	and	BioAgeAccel	shared	the	 lead	SNPs,	rs560887	
(near SPC25, G6PC2), rs17321515 (near AC091114.1),	 rs16926246	
(near HK1),	and	rs7412	(near	APOE). Interestingly, three out of four 
common	lead	SNPs	were	oppositely	associated	with	PhenoAgeAccel	
and BioAgeAccel.

• The rs560887T allele, associated with decreased HbA1c (An 
et	al.,	2014;	Wheeler	et	al.,	2017),	 is	associated	with	decreased	
BioAgeAccel and PhenoAgeAccel.

•	 The	 rs16926246	 C	 allele,	 associated	 with	 increased	 HbA1c	
(Soranzo	et	al.,	2010),	 is	associated	with	increased	BioAgeAccel,	
but decreased PhenoAgeAccel.

TABLE 1 Genetic	loci	associated	with	PhenoAgeAccel	(p < 5 × 10−8) that can be mapped to genes

SNP Chr bp refA freq bJ bJ_se pJ Genes

rs1801133 1 11856378 G 0.66 −0.13 0.022 1.28E−09 MTHFR

rs12037222 1 40064961 G 0.77 −0.2 0.025 1.98E−15 PABPC4 -  HEYL

rs1805096 1 66102257 G 0.63 0.2 0.021 1.01E−20 LEPR

rs4129267 1 154426264 C 0.59 0.16 0.021 6.73E−15 IL6R

rs7553007 1 159698549 G 0.67 0.19 0.022 2.44E−17 CRP -  AL445528.1

rs12239046 1 247601595 T 0.37 −0.12 0.021 1.40E−08 NLRP3

rs3811444 1 248039451 C 0.66 0.18 0.022 2.61E−16 TRIM58

rs1260326 2 27730940 T 0.39 −0.13 0.021 2.29E−09 GCKR

rs6734238 2 113841030 A 0.6 −0.13 0.021 1.51E−10 IL1F10 -  RNU6- 1180P

rs560887 2 169763148 T 0.3 −0.18 0.023 1.72E−15 SPC25, G6PC2

rs35188965 5 1104938 C 0.42 0.15 0.021 5.45E−13 SLC12A7

rs7775698 6 135418635 C 0.74 0.16 0.024 9.60E−12 HBS1L

rs592423 6 139840693 A 0.45 0.14 0.021 3.38E−11 AL592429.2

rs17321515 8 126486409 A 0.53 −0.14 0.021 4.08E−12 AC091114.1

rs8176746 9 136131322 G 0.94 0.28 0.043 4.54E−11 ABO

rs7908745 10 45953767 A 0.68 −0.14 0.022 1.31E−09 MARCH8

rs16926246 10 71093392 C 0.87 −0.2 0.031 1.46E−10 HK1

rs174548 11 61571348 C 0.69 0.26 0.022 8.18E−31 FADS1, FADS2

rs964184 11 116648917 G 0.13 −0.17 0.03 3.28E−08 ZPR1

rs2393791 12 121423956 C 0.38 −0.15 0.021 7.45E−12 HNF1A

rs8013143 14 23494277 A 0.72 −0.17 0.023 4.66E−14 PSMB5

rs3169166 15 78563103 A 0.58 0.16 0.021 1.34E−14 DNAJA4

rs9939609 16 53820527 T 0.61 −0.16 0.021 1.62E−13 FTO

rs9914988 17 27183104 G 0.2 −0.14 0.026 3.20E−08 ERAL1

rs8078723 17 38166879 T 0.61 −0.21 0.021 6.25E−23 PSMD3 -  AC090844.3

rs9944715 18 43831259 A 0.25 −0.16 0.024 6.09E−11 C18orf25

rs1985157 19 18513594 T 0.59 −0.14 0.021 1.10E−10 LRRC25 -  SSBP4

rs429358 19 45411941 T 0.84 0.52 0.029 1.50E−72 APOE

rs7412 19 45412079 C 0.92 −0.36 0.038 3.07E−21 APOE

Abbreviations:	Chr:	chromosome,	bp:	base	pairs	(Genome	Reference	Consortium	Human	Build	37),	refA:	reference/effect	allele,	freq:	reference	
allele frequency, bJ, bJ_se, pJ: regression coefficient and the associated standard error and p-	value,	adjusted	for	other	lead	SNPs,	SNPs	overlapped	
between PhenoAgeAccel and BioAgeAccel in gray.
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• The rs17321515 A allele, associated with increased triglycerides 
(Kathiresan et al., 2008), is associated with increased BioAgeAccel, 
but decreased PhenoAgeAccel.

•	 The	rs7412T	allele,	or	APOE e2 determined allele, associated with 
increased longevity (Deelen et al., 2019), is associated with de-
creased BioAgeAccel, but increased PhenoAgeAccel.

2.4  | Geneticassociations

Among the biomarkers, PhenoAge acceleration was genetically 
highly correlated with RDW (rg = 0.65), followed by CRP (rg	=	0.48),	
and then white blood cell count (rg	=	0.46)	 (Figure	S2).	BioAge	ac-
celeration was genetically highly correlated with systolic blood pres-
sure (rg	=	0.84),	followed	by	alkaline	phosphatase	(rg	=	0.43),	and	then	
CRP (rg = 0.36) (Figure S2).

The genetic correlation between PhenoAgeAccel and 
BioAgeAccel	 was	 0.42	 (SE	 =	 0.047).	 Both	 PhenoAgeAccel	 and	
BioAgeAccel had low genetic correlations with gastrointestinal dis-
eases	 (GWAS	summary	 statistics	 from	 (Liu	et	 al.,	 2015)),	 prostate,	
and	 breast	 cancers	 (Michailidou	 et	 al.,	 2017;	 Schumacher	 et	 al.,	

2018),	and	Alzheimer's	disease	(Jansen	et	al.,	2019)	(Figure	S3).	Both	
were genetically correlated with coronary artery disease (CAD) 
(CARDIoGRAMplusC2013	 Consortium	 et	 al.,	 2013)	 (rg = 0.27 
with PhenoAgeAccel, rg = 0.38 with BioAgeAccel), osteoarthri-
tis (Zengini et al., 2018) (rg =0.30 with PhenoAgeAccel, rg = 0.25 
with	 BioAgeAccel),	 stroke	 (Malik	 et	 al.,	 2018)	 (rg = 0.30 with 
PhenoAgeAccel, rg	 =	 0.34	 with	 BioAgeAccel),	 chronic	 kidney	 dis-
ease (Pattaro et al., 2016) (rg = 0.35 with PhenoAgeAccel, rg = 0.26 
with	BioAgeAccel),	type	II	diabetes	(Mahajan	et	al.,	2018)	(rg = 0.36 
with PhenoAgeAccel, rg	=	0.33	with	BioAgeAccel),	a	49-	item	frailty	
including pains and diseases (Atkins et al., 2019) (rg	 =	 0.34	 with	
PhenoAgeAccel, rg = 0.27 with BioAgeAccel), and parental mortality 
(Timmers et al., 2019) (rg	=	0.42	with	PhenoAgeAccel,	rg	=	0.45	with	
BioAgeAccel) (Figure S3).

