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ABBV‑744 as a potential inhibitor 
of SARS‑CoV‑2 main protease 
enzyme against COVID‑19
Zeynab Fakhar1,5, Shama Khan2,5, Suliman Y. AlOmar3, Afrah Alkhuriji3 & Aijaz Ahmad2,4*

A new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide 
and become pandemic with thousands new deaths and infected cases globally. To address coronavirus 
disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us 
to explore potential lead compounds by considering drug repurposing approach targeting main 
protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as 
it contributes significantly in mediating viral replication and transcription. Herein, comprehensive 
computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro 
enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized 
structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for 
virtual screening based PhaseScore. Docking based virtual screening workflow was used to generate 
hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical 
properties of the selected lead compounds were characterized using ADMET. Molecular dynamics 
simulations were performed to explore the binding affinities of the considered lead compounds. 
Binding energies revealed that compound ABBV-744 binds to the Mpro with strong affinity (ΔGbind 
−45.43 kcal/mol), and the complex is more stable in comparison with other protein–ligand complexes. 
Our study classified three best compounds which could be considered as promising inhibitors against 
main protease SARS-CoV-2 virus.

Coronavirus disease 2019 (COVID-2019) outbreak is a global pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) which initially diagnosed in Chinese patients of Hubei’s Wuhan city in early 
December 20191. SARS-CoV-2 disclosed a close genetic resemblance to the severe acute respiratory syndrome 
coronavirus (SARS-CoV) that already triggered an epidemic in 20032. COVID-19 has been declared a global 
health disaster by World Health Organization (WHO) on 30 January 2020 as the disease hastily transmitted 
human-to-human and affected more than 170 countries across the world3. The existing condition is extremely 
increasing; therefore, the overall asperity of this disease persist to be serious. The infection rate of SARS-CoV-2 
is higher (10–12%) in comparison with its mortality rate (5.4%)4. The most distinctive indications of COVID-19 
patients are high fever, cough and excessive respiratory sickness that required urgent intensive care facility. Cur-
rently, there is no applicable and precise medication for the treatment of COVID-19, however, many drugs and 
vaccines are under clinical trials. The only practical approach available is the repurposing of existing antiviral 
drugs as these drugs have already been tested for their toxicity5. Still there is a prompt requirement to make 
substantial efforts to advance therapeutic interventions against CoV infections.

CoVs are single-stranded positive-sense RNA viruses belongs to the family of Coronaviridae. These viruses 
can be categorized into four species: alpha, beta, gamma and delta. The recent SARS-CoV-2 is from beta genus 
and is usually identified to affect commonly humans6. The RNA genome length of this virus is about 27–32 Kb 
encoding both structural and non-structural proteins. Among them, the structural proteins, membrane (M), 
envelope (E), nucleocapsid (N), hemagglutinin-esterase (HE) and spike (S) proteins contribute notably in viral 
transmission and replication in the host cells7. The 3C-like protease (3CLpro) protease plays critical role in the 
SARS-CoV-2 life cycle through virus replication and transcription process, thus studied as potential drug targets. 
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Providing informative knowledge regarding the enzyme inhibition will be valuable in tailoring effective and 
selective inhibitors of 3CLpro as this enzyme is imperative for virus assembly and reproduction8.

The main protease (Mpro) is a quintessential enzyme which contributes significantly in the life cycle of SARS-
CoV-2 and inhibition of Mpro enzyme activity would block viral replication. Since no human proteases with a 
similar specified cleavage are characterized, thus the potential inhibitors are unlikely to be toxic. The Mpro enzyme 
consists of an asymmetric unit including 305 amino acid residues with CYS145 and HIS41 catalytic dyad in the 
active site9,10 (Fig. 1).

Experimental observations by Zhang et al.10 demonstrated the half maximal inhibitory concentration (IC50) 
value 0.67 µM for an α-ketoamide inhibitor (αk-13b) as a potent antiviral inhibitor against Mpro enzyme. Zhang 
et al. proposed the inhibition mechanism through a nucleophilic attack of the catalytic CYS145 to the α-keto 
group of the inhibitor and thiohemiketal moiety formation. This thiohemiketal group is stabilized by forma-
tion of several hydrogen bonds with the active residues of HIS41, GLY143, SER144 and CYS145, Fig. 1. This 
experimental observation proposed that α-ketoamide inhibitors interacted with the catalytic center of proteases 
through two hydrogen bond interactions whereas aldehydes and Michael acceptors only formed one hydrogen 
bond into the catalytic center of the target proteases11,12.

Figure 1.   (A) Structural overview of Mpro enzyme in complex with α-ketoamide inhibitor (αk-13b) (magenta 
color); (B) Close up view of the binding pocket of Mpro accommodated αk-13b; C: 2D-chemical structure of 
α-ketoamide inhibitor (αk-13b).
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According to the aforementioned experimental information, we have chosen SARS-CoV-2 Mpro as a target 
enzyme to accelerate the prompt hunt of antiviral drug repurposing with the potential of gaining an effective 
short‐term solution to treat COVID‐19 patients.

To address this challenge, an specific library of anti and pro-viral agents including FDA approved drugs, 
compounds in clinical trials and preclinical compounds having inhibitory activity between 10 and 100 nM range 
against SARS-CoV-2 was considered for drug repurposing to attain immediate and precise results13. In this 
study, we developed an integrated approach of drug discovery integrating 3D structure-based pharmacophore 
modeling, virtual screening of 75 compounds library, molecular docking workflow, ADMET pharmacological 
analysis and molecular dynamics (MD) simulations. This scheme will provide an informative insight into the 
exploration of potent antiviral drugs, which could help in progressive attempts in the therapeutics of COVID-19.

