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This paper focuses on the detection and segmentation of Multiple Sclerosis (MS) lesions in magnetic resonance (MRI) brain
images. To capture the complex tissue spatial layout, a probabilistic model termed Constrained Gaussian Mixture Model (CGMM)
is proposed based on a mixture of multiple spatially oriented Gaussians per tissue. The intensity of a tissue is considered a
global parameter and is constrained, by a parameter-tying scheme, to be the same value for the entire set of Gaussians that are
related to the same tissue. MS lesions are identified as outlier Gaussian components and are grouped to form a new class in
addition to the healthy tissue classes. A probability-based curve evolution technique is used to refine the delineation of lesion
boundaries. The proposed CGMM-CE algorithm is used to segment 3D MRI brain images with an arbitrary number of channels.
The CGMM-CE algorithm is automated and does not require an atlas for initialization or parameter learning. Experimental results
on both standard brain MRI simulation data and real data indicate that the proposed method outperforms previously suggested
approaches, especially for highly noisy data.
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1. Introduction

Multiple sclerosis (MS) is the most common nontraumatic
neurological disease in young adults. It is an inflammatory
demyelinating disease that is primarily associated with
axonal loss and formation of lesions in the central nervous
system [1]. Magnetic Resonance Imaging (MRI) is the
leading diagnostic tool in the context of MS. The extensive
use of this imaging technique has significantly improved our
understanding of the disease [2]. MRI is currently being used
for MS diagnosis, assessment of disease progression, and
evaluation of the efficiency of drug therapy [3]. The most
common quantitative parameter is the lesion burden (or load)
of the disease expressed in terms of the number and volume
of the brain lesions. The MRI measured lesion burden is
correlated with clinical findings [4–8]. However, it should
be stated that the exact relationship between MRI measured
lesions and pathological findings is not entirely clear [9–11].
MRI is also capable of providing measures and visualization
of subclinical activity. Last but not least, it is sensitive to
temporal variations that are typical to this disease [12].

A correct segmentation of healthy tissues is crucial for
successful detection and segmentation of MS lesions [13].
Moreover, one of the characteristics of the disease is a
decrease in the volume of healthy tissues, especially gray
matter (GM). Having said that, it is clear why, in spite of
the fact that the present work focuses on MS lesion detection
and segmentation, the topic of healthy tissue segmentation
should be addressed as well.

MRI brain image segmentation is a challenging task,
even with healthy patients. The challenge stems from several
reasons. First, MRI images present various noise artifacts
such as intratissue noise, partial-volume effects and thermal
noise [14]. These artifacts may cause unrealistic results,
where tissue regions as well as lesion regions may appear
granular, fragmented, or violating anatomical constraints.
Second, the geometry of the brain tissues is complex and
cannot be modeled by simple geometric primitives. Third,
there is a significant variability in tissue geometry between
patients. Finally, intensity distributions of different tissues
can present a notable overlap. Segmentation of abnormal
structures like MS lesions, is a difficult task. Lesions differ
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from each other in size, location and shape. Also, as each
MRI modality reflects different physical properties, the
exact lesion boundaries may vary between different MRI
channels. To complicate matters, the number of voxels that
are associated with MS lesions is significantly smaller than
the number of voxels that are associated with healthy tissues.
Thus, simple clustering algorithms (e.g., K-means), fail to
discern MS-lesion voxels from the rest of the image.

With notable exceptions (e.g., [15, 16]), segmentation
of MRI brain images of MS patients is usually addressed
by probabilistic voxel-based intensity modeling. Some of the
salient aspects of these works are described below.

1.1. Parametric and Nonparametric Modeling. Several au-
thors suggested to model the intensity of the brain tissues
using a mixture of Gaussian probability density functions
[17–22]. In this model, heron termed Gaussian Mixture
Model (GMM), the intensity of a voxel is assumed to
be drawn from the specific normal distribution associated
with its parenting tissue. The GMM belongs to the cate-
gory of parametric classification methods, since it is fully
defined by its parameter set. The present work also belongs
to this category. Other researchers have suggested using
nonparametric methods such as the K-Nearest Neighbor
(KNN) classification rule, or Parzen windows [23, 24]. These
methods avoid making any assumption on the probability
density function that is underlying the data. Instead, they
try to locally estimate the probability density function, based
on some labeled prototypes. These prototypes are given
manually by a human expert, so such methods are not
completely automated. A combination of parametric and
nonparametric methods has been suggested recently [13].

1.2. MS Lesions: Explicit Model or Outliers? While several
authors (e.g., [13, 23]) model the MS lesions as a distin-
guished class in addition to the healthy tissue classes (CSF,
GM, WM), another approach is to model the lesions as
outliers. For example, Van Leemput et al. [19] treat voxels
that are not well explained (by either of the healthy tissue
models) as candidates to be classified as lesions. Among these
candidates, the separation into lesion and nonlesion voxels
is made according to contextual information and a set of
rules. It is also possible to treat lesions as outliers only in an
intermediate stage, and then to build an explicit model for
them [22].

