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Abstract: In this work, the temporal–spatial evolution of kinetic and thermal energy dissipation
rates in three-dimensional (3D) turbulent Rayleigh–Taylor (RT) mixing are investigated numerically
by the lattice Boltzmann method. The temperature fields, kinetic and thermal energy dissipation
rates with temporal–spatial evolution, the probability density functions, the fractal dimension of
mixing interface, spatial scaling law of structure function for the kinetic and the thermal energy
dissipation rates in 3D space are analysed in detail to provide an improved physical understanding
of the temporal–spatial dissipation-rate characteristic in the 3D turbulent Rayleigh–Taylor mixing
zone. Our numerical results indicate that the kinetic and thermal energy dissipation rates are
concentrated in areas with large gradients of velocity and temperature with temporal evolution,
respectively, which is consistent with the theoretical assumption. However, small scale thermal
plumes initially at the section of half vertical height increasingly develop large scale plumes with time
evolution. The probability density function tail of thermal energy dissipation gradually rises and
approaches the stretched exponent function with temporal evolution. The slope of fractal dimension
increases at an early time, however, the fractal dimension for the fluid interfaces is 2.4 at times t/τ ≥ 2,
which demonstrates the self-similarity of the turbulent RT mixing zone in 3D space. It is further
demonstrated that the second, fourth and sixth-order structure functions for velocity and temperature
structure functions have a linear scaling within the inertial range.

Keywords: Rayleigh–Taylor; energy dissipation; heat transport; lattice Boltzmann method

1. Introduction

The Rayleigh–Taylor (RT) instability phenomenon is of great importance to various fields of
science, technology, and astrophysics [1–4]. The full turbulent nonlinear phenomena of RT instability
occur in various natural systems with unstable interfaces [5]. The RT instability is mainly derived by
two layers (heavier–lighter layers, or colder–hotter layers) of a single-phase fluid due to the appearance
of relative acceleration [6,7]. To deeply understand the transport characteristics of both the kinetic
energy dissipation rate (εu) and thermal energy dissipation rate (εθ) inside the mixing zone is among
the essential problems in turbulent RT instability. Chertkov (2003) [6] proposed a statistical properties
theoretical model of εu and εθ for two-dimensional (2D) and three-dimensional (3D) RT turbulence.

In the 3D Chertkov model, the Kolmogorov (K41) scenario is proposed for velocity and temperature
spectra [6]. In the 2D Chertkov model [6], the Bolgiano–Obukhov-like (BO59) scaling appears due to
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the fully active temperature [8,9]. The expressions of kinetic and thermal energy dissipation rates are
given as [6].

εu(x, t) ≡ 0.5ν
∑
i, j

[
∂u j(x, t)
∂xi

+
∂ui(x, t)
∂x j

]2

(1)

and

εθ(x, t) ≡ κ
∑

i

[
∂θ(x, t)
∂xi

]2

(2)

where ν denotes the kinematic viscosity of the fluid, u is the velocity of the fluid, θ is the temperature,
and κ is the thermal diffusivity of the fluid. The kinetic and thermal energy dissipation rates can be
among the most important topics in turbulent RT instability. For instance, Dalziel et al. (1999) [9]
and Biferale et al. (2010) [10] reported the validity of the B59 scenario by direct numerical simulation
(DNS) in 2D and using a thermal lattice Boltzmann method (LBM) in 3D, respectively. Zhou et al.
(2013,2016) [11–13] and Qiu et al. [14] have received strong support for the velocity and temperature
B59 scaling of RT turbulence from both in space and in time in the 2D case. Zhou et al. (2016) [12]
showed statistical properties of the kinetic and thermal energy dissipation rates in 2D RT turbulence
by means of direct numerical simulations (DNS). They argued that intense dissipation events occur
near the interfaces of hot and cold fluids between the kinetic and thermal energy dissipation rates,
leading to a strong positive correlation in the turbulent range [12]. In the 3D RT turbulence, this theory
proposed by Chertkov (2003) [6] predicts a Kolmogorov-like scenario, with a quasi-stationary energy
cascade in the mixing layer. Its prediction is in view of the Kolmogorov–Obukhov picture of turbulence
where fluctuations of density are passively transported in the cascade [15–17].