PhenoAgeAccel (rg	=	0.44)	was	genetically	more	positively	cor-
related	with	body	mass	index	(BMI)	than	BioAgeAccel	(rg	=	0.24).	
Waist	 circumstance	 and	 waist-	hip	 ratio,	 adjusted	 for	 BMI	 and	
physical activity (Pulit et al., 2019), were not correlated with 
PhenoAgeAccel genetically, but a modest genetic correlation 
was found between BioAgeAccel and waist- hip ratio (rg = 0.16). 
BioAgeAccel (systolic: rg	 =	 0.84,	 diastolic:	 rg = 0.57) also was 

F IGURE 2 Significant	gene	sets	identified	by	MAGMA	for	PhenoAgeAccel	(in	red)	and	BioAgeAccel	(in	green)	at	the	Bonferroni-	corrected	
level, 0.05/10,678 for 10,678 gene sets)
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genetically more positively correlated with systolic and diastolic 
blood pressures than PhenoAgeAccel (systolic: rg = 0.23, diastolic: 
rg	=	0.17).	Genetically	increased	PhenoAgeAccel	and	BioAgeAccel	
were	correlated	with	lower	forced	vital	capacity	(FVC)	and	forced	
expiratory	volume	in	one	second	(FEV1)	to	a	moderate	degree	but	
not	with	 the	FEV1/FVC	 ratio.	 The	 genetic	 correlations	between	
PhenoAgeAccel or BioAgeAccel with heel bone mineral density 
and heart rate variability (the root mean square of the successive 
differences	 of	 inter	 beat	 intervals,	 RMSSD)	 (Nolte	 et	 al.,	 2017)	
were	minimal	(Figure	S4).

PhenoAgeAccel was genetically more correlated than 
BioAgeAccel with hematology traits with no surprise as four hema-
tological measures are included in PhenoAge versus none in BioAge 
(Figure S5). PhenoAgeAccel and BioAgeAccel were genetically as-
sociated with different cholesterol biomarkers: total cholesterol, 
LDL cholesterol, and apolipoprotein B with BioAgeAccel, and HDL 
cholesterol and apolipoprotein A- 1 with PhenoAgeAccel. Similarly, 
BioAgeAccel was genetically more correlated than PhenoAgeAccel 
with the liver biomarkers of alanine aminotransferase, aspartate ami-
notransferase, and gamma glutamyltransferase, whereas albumin, 

F IGURE 3 Association	between	tissue-	specific	gene	expression	and	PhenoAgeAccel-	gene	or	BioAgeAccel-	gene	association	(p- values 
significant at the Bonferroni- corrected level 0.05/53 for 53 tissue types in red bars and others in green bars)
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another liver biomarker, was more correlated with PhenoAgeAccel 
genetically. PhenoAgeAccel also was genetically more correlated than 
BioAgeAccel with creatinine, cystatin C, HbA1c, and CRP –  biomark-
ers linked to kidney function, diabetes, and inflammation (Figure S6).

2.5  |  Polygenicriskscores

5,198	 SNPs	 (p	 <	 0.0064)	 were	 selected	 to	 calculate	 PRSs	 for	
PhenoAgeAccel,	 which	 explained	 0.50%	 of	 the	 variance	 in	
PhenoAge,	 in	 addition	 to	 74.23%	 by	 other	 covariates,	 primarily	
baseline chronological age, plus sex, baseline assessment center, 
genotyping array type, and the first five genetic principal com-
ponents.	 Similarly,	 146,223	 SNPs	 (p	 <	 0.45)	 were	 selected	 for	
BioAgeAccel,	 accounting	 for	 0.068%	 of	 the	 variance	 in	 BioAge,	
independent	 of	 94.49%	 by	 baseline	 chronological	 age	 and	 other	
covariates.	 SNPs	were	 selected	 for	 PRS	 to	 best	 explain	 the	 vari-
ance of PhenoAge or BioAge given other covariates were in the 
model.	More	SNPs	were	included	in	the	PRS	of	BioAgeAccel	than	
in the PRS of PhenoAgeAccel likely due to the small residual vari-
ance	after	accounting	 for	other	covariates	and	also	small	SNP	ef-
fects in general for BioAgeAccel. While the variance independently 
explained	by	the	PRS	was	minimal,	the	top	20%	(high-	risk	class)	and	
bottom	20%	 (low-	risk	class)	of	PRS	showed	distinct	aging	pheno-
types.	We	here	focus	on	the	top	20%	PRS	results	but	include	those	
comparing	the	top	40–	60%	to	the	bottom	20%	in	the	forest	plots	
(Figures	 4,	 5,	 S7,	 and	 S8).	 Overall,	 the	 disease	 risk	 or	mean	 trait	
value increased or decreased with PRS quintiles, but the trend was 

not always linear. We chose to present the results for the third and 
fifth quintile groups versus the first quintile group to preserve the 
trends,	while	also	minimizing	noise	in	the	figure.	A	summary	of	the	
aging traits in the testing set is provided in Table S5.