Methodology
System preparation.  The 1.95 Å crystal structure of SARS-CoV-2 main protease (Mpro) in complex with 
α-ketoamide (αk-13b) inhibitor was extracted from the Protein Data Bank (PDB ID: 6Y2F)10. The structure of 
the enzyme was pre-processed, minimized and refined using the Protein Preparation Wizard14 implemented in 
Schrödinger suite. This involved eliminating of crystallographic waters, adding missing hydrogens/side chain 
atoms, and assigning the appropriate charge and protonation state for the acidic as well as basic amino acid 
residues at pH 7.0. The enzyme structure was subjected to an energy minimization step using the OPLS-2005 
force-field15,16 with a root mean square deviation (RMSD) cut-off value of 0.30 Å to relieve the steric clashes 
among the residues due to the addition of hydrogen atoms17.

The preparation of the crystalized inhibitor, αk-13b, and the 75 candidate compounds were performed using 
LigPrep module of Schrodinger Suite which undertakes hydrogens atom addition, amending realistic bond 
lengths and angles, accurate chiralities, ionization states, tautomers, stereo chemistries, and ring conformations. 
Partial charges were assigned to the structures using the OPLS-2005 force-field15 and the subsequent structures 
were imperiled to energy minimization until their average RMSD reached to 0.001 Å. The ionization state was 
set at the neutral pH = 7 using Epik ionization tool18.

Preparation of inhibitor‑like ligand library.  The 75 candidate compounds were retrieved from the 
experimental work proposed by Gordon et al.13 based on their experimental anti-viral activities against SARS-
CoV-2. All candidate inhibitors were considered for further virtual screening-based 3D-pharmacophore fea-
tures analysis. The library of the 75 compounds are presented in Table S1.

Identification of 3D‑pharmacophore hypotheses.  For the structure-based pharmacophore modeling 
Schrodinger PHASE module19 was used with the default set of seven chemical features- hydrogen bond acceptor 
(A), hydrogen bond donor (D), hydrophobic contacts (H), negative ionizable (N), positive ionizable (P), and 
aromatic ring (R) to create the utmost illustrative features based on the crucial interactions with the key residues 
of the enzyme accommodated the inhibitor. The seven 3D-features were generated using Hypothesis Genera-
tion for Energy-Optimized Structure Based Pharmacophores considering the omitted volumes within 5 Å of 
the refined ligand for the enzyme20. The extracted pharmacophore hypothesis comprise the functional groups 
included in their bioactivity of targeted enzyme.

Screening of Mpro inhibitors.  All acquired seven 3D-pharmacophore features were exported and used for 
PHASE-based virtual screening of the 75 compounds library retrieved from recent experimental work by Gor-
don et al.13. Out of 75 candidates, 43 hit compounds were generated based on the highest PHASE screen score 
and matched ligand sites (Table S2). Both the quantity and quality of feature matching is taken into account in 
the Phase-Screen-Score.

Docking‑based virtual screening.  Molecular-docking-based virtual screening was performed using 
Glide workflow of Maestro 11.6 to prioritize the lead compounds that strongly bind to Mpro enzyme21. Recep-
tor grid was created as center coordinates (X = 9.81 Y = − 1.47 Z = 20.51) using two cubic boxes having a mutual 
centroid to systematize the calculations: a larger enclosing and a smaller binding box with dimensions of 
24 × 24 × 24 Å and 18 × 18 × 18 Å, correspondingly. The grid box was centered on the centroid of the ligands in 
the complex, which was adequately large enough to search a superior region of the enzyme structure. All the 
chosen ligands were docked by using a three docking protocols of Glide21 which starts with “High throughput 
Virtual Screening” (HTVS) followed by “Standard Precision” (SP) and then by “Extra-Precision” mode (XP). 
Finally, the 43 input compounds were assessed using Docking-Based Virtual Screening and filtered to final three 
optimized lead compounds based on XP-GScores.

ADMET properties assessment.  Schrodinger QikProp 5.6 module was used to calculate absorption, dis-
tribution, metabolism, excretion and toxicity (ADMET) properties of the considered compounds to produce the 
ADMET associated descriptors. This protocol predicts noteworthy physicochemical and pharmacokinetic-based 
descriptors based on Lipinski’s rule of five22,23. ADMET properties of the top three compounds and crystalized 
control inhibitor were analyzed using QikProp 5.6 module and the best three compounds were considered for 
final analysis step through molecular dynamics (MD) simulations.

MD simulations.  MD simulation considered to be the most essential approach in understanding the fun-
damental structure and function of biological macromolecules. This method helps in finding the underlying 
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dynamics and how it is connected to enzyme’s biomolecular function24,25,26. AMBER 1827 simulation package 
was used to execute 200 ns MD simulations on all the prepared complexes using (Graphics Processing Unit) 
GPU accelerated version of Partial Mesh Ewald Molecular Dynamics (PMEMD) simulations28. The ff99SB29 
and the general AMBER force fields (GAFF)30,31 were employed to parametrize the enzyme and the considered 
ligands using LEaP implemented in Amber 18.