Once the statistical properties of the kinetic and thermal energy dissipation rates in the 2D RT
turbulence have been described, in the 2D case, the kinetic and thermal dissipation rates with only one
plane are represented in the turbulent RT mixing evolution. However, new open questions will emerge
in 3D. How do we understand the kinetic and thermal energy dissipation rates caused by the velocity
gradient of space and temperature gradient of space inside the RT mixing zone? If the above main
factors are considered in 3D to affect the kinetic and thermal energy dissipation rates, the physical
insight of understanding the kinetic and thermal energy dissipation rates in 3D are significant.

Based on the above discussions, we mainly focus on the statistical properties of the temporal–spatial
evolution of kinetic and thermal energy dissipation rates in 3D turbulent Rayleigh–Taylor mixing
with the aim of deepening and extending previous investigation in 2D [12]. As seen in the above
discussions, there is a temperature fluctuation as an active scalar in 3D turbulent RT mixing and
thus a Kolmogorov-like scenario [18,19]; the non-BO59 scaling was theoretically predicted [20,21]
and numerically demonstrated [22–24]. We mainly extend the previous theoretical prediction [6] and
numerical investigations [12] in a 2D RT system. Our numerical results mainly reveal that several
insight differences in the statistical properties of kinetic and thermal energy dissipation rates can be
obtained in 3D turbulent Rayleigh–Taylor mixing compared to what is observed previously in 2D,
the kinetic energy dissipation rate mainly concentrates on the high gradient of velocity and small scale
flow gradually polymerizes with time evolution at the section of half vertical height, the intermittency
of temperature field in 3D cases are lower than that in 2D cases when the RT convection is developing,
and the fluctuations in 3D cases are easier to dissipate than that of 2D cases.

This paper is organized as follows. In Section 2, the dynamics equations of the Rayleigh–Taylor flow
and double lattice Boltzmann equations are briefly described. After that, the detailed results of kinetic
and thermal energy dissipation rates with temporal evolution are discussed. Finally, some summarizing
conclusions are represented.

2. Dynamics Equation and Numerical Methods

In the following section, the dynamics equation of Rayleigh–Taylor flow and double lattice
Boltzmann equations are introduced, respectively.
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2.1. Convection Diffusion Equation of Thermal Fluid

The convection diffusion equation of thermal fluid is the classical Oberbeck–Boussinesq Equations
(2) and (3), Their expression are as follows [6,8].

∂ρ

∂t
+∇ · (ρu) = 0, (3)

∂(ρu)
∂t

+ u · ∇(ρu) = −∇p +∇ · (2ρνS) − gβ∆θ, (4)

∂θ
∂t

+ u · ∇θ = κ∇2θ, (5)

In which ν denotes the kinematic viscosity, κ denotes the diffusivity, ρ denotes the density
of fluid, u denotes the macroscopic velocity, θ is the macroscopic temperature, ∆θ represents the
temperature difference between top and bottom boundaries, β is the thermal expansion coefficient,
g is the force of gravity, S is the stress term (S = 1

2 (
∂ui
∂x j

+ ∂ui
∂x j

), (i,= 1, 2, 3)), and p denotes the fluid
pressure, respectively.

The finite element methods [25,26] and the finite volume method are effective tools used to solve
some partial differential equations on complex geometries, which are applied to describe the complex
fluid physical phenomena [27–30]. A large number of numerical methods are widely used to solve
classical Oberbeck–Boussinesq equations [31–36]. The finite element methods [36], finite difference
method [34] and the finite volume method [35] are traditional macroscopic methods for Computational
Fluid Dynamics (CFD) calculation. The lattice Boltzmann method (LBM) is a computational fluid
dynamics method based on a mesoscope simulation scale [37–41]. Compared with other traditional CFD
calculation methods, this method has mesoscopic model characteristics between the micro molecular
dynamics model and macro continuous model. LBM also has the advantages of simple description
of fluid interaction, is widely easier to set complex boundary, easier to parallel calculation, easy to
implement program and so on [42]. LBM has been widely considered as an effective method to describe
fluid motion and deal with engineering problems [43]. In the next subsection, double distribution LBM
for will be introduced.