The	top	20%	was	compared	to	the	bottom	20%	of	PhenoAgeAccel	
or BioAgeAccel PRS for a variety of aging traits adjusting for base-
line chronological age, sex, baseline assessment center, genotyping 
array type, and the first five genetic principal components. The 
mean	 difference	 in	 PhenoAge	 between	 the	 top	 and	 bottom	 20%	
of	 PhenoAgeAccel	 PRS	 (0.20	 SD,	 95%	 CI:	 0.19	 to	 0.21	 SD)	 was	
larger than the mean difference in BioAge between the top and 
bottom	20%	of	BioAge	PRS	(0.073	SD,	95%	CI:	0.070	to	0.076	SD)	
in terms of either SD, PhenoAge SD = 9.56 and BioAge SD = 8.17. 
PhenoAge and BioAge share CRP, creatinine, and alkaline phospha-
tase in composition. Higher levels of the three biomarkers, partic-
ularly	CRP,	were	observed	in	the	top	20%	than	in	the	bottom	20%	
of	PhenoAgeAccel	or	BioAgeAccel	PRS	(top	left,	Figure	4).	The	top-	
and- bottom mean difference of PhenoAgeAccel PRS was larger than 
that of BioAgeAccel PRS in biomarkers that appear in PhenoAge but 
not	 in	BioAge,	and	vice	versa	 (top	 left,	Figure	4).	 Interestingly,	 the	
top	20%	of	PhenoAgeAccel	PRS	had	lower	mean	cholesterol	(−0.09	
SD,	95%	CI:	−0.10	 to	−0.07	SD)	 than	 the	bottom	20%,	which	was	
opposite	 for	BioAgeAccel	 that	 the	 top	20%	had	0.09	SD	 (95%	CI:	
0.08	to	0.11	SD)	higher	mean	cholesterol	than	the	bottom	20%	(top	
left,	Figure	4).	The	opposite	trend	was	also	found	in	mean	corpuscu-
lar volume, with smaller top- and- bottom mean differences (top left, 
Figure	4).	Additional	biomarker	and	blood	count	PRS	association	re-
sults are provided in Figures S7 and S8.

TABLE 2 Genetic	loci	associated	with	BioAgeAccel	(p < 5 × 10−8) that can be mapped to genes

SNP Chr bp refA freq bJ bJ_se pJ Genes

rs17367504 1 11862778 A 0.84 0.07 0.012 9.03E−10 MTHFR

rs11591147 1 55505647 G 0.98 0.23 0.033 7.91E−13 PCSK9

rs541041 2 21294975 G 0.18 −0.09 0.011 2.33E−14 APOB -  AC010872.2

rs560887 2 169763148 T 0.3 −0.06 0.009 9.83E−11 SPC25, G6PC2

rs16998073 4 81184341 A 0.71 −0.05 0.009 2.46E−08 PRDM8 -  FGF5

rs1173771 5 32815028 A 0.4 −0.05 0.009 6.19E−09 NPR3 -  AC025459.1

rs17477177 7 106411858 T 0.8 −0.09 0.011 4.62E−17 AC004917.1 
-  LINC02577

rs17321515 8 126486409 A 0.53 0.06 0.009 2.20E−12 AC091114.1

rs16926246 10 71093392 C 0.87 0.09 0.013 7.77E−13 HK1

rs2274224 10 96039597 G 0.57 0.05 0.009 2.41E−10 PLCE1, PLCE1- AS1

rs17249754 12 90060586 G 0.83 0.07 0.011 9.41E−09 ATP2B1

rs7497304 15 91429176 G 0.67 −0.05 0.009 1.89E−08 FES

rs55791371 19 11188153 A 0.88 0.14 0.013 4.95E−26 SMARCA4

rs58542926 19 19379549 C 0.92 0.11 0.016 1.78E−11 AC138430.1, 
TM6SF2

rs7412 19 45412079 C 0.92 0.26 0.016 3.16E−60 APOE

rs1327235 20 10969030 A 0.52 −0.05 0.009 1.02E−08 AL050403.2

Abbreviations:	Chr:	chromosome,	bp:	base	pairs	(Genome	Reference	Consortium	Human	Build	37),	refA:	reference/effect	allele,	freq:	reference	
allele frequency, bJ, bJ_se, pJ: regression coefficient and the associated standard error and p-	value,	adjusted	for	other	lead	SNPs,	SNPs	overlapped	
between PhenoAgeAccel and BioAgeAccel in gray.
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The	top	20%	of	BioAgeAccel	PRS	were	more	 likely	 to	die	early	
(HR	=	1.12,	95%	CI:	1.05	to	1.19)	and	have	higher	parental	mortality	
risk	(HR	=	1.11,	95%	CI:	1.09	to	1.13),	and	were	less	likely	to	have	both	
parents	survive	to	the	top	10%	of	sex-	specific	lifespans	(OR	=	0.73,	
95%	CI:	0.66	to	0.81)	than	the	bottom	20%.	Similar	results	were	ob-
served for PhenoAgeAccel PRS, but with smaller risk ratios, partici-
pant	mortality	HR	=	1.07	(95%	CI:	1.00	to	1.13),	parental	mortality	
HR	=	1.03	(95%	CI:	1.01	to	1.05),	and	parental	longevity	OR	=	0.97	
(95%	CI:	0.88	to	1.07)	(bottom	left,	Figure	4).	We	also	found	higher	
likelihoods of chronic pain and Fried frailty (Fried et al., 2001) (frail, 
if	3	or	more	items	checked)	for	the	top	20%	versus	the	bottom	20%	
when considering either PhenoAgeAccel or BioAgeAccel PRS. The 
top	20%	of	PhenoAgeAccel	or	BioAgeAccel	PRS	was	associated	with	
higher	mean	BMI	and	more	deficits	in	a	49-	item	frailty	(Williams	et	al.,	
2019) (a modified Rockwood frailty index, essentially accumulation 
of	deficits),	plus	lower	FVC	and	FEV1	(top	right,	Figure	4).	The	mean	
differences in systolic and diastolic blood pressures were much larger 
between	the	top	20%	and	the	bottom	20%	of	BioAgeAccel	PRS	than	
that	of	PhenoAgeAccel	PRS	(top	right,	Figure	4).

Both PhenoAgeAccel and BioAgeAccel PRSs were not associ-
ated with prevalent cancers including prostate cancer, breast can-
cer,	and	colorectal	cancer	(bottom	right,	Figure	4).	The	associations	
of BioAgeAccel PRS were stronger than those of PhenoAgeAccel 
PRS with prevalent cardiovascular diseases, particularly CAD and 
hypertension	 (Figure	5).	The	odds	ratio	of	CAD	was	1.27	 (95%	CI:	
1.22	 to	1.33)	 and	 that	of	hypertension	was	1.58	 (95%	CI:	1.53	 to	
1.62)	comparing	the	top	20%	to	the	bottom	20%	of	BioAge	PRS.	At	

the biomarker levels, total cholesterol, low LDL cholesterol, apoli-
poprotein B, and triglycerides, risk factors of CAD, were elevated 
in	the	top	20%	of	BioAgeAccel	PRS	but	reduced	in	the	top	20%	of	
PhenoAgeAccel	PRS	compared	to	the	bottom	20%	of	each	(Figure	
S7). These biomarker results suggested the association between 
PhenoAgeAccel PRS and CAD was likely driven by non- lipid mecha-
nisms as indicated by the gene set analysis results.

