
Aging Cell. 2021;20:e13376.	 ﻿	   | 1 of 17
https://doi.org/10.1111/acel.13376

wileyonlinelibrary.com/journal/acel

1  |  INTRODUCTION

While chronological age is arguably the strongest determinant of 
risk for major chronic diseases, it alone is not sufficient to reflect 
the state of biological aging. Individuals with similar chronological 
ages are heterogeneous in their physiological states, and subse-
quent health risks, due to differences in both the rate and manner 

of biological aging. As a result, efforts have been launched to de-
velop measures that can capture the concept of biological age (BA) 
(Ferrucci et al., 2020). Typically, these measures encompass single 
or composite biomarkers found to be associated with a surrogate 
of biological age, usually chronological age or mortality. In principle, 
a valid BA measure needs to outperform chronological age in pre-
dicting lifespan and a wide range of age-sensitive tests in multiple 
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Abstract
Biological age measures outperform chronological age in predicting various aging 
outcomes, yet little is known regarding genetic predisposition. We performed 
genome-wide association scans of two age-adjusted biological age measures 
(PhenoAgeAcceleration and BioAgeAcceleration), estimated from clinical biochem-
istry markers (Levine et al., 2018; Levine, 2013) in European‐descent participants 
from UK Biobank. The strongest signals were found in the APOE gene, tagged by the 
two major protein-coding SNPs, PhenoAgeAccel—rs429358 (APOE e4 determinant) 
(p = 1.50 × 10−72); BioAgeAccel—rs7412 (APOE e2 determinant) (p = 3.16 × 10−60). 
Interestingly, we observed inverse APOE e2 and e4 associations and unique path-
way enrichments when comparing the two biological age measures. Genes associated 
with BioAgeAccel were enriched in lipid related pathways, while genes associated 
with PhenoAgeAccel showed enrichment for immune system, cell function, and car-
bohydrate homeostasis pathways, suggesting the two measures capture different 
aging domains. Our study reaffirms that aging patterns are heterogeneous across in-
dividuals, and the manner in which a person ages may be partly attributed to genetic 
predisposition.
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physiological and behavioral domains (Butler et al., 2004). BA pre-
dictors may help discover drivers of the aging process and can be 
used for secondary prevention by identifying at-risk individuals prior 
to disease onset. Additionally, they have been proposed as tools to 
monitor intervention or treatment effects aimed at targeting the 
aging process.

A variety of data modalities, covering different biological levels 
of organization, have been used to develop BA predictors, for exam-
ple, DNA methylation data, gene expression data, proteomic data, 
metabolomic data, and clinical chemistry measures (Jylhävä et al., 
2017). A study comparing 11 BA predictors found low agreement 
between those based on DNA methylation, clinical biomarkers, and 
telomere length, in terms of both their correlations with each other 
and their relative associations with healthspan-related characteris-
tics: balance, grip strength, motor coordination, physical limitations, 
cognitive decline, self-rated health, and facial aging (Belsky et al., 
2018). These findings suggest that different BA predictors may be 
capturing distinct aspects of the aging process. Furthermore, a re-
cent paper (Ahadi et al., 2020) combining various omics data iden-
tified distinct “ageotypes”, which represent diverse aging patterns 
across individuals.

We hypothesize that individual susceptibility to one biological 
aging domain versus another may be due in part to underlying ge-
netic mechanisms. To test the hypothesis, we used data from the 
UK Biobank study to understand genetic predisposition to accel-
erated aging, measured by two validated biological age predictors, 
PhenoAge (Levine et al., 2018) and BioAge (Levine, 2013). PhenoAge 
and BioAge were previously trained for mortality and chronologi-
cal age, respectively, as surrogates of biological age, using the bio-
marker data from the National Health and Nutrition Examination 
Survey (NHANES) III in the United States (US). Biomarkers were se-
lected based on associations with the biological age surrogates for 
both measures and knowledge regarding their role or dependency 
in the aging process also for BioAge. Details on variable selection 
and methods to construct PhenoAge and BioAge are provided in 
the Methods. PhenoAge is a function of chronological age, albumin, 
creatinine, C-reactive protein (CRP), alkaline phosphatase, glucose, 
lymphocyte percentage, mean corpuscular volume, red blood cell 
distribution width (RDW), and white blood cell count. BioAge is a 
function of chronological age, albumin, creatinine, CRP, and alkaline 
phosphatase (also in PhenoAge), plus glycated hemoglobin (HbA1c), 
systolic blood pressure, and total cholesterol. Both aging mea-
sures have been shown to be robust predictors of aging outcomes 
(Levine, 2013; Levine et al., 2018; Liu et al., 2018) yet are clearly 
distinct. Biological age acceleration measured by either biological 
age measure adjusted for chronological age (PhenoAgeAccel or 
BioAgeAccel) was similarly associated with morbidity and mortality 
in the full sample and subgroups of National Health and Nutrition 
Examination Survey (NHANES) IV, but PhenoAgeAccel outper-
formed BioAgeAccel in those disease-free and with normal body 
mass index (Liu et al., 2018). We applied PhenoAge and BioAge that 
were previously trained using the US NHANES III data to the UK 
Biobank for genome-wide association studies (GWASs). Overall, 

this study is fully supported by UK Biobank, featured by a large 
sample and extensive genetic and phenotypic data.

2  |  RESULTS

451,367 genetically-determined Europeans were identified in UK 
Biobank. Of whom, 379,703 unrelated participants were included 
in analyses. Among the included samples (Table S1), 204,736 
(54%) participants were female. After a mean follow-up time of 
11.49 years (standard deviation (SD) = 1.55) to April 26, 2020 (last 
death in the data), 23,060 participants died with the mean age at 
death 69.06 years (SD = 7.21, range: 40.84 to 82.50). A summary of 
PhenoAge or BioAge biomarkers is provided in Table S1.

Participants were biologically younger than their chronological 
ages, with the mean PhenoAge and BioAge, 54.43 years (SD = 9.56) 
and 56.16  years (SD  =  8.17) versus the mean chronological age 
56.74  years (SD  =  8.02). PhenoAge acceleration (PhenoAgeAccel) 
estimated by residualizing PhenoAge based on chronological age 
via a linear regression model was weakly correlated (r = 0.23) with 
BioAge acceleration (BioAgeAccel) that was similarly defined. Both 
BioAgeAccel and PhenoAgeAccel were significantly associated with 
all-cause mortality in this young cohort (p < 2 × 10−6), with the haz-
ard ratio (HR) 1.100 (95% CI: 1.097 to 1.102) per year increase in 
PhenoAgeAccel and 1.054 (95% CI: 1.046 to 1.062) per year increase 
in BioAgeAccel. In the above models, sex was included, additional to 
chronological age and PhenoAge or BioAge. When both PhenoAge 
and BioAge were included, the hazard ratio with PhenoAgeAccel 
was little changed (HR = 1.099, 95% CI: 1.097 to 1.102) but that with 
BioAgeAccel (HR = 1.000, 95% CI: 0.992 to 1.008) was reduced to-
ward the null.