The ANTECHAMBER module was used to assign atomic partial charges for the ligands employed in General 
Amber Force-Field (GAFF). The system was solvated using the TIP3P32 explicit water in a cubic box with 8 Å box 
edge. The Na+ counter ions were added to randomly to neutralize the complex. The partial Mesh Ewald (PME)33 
method was used to account the long-range electrostatic forces using cutoff of 12 Å, and the SHAKE algorithm34 
was used to constrain all the hydrogen atoms bonds.

Energy minimizations were performed in two stages with 2500 steps of steepest decent minimization fol-
lowed by 2500 of conjugated gradient to remove the bad contacts. The first stage was followed with a harmonic 
restraint of 500 kcalmol−1 A−2 on the solute molecule whereas, ions and water molecules were relaxed. On the 
second stage of minimization the restraints were removed and the whole system was relaxed. Each minimized 
complex was then gradually heated up from 0 to 300 K for 200 ps to keep the solute using a weak harmonic 
restraint of 10 kcalmol−1 A−2. The 50 ps density equilibration with weak restraints followed by the 500 ps constant 
pressure equilibration at 300 K were performed at constant pressure using Berendsen barostat35. Ultimately, the 
production phase of 200 ns MD simulation was performed on all the complexes at a constant temperature of 
300 K and constant pressure of 1 atm36.

Post‑dynamic trajectories analyses.  The 200  ns MD trajectories were analyzed to calculate the RMSD of Cα 
atoms, root mean square fluctuation (RMSF) of each residue in the complex, radius of gyration (Rg), solvent 
accessible surface area (SASA), and intramolecular/intermolecular hydrogen bond interactions using CPPTRAJ 
module37 implemented in AMBER 18. Molecular visualizations and plotting were conducted using Maestro 11.6 
and OriginPro 2018 software38.

Principal component analysis (PCA).  PCA as an important tool for identifying the conformational changes of 
proteins was carried to describe the residual motions upon inhibitor binding of biomolecular complex39. PCA 
generates highly correlated and anti-correlated fluctuations derived from MD trajectories by applying dimen-
sional reduction40,41. The collective motions were studied using the positional covariance matrix C constructed 
based on the atomic coordinates and their corresponding eigenvectors. The eigenvalues and eigenvectors are 
defined as the extent and the direction of motions, respectively42,43. By the following equation, the matric ele-
ments of the positional covariance matrix C were determined:

where qi and qj are the cartesian coordinates for the i, jth of Cα atom, and N is the number of Cα atoms. To 
remove all translational and rotational movements, the average is calculated after superimposition with a refer-
ence structure using a least-square fit procedure to excerpt the important motion from MD trajectories44,45,46. 
To derive the eigenvalues and eigenvectors, the symmetric matrix C is transformed into a diagonal matrix Λ of 
eigenvalues by an orthogonal coordinate transformation matrix T:

in which the eigenvectors correspond to the direction of motions relative to 
〈

qi
〉

 and each eigenvector associ-
ate with an eigenvalue that represents the total mean-square fluctuation of the system along the corresponding 
eigenvector. CPPTRAJ module from the Amber 18 suite was used to perform the PC analysis and the porcupine 
plot of protein collective motions was created by NMWiz implemented in VMD47.

Binding free energy calculations.  The relative binding free energies were computed using Molecular Mechanics/
Generalized Born Surface Area (MM/GBSA) binding free energy method48. Water molecules and counter ions 
were stripped using the CPPTRAJ module. The binding free energies (ΔGbind) were calculated with the MM-
GBSA method for each complex as below:

(1)Ci =
〈(

qi −
〈

qi
〉)(

qj −
〈

qj
〉)〉(

i, j = 1, 2, . . . , 3N
)

(2)� = TTCijT

(3)�Gbind = Gcomplex − Gprotein − Gligand

(4)�Gbind = �Egas +�Gsolvation − T�S

(5)�Egas = Eint + Evdw + Eelec

(6)Eint = Ebond + Eangle + Etorsion

(7)Gsolvation,GB = GGB + Gnonopolar,solvation

(8)�Gnonpolar = γ SASA+ β
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The gas phase energy (ΔEgas) is the sum of the internal (Eint), van der Waals (EvdW) and Coulombic (Eelec) 
energies, (Eq. 6). The solvation free energy is the pattern of polar (GGB) and nonpolar (Gnonpolar, solvation) 
contributions (Eq. 7). The polar solvation GGB contribution is estimated using the Generalized Born (GB) solva-
tion model with the dielectric constant 1 for solute and 80.0 for the solvent. Conversely, the nonpolar free energy 
contribution was assessed using Eq. 8, where the surface tension proportionality constant, γ, and the free energy 
of nonpolar solvation of a point solute, β, were set to 0.00542 kcal mol−1 Å−2 and 0 kcal mol−1, respectively49. The 
SASA is calculated by the linear combination of pairwise overlap (LCPO) model50.

Result and discussion
Selection of compounds.  An specific drug repurposing library of 75 anti and pro-viral agents including 
FDA approved drugs, clinical trials compounds and preclinical compounds with enzyme inhibitory activity 
between 10 and 100 nM range13 against SARS-CoV-2 was considered as the input library for this in silico study. 
The library including the compounds name as well as their corresponding smile structures are presented in 
Table S1.