PhenoAgeAccel PRS was more strongly associated than 
BioAgeAccel PRS with liver and kidney diseases (Figure 5) and the 
associated biomarkers, for example, albumin, total bilirubin, creat-
inine, and cystatin C (Figure S7), plus COPD, hypothyroidism, type 
I and type II diabetes, and rheumatoid arthritis (Figure 5). The odds 
ratio	of	type	I	diabetes	was	1.76	(95%	CI:	1.52	to	2.03)	and	that	of	
type	II	diabetes	was	1.38	(95%	CI:	1.30	to	1.45)	comparing	the	top	
20%	to	the	bottom	20%	of	PhenoAgeAccel	PRS,	and	those	compar-
ing	the	top	20%	to	the	bottom	20%	of	BioAgeAccel	PRS	were	1.12	
(95%	CI:	 0.98	 to	 1.30)	 for	 type	 I	 diabetes	 and	1.27	 (95%	CI:	 1.20	
to	1.34)	for	type	II	diabetes.	The	associations	of	PhenoAgeAccel	or	
BioAgeAccel PRS were minimal with bone diseases such as osteo-
porosis	and	osteoarthritis,	age-	related	macular	degeneration	(AMD),	
anxiety	and	depression,	and	two	neurological	disorders,	Parkinson's	
disease and delirium (Figure 5). A negative association was observed 
between	PhenoAgeAccel	PRS	and	dementia	(OR	=	0.80,	95%	CI:	0.67	
to 0.96). This was mainly driven by APOE, which when adjusted for 
completely	accounted	for	the	association	(OR	=0.97,	95%	CI:	0.80	to	
1.16). Consistently, the genetic association between PhenoAgeAccel 
and	Alzheimer's	disease	was	not	statistically	significant	(Figure	S3).

F IGURE 4 Comparisons	between	the	top	20%	or	40%-	60%	and	the	bottom	20%	of	PhenoAgeAccel	(in	red)	or	BioAgeAccel	(in	blue)	
Polygenic Risk Score (PRS) for biomarkers included in PhenoAge or BioAge and a variety of aging phenotypes (*significantly associated with 
the	top	20%	of	PhenoAgeAccel	PRS	at	the	5%	false-	discovery-	rate	adjusted	level;	+significantly	associated	with	the	top	20%	of	BioAgeAccel	
PRS	at	the	5%	false-	discovery	adjusted	level)
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2.6  |  BiologicalagemeasuresandAPOEgenotypes

Some of the strongest associations for both PhenoAgeAccel and 
BioAgeAccel were with APOE	 isoform	 coding	 SNPs,	 but	 the	 ef-
fect directions were opposite. The APOE e2 determined T allele 
of	 rs7412	 was	 associated	 with	 increased	 PhenoAgeAccel	 but	 de-
creased	BioAgeAccel.	Similarly,	the	rs429358	C	allele	 (APOE	e4),	a	
risk	 factor	 for	Alzheimer's	disease,	was	associated	with	decreased	
PhenoAgeAccel but increased BioAgeAccel although the association 
with	BioAgeAccel	didn't	reach	genome-	wide	significance	(p = 1.3 × 
10−7).

Taking a step further, we associated PhenoAge and BioAge with 
APOE	isoforms	determined	based	on	the	genotypes	of	rs429358	and	
rs7412.	For	BioAge,	results	suggested	that	e2e3	and	e2e2	were	both	
associated with younger BioAge relative to the reference genotype 
(e3e3),	while	e3e4	and	e4e4	exhibited	higher	BioAges,	where	 the	

results were adjusted for baseline chronological age, sex, genotyp-
ing array type, baseline assessment center, and the first five genetic 
principal components (Figure 6). When comparing APOE genotypes 
as	a	function	of	PhenoAge,	we	find	the	reverse—	e2e3	and	e2e2	ap-
peared	older	than	e3e3,	whereas	e3e4,	and	e4e4	appeared	younger.

To further disentangle the associations between APOE geno-
types and accelerated aging by the two biological age measures, we 
examined the associations between APOE genotypes and the indi-
vidual biomarkers that make up the composites. We found that the 
trend	of	mean	BioAge	(e4e4	>	e4e3	>	e3e3	>	e2e4	>	e2e3	>	e2e2)	
also held for total cholesterol, which was most strongly associated 
with APOE genotypes among the biomarkers of BioAge (Figure 6). 
When adjusting for total cholesterol, the trend of mean BioAge was 
reversed,	that	is,	e3e4	and	e4e4	younger	than	e2e3	and	e2e2,	sug-
gesting that decelerated BioAge associated with e2 was driven by 
differences in plasma total cholesterol levels. The biomarkers that 

F IGURE 5 Odds	ratios	(ORs)	for	
diseases	comparing	the	top	20%	
or	40%-	60%	to	the	bottom	20%	of	
PhenoAgeAccel (in red) or BioAgeAccel 
(in blue) polygenic risk score (PRS) 
(*significantly associated with the top 
20%	of	PhenoAgeAccel	PRS	at	the	5%	
false- discovery- rate adjusted level; 
+significantly	associated	with	the	top	
20%	of	BioAgeAccel	PRS	at	the	5%	false-	
discovery- rate adjusted level)
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appeared to show inverse associations (similar to PhenoAge) were 
RDW, CRP, alkaline phosphatase, creatinine, and white blood cell 
count. For all of these biomarkers there was a trend towards higher 
levels among participants with e2 alleles and lower levels among 
those	with	e4	alleles	(Figure	6).

2.7  |  ReplicationintheUSheathretirementstudy

Complete genetic and 2016 biomarker data to estimate PhenoAge 
and BioAge were available for 5,572 and 1,782 participants, respec-
tively. A summary for the PhenoAge and BioAge samples is provided 
in Table S6. We are underpowered to detect genome- wide signifi-
cance	based	on	the	HRS	sample	size	and	the	UKB	effect	sizes	 for	
most	 lead	SNPs.	However,	we	do	 find	 that	 in	HRS	both	 the	APOE 

SNPs	show	similar	effect	sizes	to	what	was	observed	in	UKB	for	the	
associations	with	 PhenoAgeAccel.	 For	 instance,	 rs429358	 in	HRS	
has	an	effect	size	of	b = 0.58 (p = 0.01), which is similar to the effect 
size	in	UKB	(b = 0.55, p = 7.8 × 10−83).	Similarly,	rs7412	has	an	effect	
size	of	b	=	−0.38	(p = 0.20) in HRS and b	=	−0.44	(p = 1.6 × 10−31) in 
UKB (Tables S7 and S8).