The data was split with a 1 to 2 ratio, where PhenoAge was avail-
able for 107,460 participants in the training set and for 214,192 par-
ticipants in the testing set. Similarly, BioAge was available for 98,446 
participants in the training set and for 195,847 participants in the 
testing set. The training set was used to perform genome-wide asso-
ciation analysis and the GWAS summary statistics were used to con-
struct polygenic risk scores (PRSs) in the testing set, evaluated for 
the use of risk stratification for a variety of age-related outcomes. 
Demographics and PhenoAge or BioAge biomarker levels were quite 
balanced between the training and testing sets (Table S2).

2.1  |  PhenoAgeAccel GWAS

In the Genome-Wide Association Study (GWAS) of PhenoAgeAccel, 
7,561 genetic variants were identified (p < 5 × 10−8) (Manhattan plot 
in Figure 1, including the top 10 mapped genes of lead SNPs detailed 
in Table 1). The SNP p-value distribution showed sizable deviation 
from the null distribution of no association. However, there was a 
lack of evidence of population stratification or cryptic relatedness 
(LD score regression intercept 1.02 with the standard error (SE) 
0.01, compared to the null value 1; genomic inflation factor 1.12), 
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and the proportion of inflation not explained by polygenic heritabil-
ity was only 6.33% (SE = 3.06%).

The SNP-heritability for PhenoAgeAccel was estimated to 
be 14.45% (SE  =  0.95%). We identified 55 independent signals 
(p < 5 × 10−8) tagged by 55 lead SNPs. Of which, 29 were near genes 
(Table 1). Both APOE isoform coding SNPs (rs429358 and rs7412 on 
chromosome 19) were identified. Multiple lead SNPs were associ-
ated with CRP, glucose or HbA1c, and hematology traits, based on 
previous GWAS catalog (Buniello et al., 2019) results (Table S3). Lead 
SNPs nearby GCKR, FTO, ZPR1, and APOE were associated with var-
ious traits including cardiovascular diseases and/or PhenoAge bio-
markers (Table S3).

The Multi-marker Analysis of GenoMic Annotation (MAGMA) 
gene set analysis identified 11 gene sets at the Bonferroni-corrected 
level of 5%, including regulation of signaling and transcription, ho-
meostasis (carbohydrate homeostasis, homeostasis of number of 

cells, and myeloid cell homeostasis), and immune system process 
(Figure 2). In the MAGMA tissue expression analysis, we found that 
genes expressed in whole blood and liver were more likely to be as-
sociated with PhenoAgeAccel than genes expressed in other tissues 
(Figure 3).

2.2  |  BioAgeAccel GWAS

In the GWAS for BioAgeAccel, 996 genetic variants were iden-
tified (p < 5 × 10−8) (Manhattan plot in Figure 1 including the top 
10 mapped genes of lead SNPs detailed in Table 2). The observed 
p-value distribution was significantly deviant from the expected 
under the null (Figure 2). However, there was no evidence to suggest 
population stratification or cryptic relatedness (LD score regression 
intercept = 1.02, SE = 0.01; genomic control factor 1.11), and the 

F IGURE  1 PhenoAgeAccel (bottom) and BioAgeAccel (top) Manhattan plots (colors to separate adjacent chromosomes without other 
indications), including the top 10 mapped genes of lead SNPs (see Tables 2 and 3)
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proportion of inflation not explained by polygenic heritability was 
small, 6.58% (SE = 3.78%).

The SNP-heritability for BioAgeAccel was estimated to be 
12.39% (SE = 0.95%). Twenty lead SNPs were identified (p < 5 × 10−8) 
and 16 were nearby genes (Table 2). The strongest signal appeared 
in the APOE gene, tagged by the APOE isoform coding SNP rs7412. 
Several lead SNPs were associated with blood pressures. Other lead 
SNPs were associated with HbA1c, cardiovascular disease, and/or 
lipid biomarkers (Table S4).

The MAGMA gene set analysis identified 10 lipid-related gene 
sets at the Bonferroni-corrected level of 5%, including lipid homeo-
stasis, lipid protein particle clearance, and triglyceride-rich plasma 
lipoprotein particle (Figure 2). None of the 53 tissues showed sig-
nificant specificity in gene expression for the genes associated with 
BioAgeAccel (Figure 3).

2.3  |  PhenoAgeAccel GWAS vs 
BioAgeAccel GWAS

PhenoAgeAccel and BioAgeAccel shared the lead SNPs, rs560887 
(near SPC25, G6PC2), rs17321515 (near AC091114.1), rs16926246 
(near HK1), and rs7412 (near APOE). Interestingly, three out of four 
common lead SNPs were oppositely associated with PhenoAgeAccel 
and BioAgeAccel.

•	 The rs560887T allele, associated with decreased HbA1c (An 
et al., 2014; Wheeler et al., 2017), is associated with decreased 
BioAgeAccel and PhenoAgeAccel.

•	 The rs16926246 C allele, associated with increased HbA1c 
(Soranzo et al., 2010), is associated with increased BioAgeAccel, 
but decreased PhenoAgeAccel.

TABLE  1 Genetic loci associated with PhenoAgeAccel (p < 5 × 10−8) that can be mapped to genes