2.2. Numerical Method for Rayleigh–Taylor Flow Equation

In the past thirty years, the lattice Boltzmann method (LBM) has increasingly risen to be an
effective tool to simulate complex fluid [41–52]. LBM has very low numerical dissipation and dispersion
errors [42,44], and is especially suitable for numerical calculation of incompressible fluids [41,42].
To describe the mass and dynamics macroscopic phenomena of the classical Oberbeck–Boussinesq
equation, the so-called lattice Boltzmann equation is implemented by second-order multiscale expansion.
The lattice Bhatnagar–Gross–Krook (LBGK) model for the fluid flow field [42]:

fi(x + ci∆t, t + ∆t) = fi(x, t) + ( f eq
i (x, t) − fi(x, t))/τν + Fi, (6)

In which fi(x, t) is the density distribution function, at (x, t), ci is the discrete velocity, Fi denotes
the discrete force term in Equation (6), (Fi = 3wi · ρ · g · β · θ · ciz) [42] and τν denotes the relaxation
times for density evolution equation in the lattice Boltzmann equation. The equilibrium function for
the density distribution is represented by the following equation [41].

f eq
i = ρwi[1 +

ci · u
c2

s
+

(ci · u)
2

c2
s
−

u2

2c2
s
], (7)
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where wi represents the weight coefficient in the D3Q19 [41], the D3Q19 lattice is implemented
in this paper, i is 0, 1, · · · 18 and ν denotes the kinematic viscosity in mesoscopic method by the
following expression.

ν =
2τν − 1

6
(∆x)2

∆t
, (8)

More detailed informations regarding the LBM discretization are introduced. Two separate parts
(streaming and collision) can be identified by having a close look at Equation (6). One comes from
the integration along characteristics fi(x + ci∆t, t + ∆t) − fi(x, t). The other comes from the operator of
local collision ( f eq

i (x, t) − fi(x, t))/τν + Fi. The LBGK equation into distinct streaming (or propagation)
and collision steps can be logically separated. Overall, at time t and point x, each lattice site stores
q populations fi. Each population fi(x, t) receives a collisional contribution in the collision step or
relaxation step and each population fi(x, t) can become

f ∗i (x, t) = fi(x, t) + ( f eq
i (x, t) − fi(x, t))/τν + Fi, (9)

The collision can be a purely algebraic and local operation. The f ∗i (x, t) is the population state
after collision. The other step is the streaming or propagation step. Here, the post-collision populations
f ∗i (x, t) just stream along their associated direction ci to reach a neighbouring lattice site where they
become fi(x+ ci∆t, t+∆t). A non-local operation is given as fi(x+ ci∆t, t+∆t) = f ∗i (x, t). The memory
content of f ∗i (x, t) is copied to the lattice site at x + ci∆t and it old lattice information is overwritten.
One common strategy is to use two sets of populations, one for reading data, the other for writing data.

To solve convective diffusion equation of the classical Oberbeck–Boussinesq equation, the lattice
Boltzmann equation for the temperature field is given by the following equation [43].

gi(x + ci∆t, t + ∆t) = gi(x, t) + (geq
i (x, t) − gi(x, t))/τθ, (10)

where gi(x, t) is temperature distribution function, τθ denotes the relaxation times for temperature
evolution equation.The equilibrium function of the temperature distribution is represented by the
following expression [48].

geq
i = θwi[1 +

ci · u
c2

s
+

(ci · u)
2

c2
s
−

u2

2c2
s
] (11)

where the diffusivity number κ is represented in mesoscopic method by the following equation.

κ =
2τθ − 1

6
(∆x)2

∆t
, (12)

More detailed informations regarding the discretization of Equation (10) is similar to the
Equation (6). The Macroscopic density, velocity, and temperature are obtained by calculating the
mesoscopic variables.