We also compared APOE genotypes, using e3e3 as the reference 
(Table	S9).	Overall,	the	three	e4	genotypes	showed	a	trend	toward	
decreased PhenoAge, similar to what was observed in UKB, although 
only	e2e4	significantly	differed	 from	e3e3	 (p	=	0.039),	while	e3e4	
was marginally decreased (p	=	0.054),	and	e4e4	was	not	significant	
(p = 0.912). Similarly, e2e2 and e2e3 showed a trend toward increased 
PhenoAge, with e2e2 being marginally significant (p = 0.058) and 
e2e3 not significant (p = 0.291). Overall, while we were underpow-
ered to replicate the findings for all genotypes, the trends remained 

F IGURE 6 Mean	standard	deviation	
(SD) differences between non- e3e3 
and e3e3 genotypes: (1) biomarkers of 
PhenoAge (top) or BioAge (bottom) sorted 
by p- value from left to right for the null 
hypothesis of no genotypic effects; (2) 
p < 0.05, p < 0.01, and p < 0.001 labelled 
by *, **, ***, respectively
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unchanged. Further, given that this was a replication, a one- sided p- 
value would be justified, and in that case, three of the genotypes 
significantly differed from e3e3 in the expected direction.

Finally,	the	GRS	using	the	PhenoAgeAccel	lead	SNPs	from	UKB	
was significantly associated with PhenoAgeAccel in HRS. The mean 
PhenoAge	was	 increased	by	0.80	years	 (95%	CI:	0.58	to	1.02,	p = 
1.42	×	10−12)	per	SD	 increase	 in	 the	GRS	of	PhenoAgeAccel,	with	
adjustment	for	age	in	2016,	sex,	and	PC1-	PC5.	rs7412	was	strongly	
associated with BioAgeAccel in UKB but the association cannot be 
replicated in HRS (Table S8), which also led to negative results with 
APOE	genotypes	(Table	S9)	and	the	GRS,	0.07	year	increase	in	mean	
BioAge	(95%	CI:	−0.03	to	0.17,	p	=	0.150)	per	SD	increase	in	the	GRS	
of BioAgeAccel, adjusted for age in 2016, sex, and PC1- PC5.

We	hypothesized	that	part	of	the	issue	of	replication	for	BioAge	
may stem from the lack of data for two of the measures –  HbA1c 
and systolic blood pressure, which were only available for half the 
sample due to the study design of HRS. For sensitivity analysis, we 
imputed	HbA1c	in	2016	using	HbA1c	in	2014	for	the	other	subsam-
ple and similarly for systolic blood pressure for BioAge. In the model, 
we included a dummy indicator to signify which samples used the 
2014	systolic	blood	pressure	and	HbA1c	to	calculate	BioAge,	which	
was not statistically significant (p	>	0.05)	across	models.	The	sample	
size	increased	from	1,782	to	4,909,	where	the	mean	age	and	BioAge	
decreased but the sex distribution and biomarker statistics were 
similar	(Table	S6).	The	associations	between	BioAge	and	BioAge	GRS	
or APOE genotypes remained statistically insignificant (p	 >	 0.05).	
One	SD	increase	in	BioAgeAccel	GRS	increased	the	mean	BioAge	by	
0.05	years	(95%	CI:	0.01	to	0.11,	p = 0.095), adjusted for age in 2016, 
sex,	 PC1-	PC5,	 and	 an	 indicator	 of	 using	2014	HbA1c	 and	 systolic	
blood pressure data. Additionally, the trend of associations between 
BioAge and APOE genotypes were inconclusive still (Table S9).

3  | DISCUSSION

Overall, our analysis using the UK Biobank biomarker data identified 
both overlapping and distinct genetic underpinnings of two widely 
applied biological age measures. Our results suggested that although 
the	estimated	heritability	is	similar	for	PhenoAgeAccel	(14.45%)	and	
BioAgeAccel	(12.39%)	with	the	genetic	correlation	being	0.42,	these	
two measures capture distinct aging domains with different genetic 
determinants, as a result of their differential biomarker composi-
tions.	SNPs	associated	with	BioAgeAccel	(p < 5 × 10−8) tended to re-
late to systolic blood pressure and lipid biomarkers, with enrichment 
analysis pointing to an increased proportion of genes involved in lipid 
homeostasis, plasma lipoprotein particle clearance, chylomicron, 
sterol homeostasis, and cholesterol transport activity. Conversely, 
SNPs	associated	with	PhenoAgeAccel	were	shown	to	relate	to	CRP,	
white blood cell count, and RDW, and were enriched in biological 
processes involved in regulation of cell signaling by CBL, transcrip-
tion, immune system process, and myeloid cell homeostasis.

The immune/inflammation versus lipid findings for 
PhenoAgeAccel and BioAgeAccel, respectively, were also 

recapitulated when comparing the associations between PRS 
and	 age-	related	 outcomes.	 Results	 suggested	 that	 the	 top	 20%	 of	
PhenoAgeAccel and BioAgeAccel PRS were differentially linked to 
a variety of diseases. For instance, BioAgeAccel PRS outperformed 
PhenoAgeAccel	PRS	in	prioritizing	cardiovascular	and	all-	cause	mor-
tality risk in this young cohort, while PhenoAgeAccel PRS showed 
more robust associations than BioAgeAccel PRS for liver/kidney 
diseases, and chronic inflammatory and autoimmune diseases. The 
stronger link between BioAgeAccel PRS and all- cause mortality (com-
pared to PhenoAgeAccel PRS) may be driven in part by its association 
with cardiovascular disease, which is the leading cause of death in 
the UK. By comparison, the diseases associated with PhenoAgeAccel 
PRS tend to contribute to major morbidity, while being less common 
causes of death. This may suggest that individuals genetically pre-
disposed to accelerated BioAge may be more likely to experience 
shortened lifespan, while those genetically predisposed to acceler-
ated PhenoAge, may not experience major reductions in lifespan, but 
may experience decreased healthspan (disease- free life expectancy). 
The hypothesis needs to be tested in older adults, however. Of note, 
accelerated aging is not only determined by genetics but also by en-
vironment. Interestingly, when considering the actual values rather 
than the PRS, accelerated PhenoAge is more strongly associated with 
all- cause mortality than accelerated BioAge in UK Biobank, which 
implies that the association between accelerated PhenoAge and all- 
cause mortality may be explained to a larger degree by the environ-
mental components.