SNP Chr bp refA freq bJ bJ_se pJ Genes

rs1801133 1 11856378 G 0.66 −0.13 0.022 1.28E−09 MTHFR

rs12037222 1 40064961 G 0.77 −0.2 0.025 1.98E−15 PABPC4 - HEYL

rs1805096 1 66102257 G 0.63 0.2 0.021 1.01E−20 LEPR

rs4129267 1 154426264 C 0.59 0.16 0.021 6.73E−15 IL6R

rs7553007 1 159698549 G 0.67 0.19 0.022 2.44E−17 CRP - AL445528.1

rs12239046 1 247601595 T 0.37 −0.12 0.021 1.40E−08 NLRP3

rs3811444 1 248039451 C 0.66 0.18 0.022 2.61E−16 TRIM58

rs1260326 2 27730940 T 0.39 −0.13 0.021 2.29E−09 GCKR

rs6734238 2 113841030 A 0.6 −0.13 0.021 1.51E−10 IL1F10 - RNU6-1180P

rs560887 2 169763148 T 0.3 −0.18 0.023 1.72E−15 SPC25, G6PC2

rs35188965 5 1104938 C 0.42 0.15 0.021 5.45E−13 SLC12A7

rs7775698 6 135418635 C 0.74 0.16 0.024 9.60E−12 HBS1L

rs592423 6 139840693 A 0.45 0.14 0.021 3.38E−11 AL592429.2

rs17321515 8 126486409 A 0.53 −0.14 0.021 4.08E−12 AC091114.1

rs8176746 9 136131322 G 0.94 0.28 0.043 4.54E−11 ABO

rs7908745 10 45953767 A 0.68 −0.14 0.022 1.31E−09 MARCH8

rs16926246 10 71093392 C 0.87 −0.2 0.031 1.46E−10 HK1

rs174548 11 61571348 C 0.69 0.26 0.022 8.18E−31 FADS1, FADS2

rs964184 11 116648917 G 0.13 −0.17 0.03 3.28E−08 ZPR1

rs2393791 12 121423956 C 0.38 −0.15 0.021 7.45E−12 HNF1A

rs8013143 14 23494277 A 0.72 −0.17 0.023 4.66E−14 PSMB5

rs3169166 15 78563103 A 0.58 0.16 0.021 1.34E−14 DNAJA4

rs9939609 16 53820527 T 0.61 −0.16 0.021 1.62E−13 FTO

rs9914988 17 27183104 G 0.2 −0.14 0.026 3.20E−08 ERAL1

rs8078723 17 38166879 T 0.61 −0.21 0.021 6.25E−23 PSMD3 - AC090844.3

rs9944715 18 43831259 A 0.25 −0.16 0.024 6.09E−11 C18orf25

rs1985157 19 18513594 T 0.59 −0.14 0.021 1.10E−10 LRRC25 - SSBP4

rs429358 19 45411941 T 0.84 0.52 0.029 1.50E−72 APOE

rs7412 19 45412079 C 0.92 −0.36 0.038 3.07E−21 APOE

Abbreviations: Chr: chromosome, bp: base pairs (Genome Reference Consortium Human Build 37), refA: reference/effect allele, freq: reference 
allele frequency, bJ, bJ_se, pJ: regression coefficient and the associated standard error and p-value, adjusted for other lead SNPs, SNPs overlapped 
between PhenoAgeAccel and BioAgeAccel in gray.
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•	 The rs17321515 A allele, associated with increased triglycerides 
(Kathiresan et al., 2008), is associated with increased BioAgeAccel, 
but decreased PhenoAgeAccel.

•	 The rs7412T allele, or APOE e2 determined allele, associated with 
increased longevity (Deelen et al., 2019), is associated with de-
creased BioAgeAccel, but increased PhenoAgeAccel.

2.4  | Genetic associations

Among the biomarkers, PhenoAge acceleration was genetically 
highly correlated with RDW (rg = 0.65), followed by CRP (rg = 0.48), 
and then white blood cell count (rg = 0.46) (Figure S2). BioAge ac-
celeration was genetically highly correlated with systolic blood pres-
sure (rg = 0.84), followed by alkaline phosphatase (rg = 0.43), and then 
CRP (rg = 0.36) (Figure S2).

The genetic correlation between PhenoAgeAccel and 
BioAgeAccel was 0.42 (SE  =  0.047). Both PhenoAgeAccel and 
BioAgeAccel had low genetic correlations with gastrointestinal dis-
eases (GWAS summary statistics from (Liu et al., 2015)), prostate, 
and breast cancers (Michailidou et al., 2017; Schumacher et al., 

2018), and Alzheimer's disease (Jansen et al., 2019) (Figure S3). Both 
were genetically correlated with coronary artery disease (CAD) 
(CARDIoGRAMplusC2013 Consortium et al., 2013) (rg  =  0.27 
with PhenoAgeAccel, rg  =  0.38 with BioAgeAccel), osteoarthri-
tis (Zengini et al., 2018) (rg =0.30 with PhenoAgeAccel, rg  =  0.25 
with BioAgeAccel), stroke (Malik et al., 2018) (rg  =  0.30 with 
PhenoAgeAccel, rg  =  0.34 with BioAgeAccel), chronic kidney dis-
ease (Pattaro et al., 2016) (rg = 0.35 with PhenoAgeAccel, rg = 0.26 
with BioAgeAccel), type II diabetes (Mahajan et al., 2018) (rg = 0.36 
with PhenoAgeAccel, rg = 0.33 with BioAgeAccel), a 49-item frailty 
including pains and diseases (Atkins et al., 2019) (rg  =  0.34 with 
PhenoAgeAccel, rg = 0.27 with BioAgeAccel), and parental mortality 
(Timmers et al., 2019) (rg = 0.42 with PhenoAgeAccel, rg = 0.45 with 
BioAgeAccel) (Figure S3).

PhenoAgeAccel (rg = 0.44) was genetically more positively cor-
related with body mass index (BMI) than BioAgeAccel (rg = 0.24). 
Waist circumstance and waist-hip ratio, adjusted for BMI and 
physical activity (Pulit et al., 2019), were not correlated with 
PhenoAgeAccel genetically, but a modest genetic correlation 
was found between BioAgeAccel and waist-hip ratio (rg  =  0.16). 
BioAgeAccel (systolic: rg  =  0.84, diastolic: rg  =  0.57) also was 

F IGURE  2 Significant gene sets identified by MAGMA for PhenoAgeAccel (in red) and BioAgeAccel (in green) at the Bonferroni-corrected 
level, 0.05/10,678 for 10,678 gene sets)
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genetically more positively correlated with systolic and diastolic 
blood pressures than PhenoAgeAccel (systolic: rg = 0.23, diastolic: 
rg = 0.17). Genetically increased PhenoAgeAccel and BioAgeAccel 
were correlated with lower forced vital capacity (FVC) and forced 
expiratory volume in one second (FEV1) to a moderate degree but 
not with the FEV1/FVC ratio. The genetic correlations between 
PhenoAgeAccel or BioAgeAccel with heel bone mineral density 
and heart rate variability (the root mean square of the successive 
differences of inter beat intervals, RMSSD) (Nolte et al., 2017) 
were minimal (Figure S4).

PhenoAgeAccel was genetically more correlated than 
BioAgeAccel with hematology traits with no surprise as four hema-
tological measures are included in PhenoAge versus none in BioAge 
(Figure S5). PhenoAgeAccel and BioAgeAccel were genetically as-
sociated with different cholesterol biomarkers: total cholesterol, 
LDL cholesterol, and apolipoprotein B with BioAgeAccel, and HDL 
cholesterol and apolipoprotein A-1 with PhenoAgeAccel. Similarly, 
BioAgeAccel was genetically more correlated than PhenoAgeAccel 
with the liver biomarkers of alanine aminotransferase, aspartate ami-
notransferase, and gamma glutamyltransferase, whereas albumin, 

F IGURE  3 Association between tissue-specific gene expression and PhenoAgeAccel-gene or BioAgeAccel-gene association (p-values 
significant at the Bonferroni-corrected level 0.05/53 for 53 tissue types in red bars and others in green bars)
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another liver biomarker, was more correlated with PhenoAgeAccel 
genetically. PhenoAgeAccel also was genetically more correlated than 
BioAgeAccel with creatinine, cystatin C, HbA1c, and CRP – biomark-
ers linked to kidney function, diabetes, and inflammation (Figure S6).