1.3. Incorporating Spatial Information. A segmentation
method that relies solely on the voxel intensity is unlikely
to produce sufficient results. As such, many efforts have
been made to incorporate spatial information within the
segmentation process. One approach is the use of a sta-
tistical atlas [17–19, 25]. The atlas provides an a-priori
probability regarding expected tissue location. A similar
approach is the template-driven segmentation [20, 23, 24]
that employs a deformable digital anatomical atlas to extract
white matter masks using nonlinear registration. The main
purpose is to reduce the number of misclassifications, by
assuming that lesions are usually placed within the WM
tissue. Atlas/template based approaches make a powerful tool

for image segmentation; however, they suffer from several
disadvantages. They require registration of the atlas/template
to the brain target. Image registration is a computation-
ally intensive procedure, and not always applicable. Also,
registration errors usually result in segmentation errors.
Registration is especially problematic when the patient
presents significant anatomical variability with respect to
the atlas/template, which is often the case in MS patients.
Another conventional method to improve segmentation
smoothness and immunity to noise is to use a Hidden
Markov Random Field (HMRF), thus modeling neighboring
voxel interactions [13, 18, 19]. Smoother structures are
obtained in the presence of moderate noise as long as the
HMRF parameters controlling the strength of the spatial
interactions are properly selected. HMRF based algorithms
are computationally intractable unless some approximation
is used which still requires computationally intensive algo-
rithms.

In very recent works new approaches are starting to
emerge. In [15] regional properties are used in a multifea-
ture and multiscale approach combining segmentation and
classification (supervised) for MS lesion analysis. In [26] a
4D space (T1 intensity and spatial features) multiGaussian
model is used to model each tissue. A large number of Gaus-
sians is used per brain tissue to capture the complex spatial
layout. The intensity of a tissue is considered a global feature
and is incorporated into the model by parameter tying
of all related Gaussians. The model, termed Constrained
GMM (CGMM), was shown in [26] to provide accurate
segmentation of T1 simulated and real MRI brain images
into the three healthy tissues, in particular in noisy and low-
contrast MRI images, without the need for coregistration
of the input image and an atlas. In the current work we
propose an extension to the CGMM model that can handle
multisequence MRI data with a focus on MS lesion detection
and segmentation. We also suggest a new and efficient way
for approximating the CGMM computations. Another focus
of this work is utilizing the CGMM as a good initialization for
a level set method that provides a refined lesion boundary.
We show that direct implementation of curve evolution
methods to the complicated MRI image provides poor brain
segmentation and no detection of MS lesions. The lesion
detection obtained using the CGMM makes it possible
to apply active contour techniques for lesion detection. A
preliminary version of this paper appeared in [27].

The paper is organized as follows. Section 2 presents the
CGMM framework. Lesion detection based on the CGMM
and lesion boundary refinement via a level-set method,
hereon termed CGMM-CE, are described in Sections 3 and
4, respectively. Algorithm validation on both simulated and
real brain volumes is shown in Section 5. Discussion and
conclusions are presented in Section 6.

2. The CGMM Segmentation Framework

The complex spatial layout of an MRI brain image poses a
challenge for conventional intensity based GMM modeling
schemes. To accommodate the spatial complexity, we model
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an image as if its voxels were drawn independently from a
mixture of many Gaussians:

f (x, I(x)) =
n∑

i=1

αi fi
(
x, I(x) | μi,Σi

)
(1)

such that x is the 3D position information included in the
feature vector, I(x) is the intensity vector associated with the
voxel located at position x, n is the number of components
in the mixture model, μi and Σi are the mean and the
covariance of the ith Gaussian component fi, and αi is the
ith mixture coefficient. Considering the location of the voxel
as an additional feature enables us to incorporate spatial
information into the probabilistic model. Each Gaussian in
the GMM provides a probabilistic model for a specific small
area in the MRI image.

The spatial shape of the tissues is highly nonconvex.
However, since we use a mixture of many components,
each Gaussian component models a small local convex
region. The intravariability of the intensity features within
a tissue is significantly less than the intervariability among
different tissues. It is therefore sufficient to model the
intensity variability within a tissue by a single Gaussian (in
the intensity features). To incorporate this insight into the
model, each Gaussian is linked to a single tissue and all the
Gaussians related to the same tissue share the same intensity
parameters. We also assume that locally, the intensity and
spatial features are uncorrelated. The above assumptions
impose the following structure on the mean and covariance
of the Gaussian components:

μi =
⎛
⎝

μxi

μIπ(i)

⎞
⎠, Σi =

⎛
⎝
Σx
i 0

0 ΣI
π(i)

⎞
⎠, (2)

where x is the spatial feature vector, I is the intensity feature
vector, π(i) is the tissue that is linked to the ith Gaussian
component, μxi and Σx

i are the spatial mean and covariance
parameters of the ith Gaussian component, and μIj and ΣI

j

are the intensity mean and covariance parameters shared by
all the Gaussian components that are linked to the jth tissue.
The Gaussian component fi has, therefore, the following
form:

fi
(
x, I(x) | μi,Σi

) = N
(
x;μxi ,Σx

i

)×N
(
I(x);μIπ(i),Σ

I
π(i)

)
.

(3)

The main advantage of the CGMM framework is the
ability to combine, in a tractable way, a local description of
the spatial layout of a tissue with a global description of the
tissue’s intensity. The multiGaussian spatial model makes our
approach much more robust to noise than intensity-based
methods. Note that no prior atlas information is used in
the modeling process. An illustration of the CGMM model
applied to the three tissues (CSF, GM, and WM) is shown in
Figure 1(a). In case of MS lesion segmentation we consider
the lesion matter in the CGMM modeling as a fourth tissue
in addition to the three healthy tissues (Figure 1(b)).

(a) (b)

Figure 1: Illustration of the GMM representation. (a) Segmenting
the brain image into three main tissues. (b) Adding a fourth class
for MS lesions; Color Legend: Blue-CSF, Green-GM; Yellow-WM;
Red-MS.