The PhenoAgeAccel PRS was also related to dementia, but in 
the opposite than the expected direction, such that individuals 
with increased PhenoAgeAccel had reduced odds of dementia. 
This result was almost entirely driven by the association between 
PhenoAgeAccel and APOE, which is the most well- known genetic 
risk	 factor	 for	 late-	onset	Alzheimer's	disease	 (LOAD).	Our	 results	
suggested that while PhenoAgeAccel and BioAgeAccel were both 
associated with the two APOE	isoform	coding	SNPs	(rs429358	and	
rs7412),	the	relationships	were	inverse.	For	instance,	the	APOE	e4	al-
lele is traditionally associated with adverse health outcomes, includ-
ing	an	increased	risk	of	Alzheimer's	disease,	cardiovascular	disease,	
and reduced life expectancy, while the e2 allele confers protection. 
However, in our results, we observed increased PhenoAgeAccel 
associated with e2 genotypes and decreased PhenoAgeAccel asso-
ciated	with	e4	genotypes,	relative	to	the	common	e3e3	genotype.	
This paradoxical result was also found for a number of the biomark-
ers that make up PhenoAge, which likely explains this finding. For 
instance, APOE e2 allele was associated with higher CRP, RDW, al-
kaline phosphatase, creatinine, and white blood cell count, while 
APOE	e4	allele	was	generally	associated	with	lower	levels	of	these	
biomarkers (Kuo et al., 2020). These biomarkers are not specific to 
physiological functions or diseases but are more or less associated 
with inflammation, which suggests that e2 genotypes may be prone 
to higher inflammation levels on average, compared to e3e3s and 
e4	genotypes.	Our	biomarker	specific	finding	is	supported	by	a	pre-
vious study via CRP (one of the most popular inflammation mark-
ers) (Hubacek et al., 2010). Although the underlying mechanism is 
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not fully understood, it has been reported that high inflammation 
(high	CRP)	is	associated	with	increased	risk	of	Alzheimer's	disease	
among	e4	genotypes	(e3e4	or	e4e4)	but	less	so	among	non-	e4	gen-
otypes (Tao et al., 2018). This may suggest that increased inflam-
mation	levels	 in	e2	genotypes	does	not	 increase	their	Alzheimer's	
disease risk, but that higher PhenoAge and inflammation among 
e4	 genotypes	 could	 increase	 Alzheimer's	 disease	 risk.	 Contrary	
to PhenoAgeAccel, BioAgeAccel showed an expected association 
with APOE that consisted of decelerated aging among participants 
with	e2	alleles	and	accelerated	aging	among	participants	with	e4	
alleles. This association was accounted for by higher levels of total 
cholesterol among those with increased BioAgeAccel. This is in- line 
with APOE known function as a transporter of extracellular choles-
terol and the existing evidence suggesting those with the e2 allele 
exhibit reduced circulating cholesterol, particularly low- density li-
poproteins (LDL) (Kuo et al., 2020).

We were able to replicate the association in HRS between 
PhenoAge	and	PhenoAgeAccel	GRS	using	the	lead	SNPs	from	UKB	and	
showed similar trends for APOE, in which e2 is associated with higher 
PhenoAgeAccel	and	e4	is	associated	with	lower	PhenoAgeAccel.	The	
unsuccessful replication for BioAgeAccel may be explained by a small 
sample	 size	 or	 the	 instruction	 from	 the	 interviewer	 to	 the	 respon-
dent with a high systolic blood pressure to consult their physician as 
soon	as	possible	(stated	in	the	Documentation	of	Physical	Measures,	
Anthropometrics and Blood Pressure in the Health Retirement Study), 
which drove systolic blood pressures (SBPs) towards the mean, re-
duced	 the	BioAge-	SBP	correlation	 (Pearson	correlation	0.34	 in	HRS	
versus 0.51 in UKB) and associations between genetic variants and 
BioAgeAccel,	particularly	those	(e.g.,	rs7412)	associated	with	systolic	
blood pressure. Systolic blood pressure, as we have shown in Figure S2, 
had the highest genetic correlation with BioAgeAccel (rg	=	0.84,	Figure	
S2), compared to other BioAge biomarkers. At the end, more replica-
tion studies are needed to validate the UKB findings although it is chal-
lenging to find a large cohort with both genetic and biomarker data.

Inevitably, our study has limitations. The UK Biobank participants 
are healthier than the general population (Fry et al., 2017); therefore, 
are less susceptible to accelerated aging. The disease status was de-
termined based on self- reported doctor diagnoses at baseline and 
inpatient	electronic	health	records	to	2017.	Given	that	some	partici-
pants were still relatively young and will likely go on to develop late- 
onset morbidity, this will contribute to misclassification, which could 
lead to biased associations, towards the null if the misclassification is 
non-	differential.	Nevertheless,	when	disease	prognostic	biomarkers	
were	analyzed,	we	observed	consistent	 results.	Last	but	not	 least,	
our findings are based on European- descent participants and may 
not	be	generalizable	to	other	ancestry	populations.

Overall, the mapped genes and enriched genes sets highlight that 
these two biological age measures may capture different aspects of 
the	 aging	 process—	cardiometabolic	 by	 BioAge	 and	 inflammaging/
immunoscenece	 by	 PhenoAge.	 Nevertheless,	 PhenoAgeAccel	 and	
BioAgeAccel	PRSs	are	not	disease-	specific	and	can	be	used	to	prioritize	
genetic	risk	for	multiple	morbidity	or	mortality	outcomes—	particularly	
cardiovascular diseases and all- cause mortality via BioAge, and liver 

or kidney diseases, COPD, rheumatoid arthritis, hypothyroidism, and 
type I and type II diabetes via PhenoAge. Our findings confirm the 
hypothesis that individuals may age in different ways, due in part to 
different underlying genetic susceptibility. In moving forward, under-
standing	personalized	aging	susceptibility	phenotypes	has	important	
implications for primary and secondary disease interventions.