2.5  |  Polygenic risk scores

5,198 SNPs (p < 0.0064) were selected to calculate PRSs for 
PhenoAgeAccel, which explained 0.50% of the variance in 
PhenoAge, in addition to 74.23% by other covariates, primarily 
baseline chronological age, plus sex, baseline assessment center, 
genotyping array type, and the first five genetic principal com-
ponents. Similarly, 146,223 SNPs (p < 0.45) were selected for 
BioAgeAccel, accounting for 0.068% of the variance in BioAge, 
independent of 94.49% by baseline chronological age and other 
covariates. SNPs were selected for PRS to best explain the vari-
ance of PhenoAge or BioAge given other covariates were in the 
model. More SNPs were included in the PRS of BioAgeAccel than 
in the PRS of PhenoAgeAccel likely due to the small residual vari-
ance after accounting for other covariates and also small SNP ef-
fects in general for BioAgeAccel. While the variance independently 
explained by the PRS was minimal, the top 20% (high-risk class) and 
bottom 20% (low-risk class) of PRS showed distinct aging pheno-
types. We here focus on the top 20% PRS results but include those 
comparing the top 40–60% to the bottom 20% in the forest plots 
(Figures 4, 5, S7, and S8). Overall, the disease risk or mean trait 
value increased or decreased with PRS quintiles, but the trend was 

not always linear. We chose to present the results for the third and 
fifth quintile groups versus the first quintile group to preserve the 
trends, while also minimizing noise in the figure. A summary of the 
aging traits in the testing set is provided in Table S5.

The top 20% was compared to the bottom 20% of PhenoAgeAccel 
or BioAgeAccel PRS for a variety of aging traits adjusting for base-
line chronological age, sex, baseline assessment center, genotyping 
array type, and the first five genetic principal components. The 
mean difference in PhenoAge between the top and bottom 20% 
of PhenoAgeAccel PRS (0.20 SD, 95% CI: 0.19 to 0.21 SD) was 
larger than the mean difference in BioAge between the top and 
bottom 20% of BioAge PRS (0.073 SD, 95% CI: 0.070 to 0.076 SD) 
in terms of either SD, PhenoAge SD = 9.56 and BioAge SD = 8.17. 
PhenoAge and BioAge share CRP, creatinine, and alkaline phospha-
tase in composition. Higher levels of the three biomarkers, partic-
ularly CRP, were observed in the top 20% than in the bottom 20% 
of PhenoAgeAccel or BioAgeAccel PRS (top left, Figure 4). The top-
and-bottom mean difference of PhenoAgeAccel PRS was larger than 
that of BioAgeAccel PRS in biomarkers that appear in PhenoAge but 
not in BioAge, and vice versa (top left, Figure 4). Interestingly, the 
top 20% of PhenoAgeAccel PRS had lower mean cholesterol (−0.09 
SD, 95% CI: −0.10 to −0.07 SD) than the bottom 20%, which was 
opposite for BioAgeAccel that the top 20% had 0.09 SD (95% CI: 
0.08 to 0.11 SD) higher mean cholesterol than the bottom 20% (top 
left, Figure 4). The opposite trend was also found in mean corpuscu-
lar volume, with smaller top-and-bottom mean differences (top left, 
Figure 4). Additional biomarker and blood count PRS association re-
sults are provided in Figures S7 and S8.

TABLE  2 Genetic loci associated with BioAgeAccel (p < 5 × 10−8) that can be mapped to genes

SNP Chr bp refA freq bJ bJ_se pJ Genes

rs17367504 1 11862778 A 0.84 0.07 0.012 9.03E−10 MTHFR

rs11591147 1 55505647 G 0.98 0.23 0.033 7.91E−13 PCSK9

rs541041 2 21294975 G 0.18 −0.09 0.011 2.33E−14 APOB - AC010872.2

rs560887 2 169763148 T 0.3 −0.06 0.009 9.83E−11 SPC25, G6PC2

rs16998073 4 81184341 A 0.71 −0.05 0.009 2.46E−08 PRDM8 - FGF5

rs1173771 5 32815028 A 0.4 −0.05 0.009 6.19E−09 NPR3 - AC025459.1

rs17477177 7 106411858 T 0.8 −0.09 0.011 4.62E−17 AC004917.1 
- LINC02577

rs17321515 8 126486409 A 0.53 0.06 0.009 2.20E−12 AC091114.1

rs16926246 10 71093392 C 0.87 0.09 0.013 7.77E−13 HK1

rs2274224 10 96039597 G 0.57 0.05 0.009 2.41E−10 PLCE1, PLCE1-AS1

rs17249754 12 90060586 G 0.83 0.07 0.011 9.41E−09 ATP2B1

rs7497304 15 91429176 G 0.67 −0.05 0.009 1.89E−08 FES

rs55791371 19 11188153 A 0.88 0.14 0.013 4.95E−26 SMARCA4

rs58542926 19 19379549 C 0.92 0.11 0.016 1.78E−11 AC138430.1, 
TM6SF2

rs7412 19 45412079 C 0.92 0.26 0.016 3.16E−60 APOE

rs1327235 20 10969030 A 0.52 −0.05 0.009 1.02E−08 AL050403.2

Abbreviations: Chr: chromosome, bp: base pairs (Genome Reference Consortium Human Build 37), refA: reference/effect allele, freq: reference 
allele frequency, bJ, bJ_se, pJ: regression coefficient and the associated standard error and p-value, adjusted for other lead SNPs, SNPs overlapped 
between PhenoAgeAccel and BioAgeAccel in gray.
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The top 20% of BioAgeAccel PRS were more likely to die early 
(HR = 1.12, 95% CI: 1.05 to 1.19) and have higher parental mortality 
risk (HR = 1.11, 95% CI: 1.09 to 1.13), and were less likely to have both 
parents survive to the top 10% of sex-specific lifespans (OR = 0.73, 
95% CI: 0.66 to 0.81) than the bottom 20%. Similar results were ob-
served for PhenoAgeAccel PRS, but with smaller risk ratios, partici-
pant mortality HR = 1.07 (95% CI: 1.00 to 1.13), parental mortality 
HR = 1.03 (95% CI: 1.01 to 1.05), and parental longevity OR = 0.97 
(95% CI: 0.88 to 1.07) (bottom left, Figure 4). We also found higher 
likelihoods of chronic pain and Fried frailty (Fried et al., 2001) (frail, 
if 3 or more items checked) for the top 20% versus the bottom 20% 
when considering either PhenoAgeAccel or BioAgeAccel PRS. The 
top 20% of PhenoAgeAccel or BioAgeAccel PRS was associated with 
higher mean BMI and more deficits in a 49-item frailty (Williams et al., 
2019) (a modified Rockwood frailty index, essentially accumulation 
of deficits), plus lower FVC and FEV1 (top right, Figure 4). The mean 
differences in systolic and diastolic blood pressures were much larger 
between the top 20% and the bottom 20% of BioAgeAccel PRS than 
that of PhenoAgeAccel PRS (top right, Figure 4).

Both PhenoAgeAccel and BioAgeAccel PRSs were not associ-
ated with prevalent cancers including prostate cancer, breast can-
cer, and colorectal cancer (bottom right, Figure 4). The associations 
of BioAgeAccel PRS were stronger than those of PhenoAgeAccel 
PRS with prevalent cardiovascular diseases, particularly CAD and 
hypertension (Figure 5). The odds ratio of CAD was 1.27 (95% CI: 
1.22 to 1.33) and that of hypertension was 1.58 (95% CI: 1.53 to 
1.62) comparing the top 20% to the bottom 20% of BioAge PRS. At 

the biomarker levels, total cholesterol, low LDL cholesterol, apoli-
poprotein B, and triglycerides, risk factors of CAD, were elevated 
in the top 20% of BioAgeAccel PRS but reduced in the top 20% of 
PhenoAgeAccel PRS compared to the bottom 20% of each (Figure 
S7). These biomarker results suggested the association between 
PhenoAgeAccel PRS and CAD was likely driven by non-lipid mecha-
nisms as indicated by the gene set analysis results.