Structure‑based pharmacophore modeling.  A comprehensive and accurate information of ligand 
interacting features can be obtained from structure-based pharmacophores based on three-dimensional struc-
ture of a target protein51. The most common descriptors in pharmacophore modeling are H-bond donors, 
H-bond acceptors, positive and negative ionizable groups, lipophilic regions and aromatic rings. The most effec-
tive 3D structure-based e-pharmacophores were produced using the receptor–ligand pharmacophore genera-
tion protocol implemented in PHASE, which was executed for a co-crystal αk-13b inhibitor inside the active 
pocket in order to determine possibly critical amino acids that are involved in ligand binding (Fig. 2A). The gen-
erated e-pharmacophore for the considered enzyme showed seven main 3D-features including, H-bond accep-
tor, H-bond donor and π–π stacking of aromatic ring. In each pharmacophore feature, the red arrows represent 

Figure 2.   (A) 3D structure-based pharmacophore features of αk-13b inhibitor in the complex interacting with 
Mpro binding site. (B) The seven generated pharmacophore features in Red arrow: Hydrogen bond acceptor, blue 
arrows: Hydrogen bond donor, orange: aromatic ring. (C) 2D chemical structure of the inhibitor.
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hydrogen bond acceptor, blue arrow represents hydrogen bond donor and orange spheres represent π–π stack-
ing of aromatic ring, Fig. 2B. Numerous excluded volumes were also produced in the models to demonstrate 
the space balancing. The seven 3D pharmacophore features and 2D-chemical structure of αk-13b inhibitor are 
presented in Fig. 2B,C showing three donor hydrogen bonds, three acceptor hydrogen bonds and one aromatic 
ring sphere.

Virtual screening of the candidate compounds.  The obtained structure-based pharmacophore 
hypotheses of αk-13b inhibitor in complex with Mpro were used to screen the 75 candidate anti-viral compounds 
retrieved from recent experimental work by Gordon et al.13 (Table S1). These compounds were screened based 
on PHASE screen score, matched ligand sites indices. A total of 43 compounds subsequently passed this filter 
based on the created pharmacophore hypothesis. Molecules which have satisfied all the features of the pharma-
cophore hypothesis were considered as potential hits. The output of virtual screening analysis of 43 compounds 
consist of their PHASE screen score and matched ligand sites are presented in Table S2.

Docking‑based virtual screening analysis.  The 43 screened compounds obtained from virtual screen-
ing were considered for docking analysis using Glide workflow52 of Schrödinger package. Three step wise fil-
tering protocol were used for docking using HTVS where a total of 23 compounds (Table S3) were obtained 
followed by Glide SP where a total of 12 hits were generated (Table S4). Finally, the best lead compounds were 
obtained using Glide XP lead optimization protocol, while among 10 generated docking poses per ligand, only 
one pose was retained (Table S5). The Glide GScore and the interacting binding residues of the five lead com-
pounds presented in Table 1. The αk-13b inhibitor as well as the best optimized lead generated from XP docking 
were selected to map their potential interactions within the active pocket of SARS-CoV-2 Mpro enzyme using 
molecular docking approach. This approach aids in understanding the optimized orientation of a ligand and its 
target protein by minimizing inclusive energies of the corresponding complexes. The estimated docking binding 
energy values of all three compounds Daunorubicin, Onalespib and ABBV-744 with their experimentally viral 
inhibition activity (pIC50) 6.67, 6.81, 2.46 against SARS-CoV-213 as well as αk-13b inhibitor are shown in Figs. 3 
and 4 and Table 1.

As it is shown in Fig. 3, αk-13b inhibitor interacted to HIS164, GLU166, HIS163, PHE140, ASN 142 and 
CYS145 through six hydrogen bond interactions. HIS41, CYS44 and MET49 formed three π–π stacking interac-
tion with αk-13b inhibitor.

The Daunorubicin-Mpro, Onalespib-Mpro and ABBV-744-Mpro docked complexes presented considerable bind-
ing affinities with the energy values of − 9.33, − 8.21 and − 7.79 kcal mol−1, respectively (Table 1). These three 
lead compounds contributed into the binding site of Mpro enzyme through the hydrogen bonding, π–π stacking 
and π-Sulphur interactions (Fig. 4).

The daunorubicin created one hydrogen bond and one π-alkyl interaction with the catalytic dyad CYS145 and 
HIS41, respectively. The other five hydrogen bonds were formed by the hydroxyl (-OH) groups of daunorubicin 
with HIS164, Arg188, Thr190, ASP187 and Gln192 as presented in Fig. 4A. ABBV-744 formed the interaction 
network of six hydrogen bonds with Arg188, Thr190, GLU166, HIS163, GLN189 and Gln192 with the hydroxyl 
group (-OH) of the compound, Fig. 4B. The catalytic dyad CYS145, HYS41 and MET165 formed π–π stacking 
interaction and π-Sulphur interactions with ABBV-744. Onalespib formed an interaction network of total four 
hydrogen bonds with THR26, ARG188, THR 190 and GLN192. The catalytic dyad and MET165 interacted to 
Onalespib through π–π stacking and π-sulphur interactions (Fig. 4C).

Thus, it could be contemplated that these three compounds bound favorably to the binding site of Mpro 
through hydrogen bond, π–π stacking and π-alkyl interactions mainly generated by CYS145, HIS41, MET165, 
HIS163, GLU166, GLN 189, Arg188, Thr190 and Gln192 as key contributing active residues into the docked 
complexes.