2.1. Parameter Estimation via the EM Algorithm. Given an
MRI image with T voxels: {(xt, I(xt)) | t = 1, . . . ,T}, the
likelihood of a given CGMM parameter set is

T∏

t=1

n∑

i=1

αi fi
(
xt, I(xt) | μi,Σi

)
. (4)

Initially, the model parameters are, of course, unknown.
To find the maximum-likelihood parameters we utilize the
classical Expectation-Maximization (EM) algorithm [28].
The EM algorithm handles the parameter estimation task
by iterating the E and M steps. In the E-step, it treats the
parameter set as given, and estimates the probabilities of each
sample to be drawn from each Gaussian. Informally, this
step can be seen as soft segmentation (but here, the number
of segments is n, the number of Gaussians, and not K ,
the number of the tissues). The M-step performs parameter
reestimation. Thus, the equations take the following form.

E-Step:

wit = p(i | xt, I(xt))

= αi fi
(
xt, I(xt) | μi,Σi

)

∑n
j=1αj f j

(
xt, I(xt) | μj ,Σ j

) i = 1, . . . ,n, t = 1, . . . ,T

(5)

wit can be viewed as the posterior probability that voxel t was
created using Gaussian i.

M-Step. Let

ni =
T∑

t=1

wit i = 1, . . . ,n,

kj =
∑

i|π(i)= j

ni j = 1, . . . , k

(6)

with ni and kj interpreted as the expected number of voxels
associated with the ith Gaussian and kth tissue, respectively,
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and T is the number of voxels in the MRI image. Parameter
reestimation is then defined as follows.

Spatial parameters:

μxi =
1
ni

T∑

t=1

witxt,

Σx
i =

1
ni

T∑

t=1

wit
(
xt − μxi

)(
xt − μxi

)�,

αi = ni
T
.

(7)

Intensity parameters:

μIj =
1
kj

∑

i|π(i)= j

T∑

t=1

witI(xt),

ΣI
j =

1
kj

∑

i|π(i)= j

T∑

t=1

wit

(
I(xt)− μIj

)(
I(xt)− μIj

)�
.

(8)

Note that while the spatial parameters are estimated sepa-
rately for each Gaussian, the estimated intensity parameters
are the same for all the Gaussians that belong to the same
tissue. The grouping function π that links between the
Gaussian components and the tissues is learned in the
initialization step and is not altered by the EM iterations.
Therefore, the affiliation of a Gaussian component to a
tissue remains unchanged. However, since the learning is
performed simultaneously on all the tissues, voxels can move
between tissues during the iterations.

Once the optimal set of parameters is obtained using
the EM algorithm, we can compute soft tissue segmentation
maps. Moving from soft segmentation to hard segmentation
is straight forward, using the Maximum-A-Posteriori (MAP)
criterion. Tissue segmentation is achieved by the affiliation
of each voxel to the tissue that maximizes the a posteriori
probability:

tissue-label(voxelt) = arg max
j

p
(
tissue = j | xt, I(xt)

)

= arg max
j

∑

i|π(i)= j

αi fi
(
xt, I(xt) | μi,Σi

)
.

(9)

Figure 2 illustrates the segmentation induced from the
CGMM model and shows how the EM iterations improve the
segmentation quality. Since a lot of the algorithmic effort is
spent on finding a good initialization (see Section 2.2), the
EM needs only few iterations to converge.

2.2. Model Initialization. In Section 2.1, we saw how the EM
algorithm is applied to the MRI data to find the maximum-
likelihood parameter-set for the CGMM. However, the EM
is notoriously known to get stuck in local maxima. Hence,
appropriate initialization is required. In the first step the K-
means clustering is done based only on the intensity features
(T1, T2, and PD), which gives a good initial segmentation

(a) (b)

Figure 2: Illustration of the influence of the EM iterations. As the
parameter estimation improves with the iterations, the segmenta-
tion induced from the model becomes more and more robust to
noise. Blue-CSF; Green-GM; Yellow-WM. (a) Initial segmentation.
(b) Segmentation after convergence (five EM iterations).

into the three major tissue classes. We utilize T1 to give tissue
labels to the three groups.

Given the intensity K-means clustering of the voxels into
the three tissues, we want to model each tissue with many
small locally convex Gaussians. it is important that small
Gaussians will be allowed, as lesions are often very small, and
we would like the Gaussians layout to capture them. We have
found empirically that randomly selecting 1/20 of the voxels
as initial Gaussian centers yields a resolution that is high
enough for detecting the MS lesions. To ensure that small
isolated areas are explicitly represented by local Gaussians,
we first apply a three-dimensional connected component
process to each tissue. If a connected component contained
less than three voxels, it was ignored and disregarded as noise.
For each connected component (of voxels all from the same
tissue) a subset of voxels is randomly chosen and a new
Gaussian is formed at each of the chosen voxels. To compute
initial covariance values for each Gaussian we assign each
voxel to the nearest center with the same tissue label. The
Gaussian covariance (both intensity and spatial) is computed
based on all the voxels that are assigned to the Gaussian
center. As a result of the initialization process each Gaussian
is linked to one of the tissues and each voxel is affiliated with
a selected Gaussian.