4  | METHODS

4.1  | UKBiobank

Over	 500,000	 participants	 between	 the	 ages	 of	 40	 and	 70	were	
recruited by UK Biobank from 2006 to 2010 (Bycroft et al., 2018; 
Sudlow	 et	 al.,	 2015),	 of	 which,	 over	 90%	 of	 the	 cohort	 were	
European- descent. Phenotypes considered in this study include 
participant mortality, parental lifespan, cognitive function, physical 
measures, and diseases. The death status was determined based on 
death	certificate	data,	updated	to	March	2020	for	all	participants.	
Some deaths were recorded in April 2020 but the mortality data 
for that month is incomplete. The disease diagnosis was confirmed 
based on self- reported doctor diagnoses at baseline, cancer registry 
data to 2016, and hospital admission records from 1996 to 2017. A 
list of disease ICD- 10 codes used to identify diseases is provided in 
Table S10. At recruitment, participants completed online question-
naire and physical measurements and their biological samples were 
collected for biomarker assays. Physical measurements were de-
scribed elsewhere (Kuo et al., 2020). A full list and technical details 
are available via the UK Biobank Biomarker Panel and UK Biobank 
Haematology Data Companion Document.

4.2  | Geneticdata

DNA	was	 extracted	 from	 blood	 samples	 and	 was	 genotyped	 using	
Affymetrix	UK	BiLEVE	Axiom	array	for	the	first	~50,000	participants	
and Affymetrix UK Biobank Axiom array for the remaining cohort –  
the	two	arrays	have	over	95%	content	overlap	(Bycroft	et	al.,	2018).	
Imputation was performed by the UK Biobank team using the reference 
panels	of	1000	Genomes	and	the	Haplotype	Reference	Consortium	
(HRC),	yielding	~93	million	variants	in	487,442	participants.	Of	whom,	
participants (n	=	968)	with	unusually	high	heterozygosity	or	missing	
genotype calls were further removed (Bycroft et al., 2018).

4.3  |  Biologicalagemeasures

PhenoAge and BioAge were previously trained using data from a US 
cohort	(NHANES	III)	in	separate	papers	(Levine,	2013;	Levine	et	al.,	
2018) that are available in the literature. PhenoAge was trained 
for mortality as a surrogate of biological age using all available bio-
markers (n	=	42)	 in	 the	NHANES	 III,	where	9	biomarkers	 selected	
by	Cox	penalized	regression	model	and	chronological	age	were	used	
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to	construct	PhenoAge	in	a	parametric	proportional	hazards	model	
based	on	the	Gompertz	distribution.	The	10-	year	mortality	risk	was	
converted to the unit of years to derive PhenoAge (Levine et al., 
2018). The formula of PhenoAge is given by

where mortality risk = 1– exp{– exp(xb) [exp (120γ)– 1]/γ}, γ = 0.0076927 
and xb	=	–	19.907	–	0.0336	×	albumin	+	0.0095	×	creatinine	+	0.1953	×	glu-
cose	+	0.0954	×	ln	(CRP)	–	0.0120	×	lymphocyte	percentage	+	0.0268	×	mean	
corpuscular	volume	+	0.3306	×	RDW	+	0.00188	×	 alkaline	phospha-
tase	+	0.0554	×	white	blood	cell	count	+	0.0804	×	age,	estimated	using	
the	NHANES	III	data	and	age denotes the chronological age.

BioAge (Levine, 2013) was trained for the biological age surro-
gate	of	chronological	age,	using	the	NHANES	III	data.	21	biomarkers	
were preselected for BioAge based on prior knowledge regarding 
their role or dependency in the aging process and a significant cor-
relation (r) with chronological age (p	<	0.05)	in	the	NHANES	III.	Of	
which, 10 were correlated with chronological age with Pearson cor-
relation	coefficients	greater	than	0.1	or	less	than	−0.1.	3	biomarkers	
were further removed for not significantly loaded on the first prin-
cipal component in men or in women based on the principal com-
ponents analysis results using the 10 biomarkers. Seven biomarkers 
and chronological age were used to calculate BioAge by applying an 
algorithm previously proposed by Klenmera and Doubal (Klemera & 
Doubal, 2006),

where xj denotes the level of j- th biomarker, with the corresponding 
parameters qj, kj, and sj provided in Table S11. age here, again, denotes 
the chronological age.

The PhenoAge or Bioage biomarkers in UK Biobank are summa-
rized	in	Table	S1,	after	setting	the	bottom	1%	of	values	to	the	first	
percentile	and	the	top	1%	to	the	99th	percentile	to	correct	the	skew-
ness of distributions. PhenoAge and BioAge were calculated per in-
dividual, applying the equations above to the UK Biobank biomarker 
data. Biological age acceleration was estimated by the residual of 
PhenoAge or BioAge after subtracting the effect of chronological 
age using a linear regression model, termed PhenoAgeAccel and 
BioAgeAccel, respectively.

4.4  |  Includedsamples

Participants of European descent were included, identified using 
genetic principal components analysis in detail in Thompson and 

colleagues (Thompson et al., 2019). Additionally, one in third- degree 
or closer pairs were removed, identified via pairwise kinship coef-
ficients. The sample was randomly split into a training and a testing 
set, with a 1 to 2 ratio. The training set was used to perform genome- 
wide association analysis with the results being used to create PRSs 
in the testing set to evaluate the use for risk stratification for age- 
related outcomes.

4.5  |  SNPqualitycontrol

Of	 93,095,623	 genotyped	 or	 imputed	 SNPs,	 16,446,666	 SNPs	
passed	 the	quality	 control,	where	 SNPs	were	 excluded	 if	meeting	
any of the criteria: (1) imputation information score <0.3, (2) minor 
allele	frequency	<0.1%,	(3)	Hardy–	Weinberg	equilibrium	test	p- value 
significant	 at	 the	 Bonferroni-	corrected	 level,	 (4)	 missing	 imputa-
tion information score, minor allele frequency, or Hardy– Weinberg 
equilibrium	test	result.	The	SNP	summary	statistics	were	calculated	
using the QCTOOL software version 2.

4.6  | Genome-wideassociationanalysis

The association between accelerated PhenoAge or BioAge with 
each	 SNP	was	 examined	 using	 an	 efficient	Bayesian	 linear	mixed	
effects	model	(BOLT-	LMM	software	version	2.2)	(Loh	et	al.,	2015)	
for the outcome of PhenoAge or BioAge with additive allelic effect 
of	the	candidate	SNP,	and	other	fixed	effects:	chronological	age	(to	
make the case of accelerated biological age), sex, genotyping array 
type, and assessment center, plus random polygenic and environ-
ment	effects.	By	default,	the	LD	scores	included	in	the	BOLT-	LMM	
for European- ancestry samples were used to calibrate the BOLT- 
LMM	statistic.	 SNP	p- values smaller than 5 × 10−8 were deemed 
to	 be	 statistically	 significant.	 Manhattan	 and	 tile–	quantile	 (Q–	Q)	
plots	were	 created	 for	 visualization	 using	 the	CMplot	 R	 package.	
The genomic inflation due to population stratification or cryptic re-
latedness was evaluated by linkage disequilibrium (LD) score regres-
sion	 (Bulik-	Sullivan	et	 al.,	 2015),	where	SNPs	were	 filtered	 to	 the	
HapMap3	SNPs,	well	 imputed	 in	most	 studies	 to	 avoid	 bias	 from	
poor imputation quality. The LD scores were downloaded from 
the url (https://data.broad insti tute.org/alkes group/ LDSCO RE/), 
precomputed using the European data from the 1000 genome pro-
ject phase 3.