ADMET analysis.  Pharmacokinetic and toxicity features were predicted using QikProp module of Schrod-
inger for Daunorubicin, Onalespib, ABBV-744 and αk-13b inhibitor. Outcomes of pharmacokinetic and toxic-
ity study are illustrated in Table 2. The selected properties of the compounds are representatives of influence 
metabolism, cell permeation, bioavailability and toxicity.

The predicted central nervous system activity (CNS) of Daunorubicin, ABBV-744 and αk-13b inhibitor 
depicted as inactive whereas, Onalespib was presented as an active compound. The predicted human binding 

Table 1.   The best three compounds generated using XP docking with their corresponding docking scores and 
the contributing binding residues are presented. Catalytic dyad residues are shown in bold.

Compounds Glide GScore kcal/mol Contributing binding residues

Daunorubicin − 9.33 ASP187, ARG188, GLN189, THR190, ALA191, GLN192, MET49, TYR54, HIS41, VAL142, CYS145, GLY143, HIS163, HIS164, 
MET165, GLU166, PRO168, CYS44, VAL168

Onalespib − 8.21 VAL186, HIS41, CYS145, SER144, GLY143, ASN142, LEU27, THR26, THR25, MET49, LEU50, ASP187, ARG188, GLN189, THR190, 
ALA191, GLN192, PRO168, LEU167, GLU166, MET165, HIS164

ABBV-744 − 7.79 HIS41, MET49, CYS145, SER144, GLY143, ASN142, LEU141, PHE140, HIS163, HIS164, HIE172, MET165, GLU166, LEU167, 
PRO168, ASP187, ARG188, GLN189, THR190, GLN192,

αk-13b inhibitor − 6.75 HIE172, PHE140, LEU141, ASN142, GLY143, SER144, CYS145, GLN189, ARG188, ASP187, HIS41, CYS44, MET49, TYR54, 
PRO168, LEU167, GLU166, MET165, HIS164, HIS163, THR25, PHE181, SER46, GLU47, GLY170
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serum albumin (QPlogKhsa) of all compounds showed in the acceptable range. The estimated total solvent 
accessible surface area (SASA) of all three compounds and αk-13b inhibitor met the acceptable range: 300–1000. 
Predicted octanol/water partition coefficient (QPlogPo/w) showed in the acceptable range from − 2 to 6.5 for all 
the ligands. The predicted aqueous solubility (QPlogS) for Daunorubicin, Onalespib and αk-13b inhibitor were 
in the acceptable range of − 6.5–0.5 whereas ABBV-744 showed slightly low value. The predicted brain/blood 
partition coefficient (QPlogBB) for all these compounds showed in the acceptable ranges. The percentage human 
oral absorption for all the compounds met in the recommended range. Number of violations of Lipinski’s rule 
of five for all the compounds satisfied this rule for all the studied ligands.

Post‑dynamics MD trajectories analysis.  The structural variations within the enzymes structure is cor-
related with their biological activities. Any alterations or interference on enzymes structural integrity might have 
a substantial impact on its activity41. The binding of inhibitors influence the mode of action of enzymes that are 
comprised in disease pathways, thus there is a requirement to estimate the structural dynamics and conforma-
tional changes associated with the inhibitory activity of these inhibitors53.

In this section, 200 ns MD trajectories regarding the four complexes, namely, Daunorubicin-Mpro, Onalespib-
Mpro, ABBV-744-Mpro and αk-13b inhibitor-Mpro as control model were analyzed. Different metrics and analysis 
were applied to investigate the stability and flexibility of the complexes as well as the contribution of the studied 
compounds upon binding in terms of binding free energies. The 2D chemical structure of all the ligands con-
sidered for MD simulations are presented in Fig. 1 and Scheme 1.

The computation of a time variable with reference to an RMSD of Cα atoms from generated trajectories was 
accomplished to investigate the consistency and efficiency of Mpro in complex with αk-13b inhibitor and along 
with the three lead compounds, Fig. 1 and Scheme 1.

The perturbations in the RMSD values as denoted in plot (Fig. 5A) throughout the simulation time disclosed 
the possible conformational deviances in the enzyme structure upon ligand binding. As Fig. 5A revealed, all 
the complexes were stabilized and attained convergence after almost 50 ns of simulation run. ABBV-744-Mpro 

Figure 3.   (A) αk-13b inhibitor in complex with Mpro enzyme, (B) Surface view colored by charge showing 
the catalytic pocket of the Mpro enzyme; (C) 2D representation of the interaction map of docked inhibitor in 
complex with Mpro.
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unveiled the lowest average RMSD of 2.45 Å, while Onalespib-Mpro and Daunorubicin-Mpro revealed average 
RMSD of 2.73 Å and 2.76 Å respectively. The αk-13b inhibitor-Mpro unveils a perturbation of 2.85 Å as indicated 
in the plot. This evaluation proposed that any further analyses performed on the produced trajectories of all 
complexes were reliable. The RMSD plots showed that ABBV-744-Mpro, Onalespib-Mpro, Daunorubicin-Mpro 
and αk-13b inhibitor-Mpro complexes exhibit reasonable convergence indicating stability of the systems during 
the MD trajectories. The variation of ligand RMSD for ABBV-744-Mpro (0.04 Å), Onalespib-Mpro (0.17 Å) and 
Daunorubicin-Mpro (0.05 Å) complexes showed the considerable stability of the ligand position inside the bind-
ing pocket, Figure S1.