2.3. Efficient EM Based on the KDT Transform. The strength
of the proposed model relies on the highly detailed spatial
representation obtained by using many small Gaussians
such that each Gaussian represents a small coherent and
convex region. Of course, the number of Gaussians that
are required to cover the entire image increases as the
size of the Gaussians decreases. The main implementation
problem is the large number of Gaussians, that leads to
high computational complexity of the EM algorithm. The
computational complexity involved with the E-step is O(nT)
where T is the number of voxels and n is the number of
Gaussian components. A typical number of voxels in 3D MRI
brain images is on the order of 106. The number of Gaussians
in the CGMM framework may be as high as 103 or even 104

when segmentation of MS lesions is also required. This fact
hinders the E-step computations significantly.
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It is clear that voxels that are very far away from the
spatial mean of a particular Gaussian i, have a small chance to
originate from this Gaussian. Due to numerical limitations,
the probability density of each Gaussian vanishes whereas
the actual distance from the spatial mean is still finite. Thus,
for practical purposes, there is no need to compute in the
E-step the weights wit for every Gaussian i and every voxel
t. Instead, for every voxel we maintain a small list of its
nearest Gaussians. Our experiments showed that even a
small number of Gaussian neighbors (say 10) gives rise to
very accurate approximations of the model and does not
cause any degradation in the segmentation performance. The
computational complexity is O(10T) and therefore using this
procedure, the number of computations in each E-step is
reduced by a few orders of magnitude.

We note in passing that this approach is superior to
maintaining a list of voxels for every Gaussian. The reason
is that in the latter, we may find that there are voxels that
are explained by no Gaussian at all. Admittedly, maintaining
a list of nearest Gaussians for every voxel may result in
Gaussians that have, if any, very little voxels. However, this
should not compromise the results, since such Gaussians will
simply shrink and die off during the EM process.

The main problem is efficiently finding the list of nearest
Gaussians for each voxel. In this section we suggest an
efficient way to find this list. The method is based on the
K-Distance Transform (KDT) [29], (and can be applicable
to other GMM applications defined on a grid in which the
number of Gaussians is large). KDT, introduced by Warfield
[29] and later improved by Cuisenaire [30], is an extension
to the Distance Transform (DT). Originally, the KDT was
used for fast implementation of the kNN classification rule.
The KDT input is a discrete Euclidean space containing
prototypes and nonprototypes. Each prototype is given a
unique identifier. The output is a set of identifier maps.
The first map is a first Nearest-Neighbor (NN) map. In
effect, each element in this map contains the identifier
of the prototype that is the nearest to this element. The
second map is a second NN map and so on. The brute
force approach for KDT computation is very simple and
extremely inefficient: for every space element, compute its
distances from all the given prototypes, sort them by the
distances, and select only the nearest neighbors. Clearly,
this approach is not applicable to large datasets due to
its high complexity. Warfield proposed an efficient way for
fast KDT computation, that is based on local propagations,
rather than direct computations. The main point is that
local propagations, implemented using several raster scans,
require a number of computations that is only linear in the
number of elements in the discrete space [29].

In our work, the input prototypes can be taken as the spa-
tial means of the Gaussians and applying the KDT algorithm,
we obtain for every voxel a list of its nearest Gaussians. We
can use the Mahalanobis distance as the metric of choice.
Note that the Mahalanobis distance depends not only on
the locations of the prototype (in effect, the spatial mean
of the Gaussian) and the voxel, but also on the covariance
matrix of the Gaussian. Experiments indicate that while EM
iterations modify the spatial parameters to some extent, they

are unlikely to cause a Gaussian to wander far away from its
original vicinity. Thus, it is enough to apply the KDT for
computing the list of nearest Gaussians only once. There is
in fact a chance that the list of the nearest Gaussians will
change slightly, but the Gaussians that will be replaced are
likely to be far from the voxel so that their contribution is
not important. Here too, our experiments indicate that any
discrepancy between the approximated model and the true
model is intangible.

Note that in the present work, the importance of the
KDT is primarily in approximating the exact computation of
the probabilistic model. However, it also gives us contextual
information. Not only is it possible to know which are the
K nearest Gaussians for every voxel, but also their tissue
affiliation. Hence, the KDT immediately gives additional
useful information: for every voxel it is possible to know,
which tissue its nearest Gaussians relate to. Such knowledge
can be beneficial to determine if a voxel is located within a
WM area and is used in the following section to obtain a fast
implementation of rules for detecting MS lesions.

3. Lesion Detection Utilizing the CGMM

A major focus of the current work is to extend the CGMM
framework to MS lesion segmentation. Section 2.2 described
that one of the very first initialization steps was intensity-
based K-means clustering. As mentioned earlier, simple
clustering methods for MS lesion detection are usually
inapplicable, due to the small number of lesion voxels. We
present a novel approach to MS lesion detection, that exploits
the Gaussians layout of the CGMM. First, the model is
initialized with three tissue classes, and its parameters are
learned. Due to the fact that MS lesion voxels are significantly
outnumbered by the healthy tissue voxels, the clusters still
succeed in representing the three healthy tissues (CSF, GM,
and WM). The lesion voxels are of course misclassified at
this point as one or more of the healthy tissues. Moreover, at
this stage there are misclassified Gaussians, that is, Gaussians
labeled as healthy tissues that are supposed to be labeled as
MS. The purpose of the current stage is to identify these
Gaussians, and change their labels accordingly. A major
distinction of the present work from previous works is that
MS lesion detection is performed on the Gaussian level rather
than on the voxel level.