PhenoAgeAccel PRS was more strongly associated than 
BioAgeAccel PRS with liver and kidney diseases (Figure 5) and the 
associated biomarkers, for example, albumin, total bilirubin, creat-
inine, and cystatin C (Figure S7), plus COPD, hypothyroidism, type 
I and type II diabetes, and rheumatoid arthritis (Figure 5). The odds 
ratio of type I diabetes was 1.76 (95% CI: 1.52 to 2.03) and that of 
type II diabetes was 1.38 (95% CI: 1.30 to 1.45) comparing the top 
20% to the bottom 20% of PhenoAgeAccel PRS, and those compar-
ing the top 20% to the bottom 20% of BioAgeAccel PRS were 1.12 
(95% CI: 0.98 to 1.30) for type I diabetes and 1.27 (95% CI: 1.20 
to 1.34) for type II diabetes. The associations of PhenoAgeAccel or 
BioAgeAccel PRS were minimal with bone diseases such as osteo-
porosis and osteoarthritis, age-related macular degeneration (AMD), 
anxiety and depression, and two neurological disorders, Parkinson's 
disease and delirium (Figure 5). A negative association was observed 
between PhenoAgeAccel PRS and dementia (OR = 0.80, 95% CI: 0.67 
to 0.96). This was mainly driven by APOE, which when adjusted for 
completely accounted for the association (OR =0.97, 95% CI: 0.80 to 
1.16). Consistently, the genetic association between PhenoAgeAccel 
and Alzheimer's disease was not statistically significant (Figure S3).

F IGURE  4 Comparisons between the top 20% or 40%-60% and the bottom 20% of PhenoAgeAccel (in red) or BioAgeAccel (in blue) 
Polygenic Risk Score (PRS) for biomarkers included in PhenoAge or BioAge and a variety of aging phenotypes (*significantly associated with 
the top 20% of PhenoAgeAccel PRS at the 5% false-discovery-rate adjusted level; +significantly associated with the top 20% of BioAgeAccel 
PRS at the 5% false-discovery adjusted level)
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2.6  |  Biological age measures and APOE genotypes

Some of the strongest associations for both PhenoAgeAccel and 
BioAgeAccel were with APOE isoform coding SNPs, but the ef-
fect directions were opposite. The APOE e2 determined T allele 
of rs7412 was associated with increased PhenoAgeAccel but de-
creased BioAgeAccel. Similarly, the rs429358 C allele (APOE e4), a 
risk factor for Alzheimer's disease, was associated with decreased 
PhenoAgeAccel but increased BioAgeAccel although the association 
with BioAgeAccel didn't reach genome-wide significance (p = 1.3 × 
10−7).

Taking a step further, we associated PhenoAge and BioAge with 
APOE isoforms determined based on the genotypes of rs429358 and 
rs7412. For BioAge, results suggested that e2e3 and e2e2 were both 
associated with younger BioAge relative to the reference genotype 
(e3e3), while e3e4 and e4e4 exhibited higher BioAges, where the 

results were adjusted for baseline chronological age, sex, genotyp-
ing array type, baseline assessment center, and the first five genetic 
principal components (Figure 6). When comparing APOE genotypes 
as a function of PhenoAge, we find the reverse—e2e3 and e2e2 ap-
peared older than e3e3, whereas e3e4, and e4e4 appeared younger.

To further disentangle the associations between APOE geno-
types and accelerated aging by the two biological age measures, we 
examined the associations between APOE genotypes and the indi-
vidual biomarkers that make up the composites. We found that the 
trend of mean BioAge (e4e4 > e4e3 > e3e3 > e2e4 > e2e3 > e2e2) 
also held for total cholesterol, which was most strongly associated 
with APOE genotypes among the biomarkers of BioAge (Figure 6). 
When adjusting for total cholesterol, the trend of mean BioAge was 
reversed, that is, e3e4 and e4e4 younger than e2e3 and e2e2, sug-
gesting that decelerated BioAge associated with e2 was driven by 
differences in plasma total cholesterol levels. The biomarkers that 

F IGURE  5 Odds ratios (ORs) for 
diseases comparing the top 20% 
or 40%-60% to the bottom 20% of 
PhenoAgeAccel (in red) or BioAgeAccel 
(in blue) polygenic risk score (PRS) 
(*significantly associated with the top 
20% of PhenoAgeAccel PRS at the 5% 
false-discovery-rate adjusted level; 
+significantly associated with the top 
20% of BioAgeAccel PRS at the 5% false-
discovery-rate adjusted level)
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appeared to show inverse associations (similar to PhenoAge) were 
RDW, CRP, alkaline phosphatase, creatinine, and white blood cell 
count. For all of these biomarkers there was a trend towards higher 
levels among participants with e2 alleles and lower levels among 
those with e4 alleles (Figure 6).

2.7  |  Replication in the US heath retirement study

Complete genetic and 2016 biomarker data to estimate PhenoAge 
and BioAge were available for 5,572 and 1,782 participants, respec-
tively. A summary for the PhenoAge and BioAge samples is provided 
in Table S6. We are underpowered to detect genome-wide signifi-
cance based on the HRS sample size and the UKB effect sizes for 
most lead SNPs. However, we do find that in HRS both the APOE 

SNPs show similar effect sizes to what was observed in UKB for the 
associations with PhenoAgeAccel. For instance, rs429358 in HRS 
has an effect size of b = 0.58 (p = 0.01), which is similar to the effect 
size in UKB (b = 0.55, p = 7.8 × 10−83). Similarly, rs7412 has an effect 
size of b = −0.38 (p = 0.20) in HRS and b = −0.44 (p = 1.6 × 10−31) in 
UKB (Tables S7 and S8).

We also compared APOE genotypes, using e3e3 as the reference 
(Table S9). Overall, the three e4 genotypes showed a trend toward 
decreased PhenoAge, similar to what was observed in UKB, although 
only e2e4 significantly differed from e3e3 (p = 0.039), while e3e4 
was marginally decreased (p = 0.054), and e4e4 was not significant 
(p = 0.912). Similarly, e2e2 and e2e3 showed a trend toward increased 
PhenoAge, with e2e2 being marginally significant (p  =  0.058) and 
e2e3 not significant (p = 0.291). Overall, while we were underpow-
ered to replicate the findings for all genotypes, the trends remained 

F IGURE  6 Mean standard deviation 
(SD) differences between non-e3e3 
and e3e3 genotypes: (1) biomarkers of 
PhenoAge (top) or BioAge (bottom) sorted 
by p-value from left to right for the null 
hypothesis of no genotypic effects; (2) 
p < 0.05, p < 0.01, and p < 0.001 labelled 
by *, **, ***, respectively
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unchanged. Further, given that this was a replication, a one-sided p-
value would be justified, and in that case, three of the genotypes 
significantly differed from e3e3 in the expected direction.