We performed a stepwise model selection procedure on the 
genome-	wide	SNP	summary	 statistics	 to	 identify	 independent	 sig-
nals (p < 5 × 10−8) using the COJO (Conditional & Joint association 
analysis)	function	in	the	GCTA	(Genome-	wide	Complex	Trait	Analysis)	
software	version	1.92.1	beta6	Linux	(Yang	et	al.,	2012).	SNPs	more	
than 10,000 kb away from each other were assumed to be in com-
plete	linkage	equilibrium.	As	SNPs	were	selected,	those	with	multiple	
regression R2	greater	than	0.9	with	already	pre-	selected	SNPs	were	
excluded, so as not to include redundant signals from high LD. The 
loci	marked	by	the	selected	SNPs	were	mapped	to	genes	based	on	
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ln
{
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}

0.09165
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ln
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GRCh37/hg19	coordinates,	and	were	used	in	searches	for	published	
GWAS	associations	based	on	GWAS	catalog	(Buniello	et	al.,	2019).

4.7  | Geneenrichmentanalysis

The	 GWAS	 p-	values	 were	 analyzed	 by	 Multi-	marker	 Analysis	 of	
GenoMic	 Annotation	 (MAGMA)	 in	 FUMA	 (Functional	 Mapping	
and Annotation) (Watanabe et al., 2017) to perform a comparative 
gene- set analysis to test if genes in the gene set were more strongly 
associated with PhenoAgeAccel or BioAgeAccel than others, for 
10,678	gene	sets	(curated	gene	sets:	4,761,	GO	terms:	5,917)	from	
the	MsigDB	 v6.2.	 Additionally,	 a	 gene-	property	 analysis	 was	 per-
formed to test for positive relationships (one- sided test) between 
tissue- specific gene expression profiles and gene associations with 
PhenoAgeAccel or BioAgeAccel, using 53 tissue types from the 
GTEx	repository	version.	Both	test	results	were	adjusted	for	multi-
ple testing using the Bonferroni correction method.

4.8  | Geneticcorrelations

Genetic	correlations	of	PhneoAgeAccel	or	BioAgeAccel	were	calcu-
lated	by	LD	score	regression	(Bulik-	Sullivan	et	al.,	2015)	using	GWAS	
summary	statistics,	filtered	to	HapMap3	SNPs.	GWAS	summary	sta-
tistics	were	downloaded	from	previous	published	GWAS.	Those	of	
biomarkers, not limited to PhenoAge or BioAge biomarkers, were 
downloaded	 from	 the	 Ben	Neale	 Lab	 round	 2,	 where	 biomarkers	
were transformed by the rank- based inverse normal transformation, 
and	 the	 SNP-	biomarker	 associations	 were	 adjusted	 for	 age,	 age2, 
sex, age × sex, age2 × sex and the top 20 genetic principal compo-
nents in over 361,000 UK Biobank participants.

4.9  |  Polygenicriskscores

The PRSice- 2 software version 2.2.2 (Choi & O’Reilly, 2019) was used 
to	perform	polygenic	risk	score	(PRS)	analysis.	SNPs	were	clumped	
to	obtain	SNPs	in	low	LD	(r2	<	0.1)	in	a	250	base-	pair	window.	SNPs	
with p- values smaller than a threshold were used to calculate the 
PRS, sum of the effect alleles associated with accelerated aging, 
weighted	by	the	effect	size.	The	optimal	threshold	was	chosen	by	a	
grid search from 1 × 10−5 to 0.5 with the increment of 1 × 10−5 plus 1, 
such that the variance of PhenoAge or BioAge in the testing set was 
best explained by PRS, in addition to that by baseline chronologi-
cal age, sex, genotyping array type, baseline assessment center, and 
the first five genetic principal components. Subjects were equally 
divided	 into	five	groups	by	the	PRS,	where	the	top	20%	(high-	risk	
class)	was	compared	to	the	bottom	20%	(low-	risk	class)	 for	a	vari-
ety of aging traits (n = 111). The association analysis was conducted 
using a regression model, with adjustment for baseline chronologi-
cal age, sex, genotyping array type, baseline assessment center, 
and the first five genetic principal components: (1) Cox regression 

models	for	lifespan	outcomes	with	hazard	ratios	reported;	(2)	logis-
tic regression models for binary outcomes such as disease and pain 
outcomes with odds ratios reported; (3) linear regression models for 
continuous	outcomes	such	as	physical	measures	and	49-	item	frailty	
that	were	 z-	transformed	 so	 the	 regression	 coefficients	 associated	
with PRS quintiles were unit- free and represented the mean differ-
ences between quintiles in standard deviations (SDs). Log (e.g., cog-
nitive	function	measures	and	49-	item	frailty)	or	the	inverse	normal	
transformation (e.g., blood counts and biomarkers) may be applied 
before	the	z-	transformation	to	correct	the	distributional	skewness.	
Traits	 that	 show	significant	differences	between	 the	 top	20%	and	
the	bottom	20%	of	PRS	were	highlighted	at	the	5%	false-	discovery-	
rate	adjusted	level.	Results	comparing	the	top	40–	60%	to	the	bot-
tom	20%	of	PRS	were	also	included	in	forest	plots	to	examine	the	
dosage effects.

4.10  |  ReplicationintheUSheathretirementstudy

For replication, we used European- descent participants in the US 
Health Retirement Study (HRS) (Fisher & Ryan, 2018; Sonnega et al., 
2014)	to	test	the	associations	between	PhenoAgeAccel/BioAgeAccel	
and	the	UKB	lead	SNPs	individually,	their	genetic	risk	score	(GRS),	or	
APOE genotypes. Linear regression models were used, with adjust-
ment for age, sex, and the first five genetic principal components 
(PCs) (Pilling et al., 2017).
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