For each Gaussian a decision is made, based on its
features, whether it should in fact be labeled as MS, or remain
labeled as one of the healthy tissues. Both supervised and
unsupervised approaches can be used to deal with this task.
For example, a rule based system can be used to distinguish
the MS lesion Gaussians from the normal tissue Gaussians. A
Gaussian for which all these conditions hold, is labeled as MS
lesion. An example of such a rule set for Gaussians labeled as
GM is the following:

(1) T2 mean-intensity of the Gaussian > T2 mean-
intensity of the GM tissue + εGM,T2 ,

(2) T2 mean-intensity of the Gaussian > PD mean-
intensity of the GM tissue + εGM,PD,
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(3) a large Mahalanobis distance between the mean-
intensity of the Gaussian and the mean-intensity of
the CSF/GM/WM tissue,

(4) the majority of Gaussian’s K nearest Gaussians are
labeled as WM,

where εGM,T2 and εGM,PD are thresholds that can be tuned
and optimized. The first two rules reflect the general
appearance of the MS lesions. The rules that rely on
Mahalanobis distance imply that only Gaussians that are not
well explained by the healthy tissue models are suspected
as lesion Gaussians. The last rule incorporates contextual
information by reflecting our expectation to find lesions
within the WM tissue. These rules are similar to rules used
by Van Leemput et al. [19]. However, note that at this point
decisions are made at the Gaussian level rather than the voxel
level.

Clearly, a rule-based system is only one option for
MS Gaussian detection. For example, a more supervised
approach can be used: given examples marked by a human
expert, standard classifiers can be applied to the Gaussian
features. While we do not claim that the rule-based system
suggested here is optimal (although it is intuitive and easy
to implement), we do suggest that the detection on the
Gaussian level provides greater strength in comparison to
voxel-based detection.

Following the MS lesion Gaussian-detection stage, all
the relabeled Gaussians now form a fourth class named MS
lesion (MSL), with its own global intensity parameters. The
EM is now applied to CGMM with four tissue types and
segmentation of the tissues and the lesions is obtained as
explained in Section 2. An illustration of the relabeling of the
Gaussians can be seen in Figure 1(b).

4. The CGMM-CE Framework for Lesion
Boundary Refinement

The segmentation induced from the CGMM yields good
results in terms of lesion detection. However, there is usually
an overestimation in the size of the lesions. This is most likely
due to the fact that the area in the proximity of a lesion
is somewhat different from the other tissues. In addition,
the segmentation step of the CGMM model is done voxel-
wise and does not take into account the smoothness of the
lesion boundaries. Hence, a postprocessing step for refining
the lesion boundary is needed. We use a modified version of
the variational framework for segmentation of vector valued
images, suggested by Rousson and Deriche [31] based on the
Chan-Vese model [32]. In [31] a curve evolution equation
for object-background image segmentation is derived based
on statistical properties of the two regions. The intensity in
each region is modeled using a Gaussian distribution. In our
case, the lesion is the object and voxels around it are the
background. The optimal lesion segmentation is defined by
minimizing the energy:

F
(
μ1,Σ1,μ2,Σ2, ∂Ω

) =
2∑

i=1

∫

Ωi

ei(I(x)) + length(∂Ω), (10)

where Ω1 are the lesion region voxels, Ω2 are the nonlesion
voxels, ∂Ω is the curve separating the two regions, μi, Σi

are the Gaussians parameters of Ωi and ei(I) = − log f (I |
μi,Σi). In level-set formulation, the functional from (10)
takes a new form:

E
(
Θ,φ

) =
2∑

i=1

∫

Ω

[
ei(I(x))χi

(
φ(x)

)]
dx + length(∂Ω), (11)

where φ is the level-set function, Θ is the parameter set
{μ1,Σ1,μ2,Σ2}, and χ1, χ2 are the characteristic functions
of regions 1 and 2, respectively: χ1(φ) = Hε(φ), χ2(φ) =
1−Hε(φ) such that Hε(·) is a regularized Heaviside function.
The length term is

∫
Ω|∇Hε(φ(x))|dx. Note that the level-

set formulation enables performing integration on the entire
image domain, Ω. The energy (local) minimum can be
obtained utilizing the level-set theory via a Gradient Descent
(GD) method. From the GD equation, φt = −δF/δφ, we
obtain the following curve evolution equation:

φt(x) =
(
v · div

( ∇φ∣∣∇φ∣∣
)

+ e2(I(x))− e1(I(x))

)
δε
(
φ(x)

)
.

(12)

Since brain images are complex, and since lesions are
relatively small, it is impractical to use the standard initial
contour (small circles) [31, 32] to find the three tissues and
the lesions, simultaneously. The method is highly sensitive
to the initial conditions for complicated four-phase images
(such as brain images) as a gradient-descent optimization
finds only local minima of the functional. Figure 3(a) shows
a segmentation obtained from a four-phase curve-evolution
using a standard circle-grid initialization [31]. It can be
seen that (even with extensive manual tuning of the curve-
evolution parameters) due to the complexity of the image
and the added noise, we obtain poor brain segmentation
results and no detection of MSL.

Using segmentation results of the three tissues and
lesions obtained by CGMM just for initialization of a four-
phase CE is not sufficient. Even with the improved CGMM
initialization, the four-phase CE fails, as the image is too
complex and the lesions are relatively small. Figure 3(c)
shows an example of MSL segmentation results based on a
CGMM segmentation followed by five iterations (that were
needed until convergence) of four-phase curve evolution
(the initial CGMM segmentation is shown in Figure 3(b)).
As expected, and in agreement with Rousson and Deriche
[31], the lesions gradually disappeared and the segmentation
failed due to the complexity of the image.