To provide detailed insight into the structural fluctuation and flexibility of different regions of the amino acid 
residues of Mpro enzyme upon binding of the selected compounds, RMSF values for Cα atoms were calculated 
from trajectories generated over 200 ns of MD trajectories. Hence, ligand binding to the enzyme could be inves-
tigated in relation to the modification in flexibility in terms of RMSF values54. To discover the stringency and 
elasticity in Mpro residues upon binding of chosen compounds, RMSF values for Cα atoms were estimated from 
trajectories produced from 200 ns of MD simulations run. As shown in Fig. 5B, ABBV-744-Mpro complex showed 
the least fluctuations in the amino acid residues with 7.56 Å. An average RMSF of 13.76 Å and 15.09 Å was spot-
ted in complex Daunorubicin-Mpro and Onalespib-Mpro, correspondingly. The complex, αk-13b inhibitor-Mpro 
disclosed an average of 14.11 Å that is remarkably greater than ABBV-744-Mpro complex, signifying enhanced 
binding in comparison to the αk-13b inhibitor-Mpro complex. This noteworthy decline might be coupled with 
structural inactivation that evidently confirmed as a result of significant binding of ABBV-744 compound in the 

Figure 4.   Docked poses of Mpro enzyme with the proposed inhibitors. 2D plots and binding interactions of Mpro 
enzyme with compounds (A) Daunorubicin, (B) ABBV-744 and (C) Onalespib. Lower panels are representing 
the surface view of conserved substrate-binding pocket of Mpro in complexed with Daunorubicin, ABBV-744 
and Onalespib, respectively (left to right).

Table 2.   In-silico ADMET screening of the selected compounds. a Predicted central nervous system activity 
from − 2 (inactive) to + 2 (active). bPrediction of binding to human serum albumin (acceptable range: 
− 1.5–1.5). cTotal Solvent Accessible Surface Area: SASA (acceptable range: 300–1000). dPredicted octanol/
water partition coefficient (acceptable range: − 2–6.5). ePredicted aqueous solubility, S in mol/dm−3 (acceptable 
range: − 6.5–0.5). fPredicted brain/blood partition coefficient (acceptable range: − 3.0–1.2). gPredicted 
percentage human oral absorption (< 25% is poor and > 80% is high). hNumber of violations of Lipinski’s rule 
of five, Compounds that satisfy these rules are considered druglike (maximum 4).

Compounds aCNS bQPlogKhsa cSASA dQPlogPo/w eQPlogS fQPlogBB
g%Human oral 
absorption hRule of five

Daunorubicin − 2 − 0.32 716.74 0.49 − 2.30 − 1.88 9.34 3

Onalespib 1 0.58 763.23 3.03 − 3.92 − 0.3 74.42 0

ABBV-744 − 2 0.95 798.91 4.83 − 7.15 − 1.42 100.0 0

αk-13b inhibitor − 2 − 0.07 960.42 3.11 − 5.15 − 2.91 33.40 3
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active pocket of Mpro enzyme. The reduced fluctuation of amino acid residues might have favored Mpro enzyme 
inhibition through compound ABBV-744.

The radius of gyration (Rg) parameter was assessed as the structural compactness index and its folding and 
unfolding behavior through the overall conformational variations in enzyme structure upon inhibitor binding. 
The mediocre values of Rg for ABBV-744-Mpro, Onalespib-Mpro and Daunorubicin-Mpro complexes were noted 
to be 41.55 Å, 41.87 Å and 42.08 Å, respectively. Figure 5C plots disclosed extremely minor changes in the com-
pactness of the three compounds. The compound ABBV-744 exhibited a lowest Rg in comparison with other two 
complexes, and with the control αk-13b inhibitor-Mpro complex (42.36 Å). This observation proposed increased 
compactness and enhanced binding with the ABBV-744 Mpro and Onalespib-Mpro complexes. All these patterns 
of conformational analysis are suggesting an improved stability, flexibility and compactness of compound ABBV-
744 in complex the Mpro enzyme.

Solvent Access Surface Area (SASA) analysis was performed to define the activity of hydrophobic and hydro-
philic amino acid residues and forces exposed to the solvent over 200 ns MD trajectories. The constant and accu-
rate scheming of SASA is highly useful in the energetic evaluation of biological macromolecules55. The interfaces 
among the hydrophobic native contacts inside enzyme structure is a noteworthy intermolecular interaction that 
effect enzyme inhibition. Hydrophobic interaction constructed between the non-polar residues corroborate the 
stability of the enzyme structure in solution by sheltering the non-polar residues inside the hydrophobic core 
distant from an aqueous solution56. As shown in Fig. 5D, standard SASA values for all selected compounds 
have been measured during 200 ns MD trajectories. Average value of SASA for the compound ABBV-744-Mpro 
complex is 14,230 Å2 which was showed to the solvent system. Overall SASA values of 14,303 Å2 and 14,426 Å2 
were prominent by Onalespib-Mpro and Daunorubicin-Mpro complexes, individually. The differences in SASA 
values for all the complexes during the simulation period corresponds with the folding and unfolding of enzyme 
structure. The overall SASA values in the control complex was 14,001 Å2, slightly less than ABBV-744-Mpro 
complex. The SASA assessment perceived in compound ABBV-744 bound complex additionally validated that 
ABBV-744 compound has better exposure to solvent and consequently favored the improved inhibitory activity 
of compound ABBV-744 over other complexes.