ρ =
8∑

i=0

fi, ρu =
8∑

i=0

ci fi, θ =
8∑

i=0

gi, (13)

The expressions of density, momentum, and temperature are derived by leading into a
Chapman–Enskog expansion [42]. Lattice Boltzmann equation (Eqations (6) and (10)) can be derived
by expansion of a spatial scale (x1 = εx) and two time scales (t1 = εt, t2 = εt) to respectively obtain the
classical Oberbeck–Boussinesq equations (Equations (1), (2) and (3)) using the above Chapman–Enskog
expansion [42].

The Rayleigh number (Ra) is a critical non-dimensional number in the RT convection. The Ra is
defined as

Ra =
β∆θgLz

3

νκ
, (14)
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The enhancement of the heat transfer can be calculated by the Nusselt number in LBM [43,48].

Nu = 1 +
〈uzθ〉
κ∆θ/Lz

, (15)

where uz represents the vertical velocity, ∆θ denotes the temperature difference between the up and
bottom boundaries, Lz is the computational height, and 〈.〉 is the average over the whole flow domain.

A computational domain size (1 × 1 × 2) is defined by Lx × Ly × Lz with the resolutions
256 × 256 × 512 for Ra = 1.8× 109. The no-slip condition is implemented in the all boundaries for all
numerical simulations. The turbulent RT mixing instability is seeded by giving the initial condition
of the unstable step profile. The perturbations of sinusoidal wave are executed in order to drive
the independence of the turbulent state from initial conditions [15]. At the beginning of the system,
single fluid of two temperatures in all physical system is at rest and the hotter uniform fluid layer (θ = 1)
is placed on bottom of the colder one (θ = −1) with an initial jump of temperature Θ0 (Θ0 = θ2 − θ1).
These corresponding parameters are introduced in the computational initial conditions of all system.
The time dependent turbulence with initial condition is u(x, 0) = 0, θ(x, 0) = −(1/2)θ0sgn(z), and the
Atwood number A = βΘ0/2, a superposition of cosine waves of wave numbers 16≤ k ≤ 32 is performed
in the initial temperature interface θ = 0 at z = 1. For repeat-ability purposes, a total of 16 independent
realization evolutions of the 3D RT mixing zone have been performed by adding different perturbed
interfaces. In all the numerical simulations, Ag = 0.25, Lz = 2, and Θ0 = 2, (the corresponding Prandtl
number is Pr = ν/κ = 1). The fluctuation of mixing velocity linearly grows with time evolution [1,11]
and the mixing layer width grows non-linearly in time [1,13].

3. Results and Discussion

In this section, first of all, the temperature fields, the logarithmic kinetic energy dissipation rates
and the logarithmic thermal energy dissipation rates are presented with time evolution and mixing
central section. In addition, the probability density functions of kinetic energy dissipation rates and
thermal energy dissipation rates are obtained in the 3D turbulent RT mixing zone. Moreover, the fractal
dimension of mixing interface is displayed. Finally, the spatial scaling laws of velocity and temperature
structure functions are given, respectively.

3.1. Profiles of εu and εθ in 3D Case

In order to reveal the statistical properties of the temporal–spatial evolution of kinetic and thermal
energy dissipation rates in turbulent Rayleigh–Taylor mixing, the temperature fields, logarithmic kinetic
and thermal energy dissipation rate with time evolution will be represented in the 3D case and the 2D
section of Lz/2. During the time evolution of the Rayleigh–Taylor mixing zone, the temperature mixing
layer grows into a complex geometrical object characterized by plumes and entertainment regions.

Figure 1 illustrates the cold-hot fluid mixing process of the the temperature fields with time
evolution at times t/τ = 2, 3 and 4.5. Here, τ denotes the characteristic time (τ =

√
Lz/Ag) [11,20].

Plotted in Figure 1, we can clearly see that with time evolution, the mixed region of hot or cold fluid
begins to increasingly expand the opposite region, a large number of small scale thermal plumes
initially emerge, are passively transported and gradually polymerized thermal plumes of large scale
in the interface of cold-hot temperature, and large-scale nonlinear phenomena is characterized by
the formation of descending and ascending plumes, which enhances the heat transport between the
two reservoirs. The above discussions are also theoretically predicted [7], and are indeed observed in
numerical previous studies [12,16].
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rate plays a dominant role in the mixing process of cold–hot temperatures, which further 

demonstrates the previous study in the 2D case [12]. 