In our approach we use a two-phase CE: lesions (object)
versus nonlesion (background). We use the CGMM not
just a starting point but also for background and object
modeling. We model the lesion in the curve-evolution
process using an intensity based Gaussian that is extracted
from the lesion component of the CGMM model and is
kept fixed during curve evolution iterations. We model the
background using an intensity based GMM that is extracted
from the CGMM model. Since there are three tissues that
belong to Ω2, we define e2(I(x)) to be min(eCSF, eGM, eWM).
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(a) (b) (c)

Figure 3: Illustration of MSL segmentation (BrainWeb data 9% noise, slice 105) using a four-phase curve-evolution (CE). Blue: CSF; Green:
GM; Yellow: WM; Red: MSL. (a) Segmentation based a standard small-circles initialization followed by 30 iterations of four-phase curve
evolution. (b) CGMM initial segmentation. (c) CGMM initial segmentation followed by five iterations of a four-phase curve-evolution.

This definition implies that the last two terms in the curve
evolution equation are the log-likelihood ratio between
MSL and the most likely normal-brain tissue. In [31] the
energy is minimized with respect to both the Gaussian
parameters and the boundary position. In our case, we avoid
the parameter reestimation step. Instead, we use the global
intensity parameters learned via the CGMM model. This
enables us to continue enforcing the global constraints of the
CGMM in the active contour step. For example, if one of the
slices has an initial contour that encircles only false positives,
then the constraint will usually cause it to die off, whereas
parameter estimation during the curve evolution is likely to
cause the system to learn the parameters of the false lesion. To
summarize, three modifications are suggested in the current
work, in applying the Rousson-Deriche framework to the
MSL delineation task.

(i) The CGMM lesion segmentation is used as the initial
contour.

(ii) The background is modeled by a GMM (CSF, GM,
WM) instead of a single Gaussian.

(iii) Parameter estimation during the curve evolution
process is avoided; CGMM intensity parameters are
used instead.

The lesion detection obtained using CGMM, therefore,
makes it possible to apply active contour techniques for
lesion delineation.

We dub the proposed method, which is based on CGMM
followed by a curve evolution refinement, CGMM-CE. The
steps of the CGMM-CE algorithm that were presented in
Sections 2, 3, and 4 are summarized below.

(i) Apply intensity based K-means to obtain an initial
clustering of the voxels into three tissues.

(ii) Form the initial spatial Gaussians based on clustering
of the connected components of each tissue. Set the
Gaussian labels according to the tissue they belonged
to.

(iii) Utilize fast KDT to compute the nearest Gaussians for
each voxel.

(iv) Apply the EM algorithm to find the probabilistic
model for the three tissues.

(v) Find the lesion Gaussian using Gaussian outlier
detection.

(vi) Apply the EM algorithm to find the probabilistic
model for the four “tissues” (three healthy tissues +
lesions).

(vii) Find lesion segmentation based on the probabilistic
model.

(viii) Utilize curve evolution techniques to refine the lesion
boundaries.

5. Experimental Results

Lesion segmentation validation is a challenging task. First,
with notable exceptions there are hardly any data sets that
are publicly available for the research community. Second,
there is no clear convention for the best measures to quantify
the results. Third, the nature of the lesions is almost never
binary. It is a challenge to decide where the lesion ends and
the healthy tissue starts, a fact that introduces variability
in human-expert markings. Manual segmentation of large
data sets is a labor and time-consuming task. This makes
it difficult to produce ground truth segmentation for large
data sets. In the current work, we demonstrate results on
a the Brainweb online database [33] which is considered
to be a standard benchmark upon which MRI brain image
segmentation algorithms are tested and compared. An initial
result on a real brain, is shown as well.

5.1. BrainWeb Simulated MRI Data. The CGMM-CE algo-
rithm was tested on bias-free simulated MRI data taken
from the BrainWeb online database [33]. The following
coregistered modalities were used: T1, T2 and PD. Voxel size
was 1 mm3. Experiments were done on 61 slices (axial slices
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Figure 4: BrainWeb data with 9% noise level (a) T1, (b) T2, (c) Pd.

Figure 5: Intensity K-means segmentation. K = 3. BrainWeb data,
slice 95 with 9% noise. Blue: CSF; Green: GM; Yellow: WM.

Table 1: Dice index for lesion segmentation on BrainWeb data for
different noise levels.

Algorithm
Noise

3% 5% 7% 9%

KVL 0.80 0.73 0.61 0.47

CGMM+CE 0.79 0.79 0.78 0.76

60–120) that contain 93% of the lesion burden. Different
levels of noise were added: 3%, 5%, 7% and 9%. According
to BrainWeb’s web-site, the noise in the simulated images
has Rayleigh statistics in the background and Rician statistics
in the signal regions. The “percent noise” number (e.g., 5%
noise) represents the percent ratio of the standard deviation
of the additive white Gaussian noise versus the signal for a
reference tissue. In the brain images under observation the
noise reference tissues were WM for T1, and CSF for T2 and
PD.

Figure 4 shows slice 90 with different levels of noise.
Visual inspection suggests that images with 9% noise present
a challenge even for manual segmentation. We are aware that
the noise level in real data is almost always less than 9%.
We provide the 9% segmentation result to demonstrate the
robustness of the CGMM-CE method.