Finally, the GRS using the PhenoAgeAccel lead SNPs from UKB 
was significantly associated with PhenoAgeAccel in HRS. The mean 
PhenoAge was increased by 0.80 years (95% CI: 0.58 to 1.02, p = 
1.42 × 10−12) per SD increase in the GRS of PhenoAgeAccel, with 
adjustment for age in 2016, sex, and PC1-PC5. rs7412 was strongly 
associated with BioAgeAccel in UKB but the association cannot be 
replicated in HRS (Table S8), which also led to negative results with 
APOE genotypes (Table S9) and the GRS, 0.07 year increase in mean 
BioAge (95% CI: −0.03 to 0.17, p = 0.150) per SD increase in the GRS 
of BioAgeAccel, adjusted for age in 2016, sex, and PC1-PC5.

We hypothesized that part of the issue of replication for BioAge 
may stem from the lack of data for two of the measures – HbA1c 
and systolic blood pressure, which were only available for half the 
sample due to the study design of HRS. For sensitivity analysis, we 
imputed HbA1c in 2016 using HbA1c in 2014 for the other subsam-
ple and similarly for systolic blood pressure for BioAge. In the model, 
we included a dummy indicator to signify which samples used the 
2014 systolic blood pressure and HbA1c to calculate BioAge, which 
was not statistically significant (p > 0.05) across models. The sample 
size increased from 1,782 to 4,909, where the mean age and BioAge 
decreased but the sex distribution and biomarker statistics were 
similar (Table S6). The associations between BioAge and BioAge GRS 
or APOE genotypes remained statistically insignificant (p > 0.05). 
One SD increase in BioAgeAccel GRS increased the mean BioAge by 
0.05 years (95% CI: 0.01 to 0.11, p = 0.095), adjusted for age in 2016, 
sex, PC1-PC5, and an indicator of using 2014 HbA1c and systolic 
blood pressure data. Additionally, the trend of associations between 
BioAge and APOE genotypes were inconclusive still (Table S9).

3  | DISCUSSION

Overall, our analysis using the UK Biobank biomarker data identified 
both overlapping and distinct genetic underpinnings of two widely 
applied biological age measures. Our results suggested that although 
the estimated heritability is similar for PhenoAgeAccel (14.45%) and 
BioAgeAccel (12.39%) with the genetic correlation being 0.42, these 
two measures capture distinct aging domains with different genetic 
determinants, as a result of their differential biomarker composi-
tions. SNPs associated with BioAgeAccel (p < 5 × 10−8) tended to re-
late to systolic blood pressure and lipid biomarkers, with enrichment 
analysis pointing to an increased proportion of genes involved in lipid 
homeostasis, plasma lipoprotein particle clearance, chylomicron, 
sterol homeostasis, and cholesterol transport activity. Conversely, 
SNPs associated with PhenoAgeAccel were shown to relate to CRP, 
white blood cell count, and RDW, and were enriched in biological 
processes involved in regulation of cell signaling by CBL, transcrip-
tion, immune system process, and myeloid cell homeostasis.

The immune/inflammation versus lipid findings for 
PhenoAgeAccel and BioAgeAccel, respectively, were also 

recapitulated when comparing the associations between PRS 
and age-related outcomes. Results suggested that the top 20% of 
PhenoAgeAccel and BioAgeAccel PRS were differentially linked to 
a variety of diseases. For instance, BioAgeAccel PRS outperformed 
PhenoAgeAccel PRS in prioritizing cardiovascular and all-cause mor-
tality risk in this young cohort, while PhenoAgeAccel PRS showed 
more robust associations than BioAgeAccel PRS for liver/kidney 
diseases, and chronic inflammatory and autoimmune diseases. The 
stronger link between BioAgeAccel PRS and all-cause mortality (com-
pared to PhenoAgeAccel PRS) may be driven in part by its association 
with cardiovascular disease, which is the leading cause of death in 
the UK. By comparison, the diseases associated with PhenoAgeAccel 
PRS tend to contribute to major morbidity, while being less common 
causes of death. This may suggest that individuals genetically pre-
disposed to accelerated BioAge may be more likely to experience 
shortened lifespan, while those genetically predisposed to acceler-
ated PhenoAge, may not experience major reductions in lifespan, but 
may experience decreased healthspan (disease-free life expectancy). 
The hypothesis needs to be tested in older adults, however. Of note, 
accelerated aging is not only determined by genetics but also by en-
vironment. Interestingly, when considering the actual values rather 
than the PRS, accelerated PhenoAge is more strongly associated with 
all-cause mortality than accelerated BioAge in UK Biobank, which 
implies that the association between accelerated PhenoAge and all-
cause mortality may be explained to a larger degree by the environ-
mental components.

The PhenoAgeAccel PRS was also related to dementia, but in 
the opposite than the expected direction, such that individuals 
with increased PhenoAgeAccel had reduced odds of dementia. 
This result was almost entirely driven by the association between 
PhenoAgeAccel and APOE, which is the most well-known genetic 
risk factor for late-onset Alzheimer's disease (LOAD). Our results 
suggested that while PhenoAgeAccel and BioAgeAccel were both 
associated with the two APOE isoform coding SNPs (rs429358 and 
rs7412), the relationships were inverse. For instance, the APOE e4 al-
lele is traditionally associated with adverse health outcomes, includ-
ing an increased risk of Alzheimer's disease, cardiovascular disease, 
and reduced life expectancy, while the e2 allele confers protection. 
However, in our results, we observed increased PhenoAgeAccel 
associated with e2 genotypes and decreased PhenoAgeAccel asso-
ciated with e4 genotypes, relative to the common e3e3 genotype. 
This paradoxical result was also found for a number of the biomark-
ers that make up PhenoAge, which likely explains this finding. For 
instance, APOE e2 allele was associated with higher CRP, RDW, al-
kaline phosphatase, creatinine, and white blood cell count, while 
APOE e4 allele was generally associated with lower levels of these 
biomarkers (Kuo et al., 2020). These biomarkers are not specific to 
physiological functions or diseases but are more or less associated 
with inflammation, which suggests that e2 genotypes may be prone 
to higher inflammation levels on average, compared to e3e3s and 
e4 genotypes. Our biomarker specific finding is supported by a pre-
vious study via CRP (one of the most popular inflammation mark-
ers) (Hubacek et al., 2010). Although the underlying mechanism is 
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not fully understood, it has been reported that high inflammation 
(high CRP) is associated with increased risk of Alzheimer's disease 
among e4 genotypes (e3e4 or e4e4) but less so among non-e4 gen-
otypes (Tao et al., 2018). This may suggest that increased inflam-
mation levels in e2 genotypes does not increase their Alzheimer's 
disease risk, but that higher PhenoAge and inflammation among 
e4 genotypes could increase Alzheimer's disease risk. Contrary 
to PhenoAgeAccel, BioAgeAccel showed an expected association 
with APOE that consisted of decelerated aging among participants 
with e2 alleles and accelerated aging among participants with e4 
alleles. This association was accounted for by higher levels of total 
cholesterol among those with increased BioAgeAccel. This is in-line 
with APOE known function as a transporter of extracellular choles-
terol and the existing evidence suggesting those with the e2 allele 
exhibit reduced circulating cholesterol, particularly low-density li-
poproteins (LDL) (Kuo et al., 2020).