Hydrogen bond analysis.  For overall conformation and stability of enzyme structure, we have measured the 
intramolecular and intermolecular hydrogen bond analysis (Fig. 6). This analysis gives extreme understand-
ing into binding mechanism of enzyme-ligand with detailed consideration57. An average number of intramo-
lecular hydrogen bonds in ABBV-744-Mpro complex was noted to be 136 as displayed in Fig. 6A. In compound 
Onalespib and Daunorubicin, the intramolecular hydrogen bonds were observed to be 139 and 140, respectively.

The number of intermolecular hydrogen bonds produced in the catalytic site of Mpro enzyme notable to be 
9–10 in ABBV-744 bound Mpro complex. However, number of these bonds are more in Daunorubicin-Mpro 
complex with 11–12 hydrogen bonds and less in Onalespib and αk-13b-inhibitor bound Mpro with 7–8 hydrogen 
bonds as presented in Fig. 6B.

Scheme 1.   2D chemical structure of top three hit compounds.
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Figure 5.   Structural dynamics of Mpro enzyme-ligand complexes (Daunorubicin in red, Onalespib in blue, 
ABBV-744 in green and αk-13b inhibitor in magenta) during 200 ns of MD simulations. (A) Cα backbone 
RMSD in Å of all the selected compounds bound to Mpro enzyme; (B) Values of RMSF in Å plotted against 
residue number for all the selected compounds bound to Mpro enzyme; (C) Rg values after compound binding; 
and (D) SASA values of Cα backbone atoms.

Figure 6.   Hydrogen bond analysis. (A) Intramolecular and (B) Intermolecular hydrogen bonds in Mpro enzyme 
with the selected compounds (Daunorubicin in red, Onalespib in blue, ABBV-744 in green and αk-13b inhibitor 
in magenta) calculated after 200 ns MD simulation.
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Principal component analysis.  To qualitatively probe the impact of inhibitor’s binding on the predominant 
conformational motion of each residue58,59 , the concerted motions in Daunorubicin-Mpro, ABBV-744-Mpro and 
Onalespib-Mpro and αk-13b inhibitor-Mpro complexes were studied using PC analysis based on the eigenvector. 
The scatter plots in Figure, essentially give a two-dimensional representation of the conformational changes 
occupied by the system. The gradual migration of the points in the PC1−PC2 scatter plots obtained using con-
struction of eigenvectors, Fig. 7A. PC1 collective motions extracted for the predominant eigenvectors of the 
using principal component in the studied complexes, Fig. 7B.

The scatter plots of the complexes in Figure, indicate the undergoing overall motions of the protein upon 
binding in terms of correlated and anti-correlated movements, Fig. 7A,B.

It is evident in Fig. 7A, the Onalespib, Daunorubicin and αk-13b-inhibitor with the trace covariance matric 
of 37.45 Å2, 37.67 Å2 and 37.69 Å2, imposed highly fluctuated anti-correlated effects as the negative values of 
2D-scatter points into the protein, Fig. 7B. Interestingly, in the case of ABBV-744 with the trace covariance mat-
ric of 37.64 Å2, the prominent correlated motions were observed with the least fluctuations of the system upon 
ligand binding, Fig. 7B. Thus, from the above observations Fig. 7B, it was concluded that ABBV-744 induced 
least fluctuations into the binding site upon binding than the variants complexes.

Mechanistic insights into binding affinity.  To understand the impact of inhibitors upon complexation in terms 
of their binding affinities, MM-GBSA binding free energy method were utilized to calculate the binding free 
energies and their energy components of the complexes, Table 3.

As it is evident in Table 3, the total binding free energies (ΔGbind) of Daunorubicin-Mpro, Onalespib-Mpro, 
ABBV-744-Mpro and αk-13b inhibitor-Mpro were − 36.65 kcal/mol, − 37.13 kcal mol−1, − 45.43 kcal mol−1 and 
− 20.92 kcal mol−1, respectively. Accordingly, among all the studied complexes, ABBV-744-Mpro and Onalespib-
Mpro depicted the most favorable of ΔGbind with lowest values of − 45.43 kcal mol−1 and − 37.13 kcal mol−1. At 
this point, it is interesting to address the key contributions that each binding component can impose to the total 
binding free energies.

It is evident that amongst the studied complexes, the ΔGgas as the favorable contributing index into the total 
ΔGbind has the lowest values for ABBV-744-Mpro (− 98.65 kcal mol−1) and Onalespib-Mpro (− 62.10 kcal mol−1) 
complexes. This observation implies the most favorable contribution values of ΔEvdw and ΔEelec for ABBV-744-
Mpro (− 54.45 kcal mol−1 and − 35.20 kcal mol−1) and Onalespib-Mpro (− 43.55 kcal mol−1 and − 18.55 kcal mol−1) 
into the total binding free energies.

Figure 7.   (A) PCA plot constructed by eigenvector 1 vs eigenvector 2 for Daunorubicin (red), Onalespib 
(blue), ABBV-744 (green) and αk-13b inhibitor (magenta) complexes. (B) PC1 collective motions for the 
obtained predominant eigenvectors using principal component analysis over the 200 ns MD trajectories for 
Daunorubicin-Mpro, Onalespib-Mpro, ABBV-744-Mpro and αk-13b inhibitor-Mpro.