As preprocessing steps, the brain region was extracted
and the intensity distribution of each channel was normal-
ized to have zero mean and unit variance. Then, a K-means
intensity-based clustering was performed with K = 3, to
achieve an initial crude segmentation (see Figure 5). The
global intensity parameters of each tissue were initialized
as the sample mean and sample covariance of the extracted
tissue segment.

Following the CGMM parameter initialization and KDT
computation (with 10 neighbors), a subset of the Gaussians
was relabeled as MSL. For every Gaussian, a set of decision
rules was applied. If all the conditions described in this
set held, and in addition the majority of Gaussian’s 10
nearest Gaussians were labeled as WM, then the Gaussian
was relabeled as MSL. The selected subset formed a fourth
class. Optimal MSL parameters were found using the EM
algorithm. In all the experiments, it took less than seven
iterations to reach convergence. Finally, the curve evolution
step was applied to refine the lesion segmentation. The
velocity, v, in (12), was chosen as a constant: v(x, y) = const.
The constant value was set to be 5, 3, 1, 1 for noise levels 3, 5,
7, 9, respectively (higher velocity for low noise levels).

Performance is evaluated via a comparison with
Van Leemput’s state-of-the-art algorithm (hereon termed
KVL) [19] implemented by the EMS software package-
http (http://www.medicalimagecomputing.com/EMS). In
the KVL implementation, the statistical brain atlas of the
SPM99 (http://www.fil.ion.ucl.ac.uk/spm/) was normalized
to the target brain volume images. Note that KVL is the only
one who actually made his code/toolbox available, so the
comparison is fair. Usually people report on lesion detection
on MRI images with 3% noise level. We have not found
reported results on 9% (or in fact, even 7%) other than KVL
[19].

Figure 6 shows segmentation results on a single slice.
Results are shown for both KVL, CGMM, and CGMM-
CE methods. Figures 6(a)–6(c) shows a low noise case of
3%, Figures 6(d)–6(f) shows a high noise case of 9%, and
Figures 6(g) and 6(h) show the ground truth MS lesion
segmentation. Visual inspection indicates that for a low
level of noise (3%), both algorithms present results that
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(a) KVL (b) CGMM (c) CGMM-CE on T1 (d) KVL

(e) CGMM (f) CGMM-CE on T1 (g) GT (h) GT on T1

Figure 6: Segmentation results on BrainWeb data, slice 105. Blue: CSF; Green: GM; Yellow: WM; Red: MSL. (a)–(c) 3% noise, (d)–(f) 9%
noise, (g) and (h) ground truth.

are close to the ground truth. For strong noise scenarios
(9%), the CGMM produces a better and smoother healthy
tissue segmentation. Also note that in terms of detection
of whole MS lesions (e.g., number of false positives), the
CGMM presents more successful results. Following the curve
evolution step, the CGMM-CE framework presents further
improved results.

The need for boundary refinement following the CGMM
segmentation, and the result of applying the curve evolution
process are shown as a zoom-in in Figure 7. Two slice
examples are shown including for each is the ground-truth
(left), the CGMM segmentation result (center), and the
refined CGMM-CE segmentation (right). In the bottom left
of Figure 7(e) we can see that two distinct lesions were
joined together in the CGMM segmentation. Figure 7(f)
shows that the refined contour succeeded in separating these
two lesions. Comparing these two images further, we can
also see that the overestimation of several of the lesions has
significantly decreased. Similar results have been observed
in other such slices examined. Note that in Figure 7(c) the
refined lesion split to two very close adjacent lesions, this
is not a general feature of the CE, as the fact that the
CGMM (see Figure 7(b)) produced a lesions whose two parts
are almost disconnected. The reason for this is that only
three main healthy tissues are modeled, but in fact the data
presents about 9 or 10 healthy tissues, most of them are

typically ignored. This particular lesion is on top such a
tissue—the Glilal matter and therefore few pixels are missed,
which resulted in a final insignificant splitting.

A quantitative comparison between the algorithms was
made using the Dice overlap metric which measures the
overlap between the automatic segmentation and the ground
truth for each tissue j. This performance index is often used
in assessment of medical image segmentation algorithms,
and is given by

Dice Index = 2V
j
ae

V
j
a + V

j
e

, (13)

where V
j
as is the number of voxels that are assigned to tissue

j by both the ground truth and the automated algorithm, V
j
a

and V
j
e denote the number of voxels assigned to tissue j by

the algorithm and the ground truth, respectively. Dice values
vary between zero (no agreement with the ground truth
segmentation) and one (perfect agreement with ground
truth segmentation).

Table 1 shows MS lesion Dice results for KVL and the
CGMM-CE methods. In the 3% case, KVL is slightly better.
For higher values of noise, the performance improvement of
the CGMM-CE framework over the KVL is notable. It should
be noted that for lesion segmentation, Dice values above 0.70
are considered to be clinically stratifying [16]. Moreover, a
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(a) GT (b) CGMM (c) CGMM-CE on T1

(d) GT (e) CGMM (f) CGMM-CE on T1

Figure 7: Zoom in of segmentation results. Blue: CSF; Green: GM; Yellow: WM; Red: MSL. Upper row: slice 97. Lower row: slice 104.

(a) (b) (c)

(d) (e) (f)

Figure 8: Real brain images, example 1. (a) T1 (b) T2 (c) PD (d) FF (e) Manual segmentation of MS lesions (red) overlayed on T1 (f)
CGMM-CE segmentation. Blue: CSF; Green: GM; Yellow: WM; Red: MSL.

comparison between two different segmentations given by
two different human experts, is likely to yield Dice index
lower than 0.70 [18].