We were able to replicate the association in HRS between 
PhenoAge and PhenoAgeAccel GRS using the lead SNPs from UKB and 
showed similar trends for APOE, in which e2 is associated with higher 
PhenoAgeAccel and e4 is associated with lower PhenoAgeAccel. The 
unsuccessful replication for BioAgeAccel may be explained by a small 
sample size or the instruction from the interviewer to the respon-
dent with a high systolic blood pressure to consult their physician as 
soon as possible (stated in the Documentation of Physical Measures, 
Anthropometrics and Blood Pressure in the Health Retirement Study), 
which drove systolic blood pressures (SBPs) towards the mean, re-
duced the BioAge-SBP correlation (Pearson correlation 0.34 in HRS 
versus 0.51 in UKB) and associations between genetic variants and 
BioAgeAccel, particularly those (e.g., rs7412) associated with systolic 
blood pressure. Systolic blood pressure, as we have shown in Figure S2, 
had the highest genetic correlation with BioAgeAccel (rg = 0.84, Figure 
S2), compared to other BioAge biomarkers. At the end, more replica-
tion studies are needed to validate the UKB findings although it is chal-
lenging to find a large cohort with both genetic and biomarker data.

Inevitably, our study has limitations. The UK Biobank participants 
are healthier than the general population (Fry et al., 2017); therefore, 
are less susceptible to accelerated aging. The disease status was de-
termined based on self-reported doctor diagnoses at baseline and 
inpatient electronic health records to 2017. Given that some partici-
pants were still relatively young and will likely go on to develop late-
onset morbidity, this will contribute to misclassification, which could 
lead to biased associations, towards the null if the misclassification is 
non-differential. Nevertheless, when disease prognostic biomarkers 
were analyzed, we observed consistent results. Last but not least, 
our findings are based on European-descent participants and may 
not be generalizable to other ancestry populations.

Overall, the mapped genes and enriched genes sets highlight that 
these two biological age measures may capture different aspects of 
the aging process—cardiometabolic by BioAge and inflammaging/
immunoscenece by PhenoAge. Nevertheless, PhenoAgeAccel and 
BioAgeAccel PRSs are not disease-specific and can be used to prioritize 
genetic risk for multiple morbidity or mortality outcomes—particularly 
cardiovascular diseases and all-cause mortality via BioAge, and liver 

or kidney diseases, COPD, rheumatoid arthritis, hypothyroidism, and 
type I and type II diabetes via PhenoAge. Our findings confirm the 
hypothesis that individuals may age in different ways, due in part to 
different underlying genetic susceptibility. In moving forward, under-
standing personalized aging susceptibility phenotypes has important 
implications for primary and secondary disease interventions.

4  | METHODS

4.1  | UK Biobank

Over 500,000 participants between the ages of 40 and 70 were 
recruited by UK Biobank from 2006 to 2010 (Bycroft et al., 2018; 
Sudlow et al., 2015), of which, over 90% of the cohort were 
European-descent. Phenotypes considered in this study include 
participant mortality, parental lifespan, cognitive function, physical 
measures, and diseases. The death status was determined based on 
death certificate data, updated to March 2020 for all participants. 
Some deaths were recorded in April 2020 but the mortality data 
for that month is incomplete. The disease diagnosis was confirmed 
based on self-reported doctor diagnoses at baseline, cancer registry 
data to 2016, and hospital admission records from 1996 to 2017. A 
list of disease ICD-10 codes used to identify diseases is provided in 
Table S10. At recruitment, participants completed online question-
naire and physical measurements and their biological samples were 
collected for biomarker assays. Physical measurements were de-
scribed elsewhere (Kuo et al., 2020). A full list and technical details 
are available via the UK Biobank Biomarker Panel and UK Biobank 
Haematology Data Companion Document.

4.2  | Genetic data

DNA was extracted from blood samples and was genotyped using 
Affymetrix UK BiLEVE Axiom array for the first ~50,000 participants 
and Affymetrix UK Biobank Axiom array for the remaining cohort – 
the two arrays have over 95% content overlap (Bycroft et al., 2018). 
Imputation was performed by the UK Biobank team using the reference 
panels of 1000 Genomes and the Haplotype Reference Consortium 
(HRC), yielding ~93 million variants in 487,442 participants. Of whom, 
participants (n = 968) with unusually high heterozygosity or missing 
genotype calls were further removed (Bycroft et al., 2018).

4.3  |  Biological age measures

PhenoAge and BioAge were previously trained using data from a US 
cohort (NHANES III) in separate papers (Levine, 2013; Levine et al., 
2018) that are available in the literature. PhenoAge was trained 
for mortality as a surrogate of biological age using all available bio-
markers (n = 42) in the NHANES III, where 9 biomarkers selected 
by Cox penalized regression model and chronological age were used 
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to construct PhenoAge in a parametric proportional hazards model 
based on the Gompertz distribution. The 10-year mortality risk was 
converted to the unit of years to derive PhenoAge (Levine et al., 
2018). The formula of PhenoAge is given by

where mortality risk = 1–exp{–exp(xb) [exp (120γ)–1]/γ}, γ = 0.0076927 
and xb = –19.907 –0.0336 × albumin + 0.0095 × creatinine + 0.1953 × glu-
cose + 0.0954 × ln (CRP) –0.0120 × lymphocyte percentage + 0.0268 × mean 
corpuscular volume + 0.3306 × RDW + 0.00188 ×  alkaline phospha-
tase + 0.0554 × white blood cell count + 0.0804 × age, estimated using 
the NHANES III data and age denotes the chronological age.

BioAge (Levine, 2013) was trained for the biological age surro-
gate of chronological age, using the NHANES III data. 21 biomarkers 
were preselected for BioAge based on prior knowledge regarding 
their role or dependency in the aging process and a significant cor-
relation (r) with chronological age (p < 0.05) in the NHANES III. Of 
which, 10 were correlated with chronological age with Pearson cor-
relation coefficients greater than 0.1 or less than −0.1. 3 biomarkers 
were further removed for not significantly loaded on the first prin-
cipal component in men or in women based on the principal com-
ponents analysis results using the 10 biomarkers. Seven biomarkers 
and chronological age were used to calculate BioAge by applying an 
algorithm previously proposed by Klenmera and Doubal (Klemera & 
Doubal, 2006),

where xj denotes the level of j-th biomarker, with the corresponding 
parameters qj, kj, and sj provided in Table S11. age here, again, denotes 
the chronological age.

The PhenoAge or Bioage biomarkers in UK Biobank are summa-
rized in Table S1, after setting the bottom 1% of values to the first 
percentile and the top 1% to the 99th percentile to correct the skew-
ness of distributions. PhenoAge and BioAge were calculated per in-
dividual, applying the equations above to the UK Biobank biomarker 
data. Biological age acceleration was estimated by the residual of 
PhenoAge or BioAge after subtracting the effect of chronological 
age using a linear regression model, termed PhenoAgeAccel and 
BioAgeAccel, respectively.