4.5

4.5

Figure 1. Temperature fields with time evolution at times and (a) t/τ = 2 (b) t/τ = 3, and (c) t/τ = 4.5.

Figure 2 describes the logarithmic kinetic energy dissipation rate in the 3D case with time evolution
at times t/τ = 2, 3 and 4.5. The kinetic energy dissipation rate mainly occurs at the high zone of mixing
strength, and expands with increasing mixing zones. Figure 3 displays the logarithmic thermal energy
dissipation rate of global quantities with temporal evolution. As displayed in Figure 3, it is clearly
observed that the thermal energy dissipation rate concentrates on the high gradient of temperature,
which is well consistent with the theoretical assumption according to Equation (2). From the compare
between Figures 2 and 3, we can obtain that the thermal energy dissipation rate plays a dominant role
in the mixing process of cold–hot temperatures, which further demonstrates the previous study in the
2D case [12].
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Figure 3. Logarithmic thermal energy dissipation rate with time evolution, (a) t/τ = 2 (b) t/τ = 3,
and (c) t/τ = 4.5.

In the 2D case, the kinetic and thermal dissipation rates with only one plane occur in the turbulent
RT mixing evolution. In order to reveal the more spatial properties with time evolution in 3D, the global
qualities of section (z = Lz/2) will be provided. Figure 4a displays typical snapshots of the instantaneous
temperature field obtained at three different times in the RT mixing evolution, at section (z = Lz/2) and
times t/τ = 2, 3 and 4.5. The corresponding velocity, log-scale kinetic and thermal energy dissipation
rates are also displayed in Figure 4b–d. As displayed in Figure 4a, one can clearly see that small scale
thermal plumes initially at section of H/2 increasingly develop large scale plumes with time evolution.
The comparison between Figures 4b and 4c indicates that the kinetic energy dissipation rate mainly
concentrates on the high gradient of velocity and small scale flow gradually polymerizes with time
evolution, which agrees with the theoretical assumption according to Equation (1). The comparison
between Figures 4a and 4d suggests that the thermal energy dissipation rate mainly concentrates on
the high gradient of temperature with temporal evolution, which is also consistent with the theoretical
assumption according to Equation (2).

In order to reveal the statistical properties of both the kinetic energy dissipation rate and thermal
energy dissipation rate in mixing zone, we mainly focus on the vertical profiles of averaged kinetic
〈εu〉(x,y) and thermal energy dissipation rates 〈εθ〉(x,y) on the horizontal plane. Chertkov [6] proposed a
theoretical model based on the “5/3”-K41 scenario for velocity and temperature spectra in 3D turbulent
Rayleigh–Taylor mixing zone. Its theoretical model in 3D is followed as [13].

〈εu〉V ∼ t and 〈εθ〉V ∼ t−1, (16)

Nevertheless, its theoretical model in 3D is very different from that in 2D, which is mainly based
on the BO59 scaling. Its theoretical expression in 2D is followed as [6,11,12]

〈εu〉V ∼ t−0.5 and 〈εθ〉V ∼ t−1, (17)

where 〈. . . 〉V represents a spatial average inside the turbulent RT mixing zone. The 〈εu〉V and 〈εθ〉V
decrease with time evolution in velocity and temperature spectra in 3D RT system. Figure 5 describes
the vertical profiles of averaged kinetic energy dissipation rate at times t/τ = 2, 3, 4 and 4.5.
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Figure 4. Time evolution of the temperature, velocity, logarithmic kinetic and thermal energy dissipation
rates at section (z = Lz/2) and times t/τ = 2, 3 and 4.5, (a) temperature, (b) velocity,(c) logarithmic
kinetic energy dissipation rate, and (d) logarithmic thermal energy dissipation rate.
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As displayed in Figure 5, we can see that the vertical profiles of averaged kinetic energy
dissipation rate increases with time evolution of turbulent RT mixing zone, which is in qualitative
agreement with the theoretical scaling relationships of the kinetic energy dissipation rate in the 3D case
(See Equation (16)). Zhou et al. [12] had demonstrated that the amplitude of averaged kinetic energy
dissipation rate in 2D situations is expected to decrease with time evolution according to the theoretical
scaling (Chertkov (2003)) [6]. The total kinetic-energy dissipation increases with time evolution as a
function of time. It is known that RT turbulence mainly shows an instance of the general case of a
turbulent flow adiabatically a time-dependent evolution of energy.