The computation time (using Pentium (R) 4 CPU
3.40 GHz, 1.49 GB of RAM) for each significant part of the
algorithm is initialization: 3 minutes, KDT: 2 minutes, MS
Gaussian detection: 1 minute, and EM iteration: 1 minute.
The curve evolution computation time was insignificant.

This is partially due to the fact that the CGMM provided a
starting point that is very close to the local minima of the
functional and thus the number of curve evolution iterations
was usually small. Also, since we used the CGMM intensity
parameters, there was no need to reestimate these parameters
for every iteration. Thus, the entire CGMM-CE process takes
less than a quarter of an hour for BrainWeb data, slices 60–
120.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Real brain images, example 2. (a) T1, (b) T2, (c) PD, (d) FF, (e) Manual segmentation of MS lesions (red) overlayed on T1, (f)
CGMM-CE segmentation. Blue: CSF; Green: GM; Yellow: WM; Red: MSL.

5.2. Results on Real Data. In what is still a work in progress,
the algorithm was also tested on real MRI data. These
experiments were performed in a joint effort with the MS
Center at Sheba Medical Center, Israel. Here, ground truth
segmentation of the healthy tissues is not available. However,
we have manual MS lesion segmentation, provided by a
human expert. In these experiments, the Fast Flair (FF)
modality, was added to T1, T2, and PD which were previously
used. Note that the BrainWeb data [33] does not offer this
modality. The FF provides a good contrast between CSF and
the other healthy tissues (GM and WM). To some extent,
it also provides a good contrast between MS lesions and
the three healthy tissues. The main purpose of FF in MS
is to suppress false positive from CSF signals. Preprocessing
steps include conventional procedures such as extraction of
the brain region (also know as skull removal); coregistration
of the images from the different channels; and bias filed
correction. Once the preprocessing is finalized, we extract
from each voxel both intensity and spatial features. Unlike
the isotropic voxel used in the BrainWeb data experiment,
here the voxel size was 1 mm × 1 mm × 3 mm. The set of
decision rules for Gaussian detection was similar to the one
used in the BrainWeb dataset, with the addition of rules that
take the FF into account (e.g., lesions are brighter than all the
other tissues). Results on real data are shown in Figures 8 and
9. In both examples it is possible to see a smooth and visually
plausible segmentation of the healthy tissues. With regard to
the lesion detection and delineation, the main lesions are in
fact detected (except for one in Figure 9).

6. Discussion

In [26], the CGMM was shown to be a successful framework
for healthy tissue segmentation of T1 MRI brain images. In
the current work, the CGMM-CE framework was presented,
as a methodology to detect and delineate MS lesions within
multichannel input data. A novel model approximation
scheme has been suggested to accelerate computing time
by several orders of magnitude. Finally, a curve evolution
technique was applied to refine the segmentation of the
MS lesions. CGMM was shown here to provide a successful
parametric framework for healthy tissue and MS lesion
segmentation in abnormal brains, without requiring prior
registration to a brain atlas. Unlike most MS lesion segmen-
tation algorithms, here detection of MS lesions is done on
the Gaussian-level rather than the voxel-level. Besides the
fact that it ensures smoother segmentation and an inherent
robustness to noise, Gaussian-level reasoning incorporates
spatial information in a simple and intuitive way (unlike
MRF that is often used in the literature).

One of the advantages of the suggested rule-based system
for MS Gaussian detection, in addition to its simplicity,
is that it enables the user (the radiologist) to tune the
parameters in a clear and understandable way. Also, users
can easily add or remove rules to match the rules that they
himself apply for manual lesion segmentation. For example,
they can decide to exclude all Gaussians that are close to
the centerline of the brain. While similar rules were used in
the literature, here the rules are applied to Gaussians (that
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correspond to small regions) rather than to voxels. Of course,
the rule-based system for MS Gaussian detection is only one
option for classifying Gaussians. For example, it is possible to
use the markings given by a human expert to train classifiers
such as a support vector machine.

The Gaussian KDT enables a fast implementation of
the CGMM framework and provides additional contextual
information. The KDT can be useful for other GMM
applications in which the number of Gaussians is large. The
curve evolution technique suggested by Rousson and Deriche
[31] was utilized to refine the CGMM lesion segmentation.
Since brain images are complex, this technique cannot be
directly applied to the MRI data. The CGMM segmentation
provides an excellent initial contour, so the Gradient-
Descent limitations are reduced. The use of the optimal MSL
intensity parameters from the CGMM, eliminates the need
to reestimate them in each curve evolution, thus speeding
the process. In experiments with simulated data, both
visual and quantitative comparisons with the KVL algorithm
have demonstrated better results, especially as the noise
increases. Typical results of MSL segmentation reported in
the literature refer to 3% noise only (e.g., the sate-of-the-
art algorithm suggested by Akselrod-Ballin et al. [15]). The
proposed algorithm performs well with increased noise up
to 9%. Experiments with real MRI data yielded promising
results. We are currently extending the experiments to
additional real brain datasets, in a joint effort with the MS
center at Sheba hospital. Also planned is the validation across
multiexpert ground-truth data. Some additional work needs
to be done to address the very small size lesions, and to
achieve more accurate delineation. Multiple-expert markings
need to be compared as well, in order to estimate the observer
variability on this data set, which can then be compared to
the automated algorithm performance.
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