4.4  |  Included samples

Participants of European descent were included, identified using 
genetic principal components analysis in detail in Thompson and 

colleagues (Thompson et al., 2019). Additionally, one in third-degree 
or closer pairs were removed, identified via pairwise kinship coef-
ficients. The sample was randomly split into a training and a testing 
set, with a 1 to 2 ratio. The training set was used to perform genome-
wide association analysis with the results being used to create PRSs 
in the testing set to evaluate the use for risk stratification for age-
related outcomes.

4.5  |  SNP quality control

Of 93,095,623 genotyped or imputed SNPs, 16,446,666 SNPs 
passed the quality control, where SNPs were excluded if meeting 
any of the criteria: (1) imputation information score <0.3, (2) minor 
allele frequency <0.1%, (3) Hardy–Weinberg equilibrium test p-value 
significant at the Bonferroni-corrected level, (4) missing imputa-
tion information score, minor allele frequency, or Hardy–Weinberg 
equilibrium test result. The SNP summary statistics were calculated 
using the QCTOOL software version 2.

4.6  | Genome-wide association analysis

The association between accelerated PhenoAge or BioAge with 
each SNP was examined using an efficient Bayesian linear mixed 
effects model (BOLT-LMM software version 2.2) (Loh et al., 2015) 
for the outcome of PhenoAge or BioAge with additive allelic effect 
of the candidate SNP, and other fixed effects: chronological age (to 
make the case of accelerated biological age), sex, genotyping array 
type, and assessment center, plus random polygenic and environ-
ment effects. By default, the LD scores included in the BOLT-LMM 
for European-ancestry samples were used to calibrate the BOLT-
LMM statistic. SNP p-values smaller than 5  ×  10−8 were deemed 
to be statistically significant. Manhattan and tile–quantile (Q–Q) 
plots were created for visualization using the CMplot R package. 
The genomic inflation due to population stratification or cryptic re-
latedness was evaluated by linkage disequilibrium (LD) score regres-
sion (Bulik-Sullivan et al., 2015), where SNPs were filtered to the 
HapMap3 SNPs, well imputed in most studies to avoid bias from 
poor imputation quality. The LD scores were downloaded from 
the url (https://data.broad​insti​tute.org/alkes​group/​LDSCO​RE/), 
precomputed using the European data from the 1000 genome pro-
ject phase 3.

We performed a stepwise model selection procedure on the 
genome-wide SNP summary statistics to identify independent sig-
nals (p < 5 × 10−8) using the COJO (Conditional & Joint association 
analysis) function in the GCTA (Genome-wide Complex Trait Analysis) 
software version 1.92.1 beta6 Linux (Yang et al., 2012). SNPs more 
than 10,000 kb away from each other were assumed to be in com-
plete linkage equilibrium. As SNPs were selected, those with multiple 
regression R2 greater than 0.9 with already pre-selected SNPs were 
excluded, so as not to include redundant signals from high LD. The 
loci marked by the selected SNPs were mapped to genes based on 
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GRCh37/hg19 coordinates, and were used in searches for published 
GWAS associations based on GWAS catalog (Buniello et al., 2019).

4.7  | Gene enrichment analysis

The GWAS p-values were analyzed by Multi-marker Analysis of 
GenoMic Annotation (MAGMA) in FUMA (Functional Mapping 
and Annotation) (Watanabe et al., 2017) to perform a comparative 
gene-set analysis to test if genes in the gene set were more strongly 
associated with PhenoAgeAccel or BioAgeAccel than others, for 
10,678 gene sets (curated gene sets: 4,761, GO terms: 5,917) from 
the MsigDB v6.2. Additionally, a gene-property analysis was per-
formed to test for positive relationships (one-sided test) between 
tissue-specific gene expression profiles and gene associations with 
PhenoAgeAccel or BioAgeAccel, using 53 tissue types from the 
GTEx repository version. Both test results were adjusted for multi-
ple testing using the Bonferroni correction method.

4.8  | Genetic correlations

Genetic correlations of PhneoAgeAccel or BioAgeAccel were calcu-
lated by LD score regression (Bulik-Sullivan et al., 2015) using GWAS 
summary statistics, filtered to HapMap3 SNPs. GWAS summary sta-
tistics were downloaded from previous published GWAS. Those of 
biomarkers, not limited to PhenoAge or BioAge biomarkers, were 
downloaded from the Ben Neale Lab round 2, where biomarkers 
were transformed by the rank-based inverse normal transformation, 
and the SNP-biomarker associations were adjusted for age, age2, 
sex, age × sex, age2 × sex and the top 20 genetic principal compo-
nents in over 361,000 UK Biobank participants.

4.9  |  Polygenic risk scores

The PRSice-2 software version 2.2.2 (Choi & O’Reilly, 2019) was used 
to perform polygenic risk score (PRS) analysis. SNPs were clumped 
to obtain SNPs in low LD (r2 < 0.1) in a 250 base-pair window. SNPs 
with p-values smaller than a threshold were used to calculate the 
PRS, sum of the effect alleles associated with accelerated aging, 
weighted by the effect size. The optimal threshold was chosen by a 
grid search from 1 × 10−5 to 0.5 with the increment of 1 × 10−5 plus 1, 
such that the variance of PhenoAge or BioAge in the testing set was 
best explained by PRS, in addition to that by baseline chronologi-
cal age, sex, genotyping array type, baseline assessment center, and 
the first five genetic principal components. Subjects were equally 
divided into five groups by the PRS, where the top 20% (high-risk 
class) was compared to the bottom 20% (low-risk class) for a vari-
ety of aging traits (n = 111). The association analysis was conducted 
using a regression model, with adjustment for baseline chronologi-
cal age, sex, genotyping array type, baseline assessment center, 
and the first five genetic principal components: (1) Cox regression 

models for lifespan outcomes with hazard ratios reported; (2) logis-
tic regression models for binary outcomes such as disease and pain 
outcomes with odds ratios reported; (3) linear regression models for 
continuous outcomes such as physical measures and 49-item frailty 
that were z-transformed so the regression coefficients associated 
with PRS quintiles were unit-free and represented the mean differ-
ences between quintiles in standard deviations (SDs). Log (e.g., cog-
nitive function measures and 49-item frailty) or the inverse normal 
transformation (e.g., blood counts and biomarkers) may be applied 
before the z-transformation to correct the distributional skewness. 
Traits that show significant differences between the top 20% and 
the bottom 20% of PRS were highlighted at the 5% false-discovery-
rate adjusted level. Results comparing the top 40–60% to the bot-
tom 20% of PRS were also included in forest plots to examine the 
dosage effects.

4.10  |  Replication in the US heath retirement study

For replication, we used European-descent participants in the US 
Health Retirement Study (HRS) (Fisher & Ryan, 2018; Sonnega et al., 
2014) to test the associations between PhenoAgeAccel/BioAgeAccel 
and the UKB lead SNPs individually, their genetic risk score (GRS), or 
APOE genotypes. Linear regression models were used, with adjust-
ment for age, sex, and the first five genetic principal components 
(PCs) (Pilling et al., 2017).
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