Table 3.   Binding free energies and its components for the three hit compounds:Mpro and αk-13b 
inhibitor:Mpro using MM-GBSA method. The energy components are in kcal mol−1.

Complex ΔEvdw ΔEelec ΔGgas ΔGpolar ΔGnopolar ΔGsolvation ΔGbind

Daunorubicin-Mpro − 49.65 − 4.39 − 54.05 22.48 − 5.09 17.39 − 36.65

Onalespib-Mpro − 43.55 − 18.55 − 62.10 29.42 − 4.45 24.97 − 37.13

ABBV-744-Mpro − 54.45 − 35.20 − 89.65 50.03 − 5.81 44.22 − 45.43

αk-13b inhibitor-Mpro − 36.35 − 8.14 − 44.49 28.21 − 4.64 23.57 − 20.92
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Interestingly, this observation revealed another key contributing component of ΔGnonpolar for the complexes 
of ABBV-744-Mpro (− 5.81 kcal mol−1) and Onalespib-Mpro (− 4.45 kcal mol−1) which leads to the lower ΔGbind 
values for both complexes. According to the obtained energy components results, it could be inferred that the 
ΔEvdw, ΔEelec and ΔGnonpolar have the dominant contribution into the binding affinities for the selected complexes.

Per‑residue decomposition energy analysis.  The binding-free energy decomposition offers an immense under-
standing in account of enzyme-ligand complexes produced from the trajectories by MD simulations. To achieve 
this, we fragmented the total binding energies of complexes into each-residual involvement by per amino acid 
residue existing in the catalytic site of Mpro enzyme to provide comprehensive identification of key contribut-
ing residues upon ligand binding as depicted in Fig. 8. The interactions between catalytic site electro-negative 
and electro-positive residues develops ligand binding and its stabilization at the target enzyme. This creates 
an improved intermolecular binding that surges the binding affinity of the ligand in the active site. Active site 
residue MET165 in ABBV-744 contributed with the lowest ΔGbind with − 4.22 kcal mol−1 however this residue 
has contributed with notably less ΔGbind of − 2.50 kcal mol−1 and − 2.45 kcal mol−1 in Onalespib and Daunoru-
bicin bound complexes. The ΔGbind of another participating residues GLN189 was also observed to be lowest in 
ABBV-744 bound Mpro complex with − 3.94 kcal mol−1 however, it is slightly less in Onalespib-Mpro complex with 
value of − 3.45 kcal mol−1 and − 2.48 kcal mol−1 in Daunorubicin-Mpro complex. Gln192 significantly contributed 
in the binding of ABBV-744 compound with ΔGbind value of − 3.00 kcal mol−1 and observed a very minor dif-
ference with − 2.99 kcal mol−1 ΔGbind in Onalespib bound Mpro but showed a lesser ΔGbind of − 1.50 kcal mol−1 in 
Daunorubicin compound.

GLU47, PHE140, LEU141, ASN142, GLY143, SER144 and GLU166 are the other active site amino acid resi-
dues which favored with the negative binding of ABBV-744 compound with ΔGbind values of − 0.48 kcal mol−1, 
− 0.39 kcal mol−1, − 0.52 kcal mol−1, − 0.50 kcal mol−1, − 0.14 kcal mol−1, − 0.41 kcal mol−1 and − 1.50 kcal mol−1 
respectively, however, these residues contributed with positive energies in Onalespib and Daunorubicin bound 
Mpro complexes. The catalytic dyad residues, His41 and Cys145 showed the lowest ΔGbind value of − 1.64 kcal mol−1 
and − 0.61 kcal mol−1 in control inhibitor αk-13b inhibitor bound Mpro, although these residues showed less bind-
ing energies in ABBV-744, Onalespib and Daunorubicin bound Mpro complexes. Thus, this assessment discloses 
that similar binding residues contributing into the overall binding energies of the ABBV-744-Mpro complex 
indicative of ABBV-744 compound binds significantly to Mpro enzyme.

Conclusions
The necessity to control alarming COVID-19 pandemic made us to rationalize potential lead compounds that 
could be considered in clinical trials. Despite major investigations in the design and development of specific 
drugs or vaccines, not much proven to be effective against COVID-19. This challenge motivated us to explore 
the drug designing approaches that could serve informative to combat this disease. In this report, we have per-
formed 3D structure-based pharmacophore modeling followed by virtual screening-based 3D-pharmacophore 
hypotheses of 75 compounds as potential antiviral agents retrieved from PubChem. Molecular docking workflow 
using HTVS, SP and XP protocols were used to generate the best hits and their corresponding docked poses. 
The Six best compounds generated based on their lowest docking binding affinities using XP were considered 
for ADMET prediction-based physicochemical and pharmacokinetic descriptors and MD simulations analysis. 
MD simulations approach revealed the two highly selective compounds namely, ABBV-744 and Onalespib 

Figure 8.   Per residual decomposition energy of selected compounds (Daunorubicin in red, Onalespib in 
blue, ABBV-744 in green and αk-13b inhibitor in magenta) bound to Mpro enzyme calculated with MMGB/SA 
approach.
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possessed significant binding affinity and presumably inhibition of SARS-CoV-2 Mpro enzyme. Based on our 
overall observations, compounds ABBV-744 and Onalespib could be recommended as potential lead for the 
therapeutic of COVID-19 patients.

Data availability
The data used/generated to support the findings of this study are available from the corresponding author on 
reasonable request.
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