Figure 6 illustrates the vertical profiles of averaged thermal energy dissipation rate at times
t/τ = 2, 3, 4 and 4.5. As shown in Figure 6, it is clearly observed that the amplitude of averaged thermal
energy dissipation rate decreases with time evolution of turbulent RT mixing zone, which qualitatively
agrees with the theoretical scaling relationships of the thermal energy dissipation rate in the 3D
case (See Equation (16)). Zhou et al. [12] studied that the amplitude of averaged thermal energy
dissipation rate in 2D situations decreases with time evolution according to the theoretical scaling
(Chertkov (2003)) [6]. The total kinetic energy dissipation decreases with time evolution as a function
of time. The vertical profiles statistical properties of both the kinetic energy dissipation rates and
thermal energy dissipation rates can provide insight into understanding statistical properties in the
turbulent RT mixing zone.
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Figure 6. Vertical profiles of averaged thermal energy dissipation rate at times t/τ = 2, 3, 4 and 4.5.

The comparison between the vertical profiles of averaged kinetic energy dissipation rate in Figure 5
and the vertical profiles of averaged thermal energy dissipation rate in Figure 6 shows that the ratio
between thermal energy dissipation rate versus kinetic energy dissipation rate is about four orders of
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magnitude, which indicates that the thermal energy dissipation rate still dominates in the transport of
thermal energy, the values of kinetic energy dissipation rate can almost be neglected compared to the
growth rate of the total kinetic energy of the system [12]. However, the ratio between thermal energy
dissipation rate versus kinetic energy dissipation rate evidently increases two orders of magnitude
compared to the previous studies of kinetic and thermal energy dissipation rates in 2D [12]. This can be
due to six directions velocity gradient of space and temperature gradient of space inside the RT mixing
zone in the 3D case rather than two directions velocity gradient of space and temperature gradient of
space inside the RT mixing zone in the 2D case.

3.2. Probability Density Functions of εu and εθ in the 3D Turbulent RT Mixing Zone

The probability density function (PDF) is an effective approach to study the influence of small-scale
intermittency on acceleration statistics [10]. Interestingly, the scalar dissipation rate is mainly focused
on determining turbulent mixing zone. This is due to the fact that the scalar field and the dissipation
field acquire larger amplitudes with increasing Ra. The lower panels show the scalar PDF of integrating
by Chertkov et al. (1999) [7], where the modelling of thin reactive layers called flame-lets, are advected
and embedded in the turbulent RT mixing zone. The stretched exponential function is followed as [12]

P(Z) =
C
√

Z
exp(−nZα), (18)

where C, n, and α denote the parameters of fitting, and Z = X − Xmp, with X = εu/(εu)rms or
X = εθ/(εθ)rms, and Xmp represents the most probable amplitude abscissa, respectively. In 3D case,
the above fitting parameters in the fitting process are given as n = 0.90 and α = 0.82 for εu and n = 1.13
and α = 0.66 for εθ according to be identified and discussions of the previous studies [13]. To further
reveal the energy dissipation features of the mixing zone, we will extend to the PDFs of the kinetic
and thermal energy dissipation rates in 3D case. Figure 7 illustrates different PDF of the kinetic
energy dissipation rate at times t/τ = 2, 3 and 4.5. Since the Ra is the same for the three different time
evolution, the log scale PDF of the kinetic energy dissipation rate dividing their corresponding mean
values is plotted to reveal the differences in 3D case. As illustrated in Figure 7, one can see that the
self-similarity of velocity fluctuation is demonstrated by observing the PDF of εu at distinct times
collapse well on top of each εu. Furthermore, the long tails of PDF of εu reveal strong fluctuation,
which is well consistent with the previous studies of both passive and active scalars [12,21].
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Figure 8 displays the log scale PDF of the thermal energy dissipation rate with time evolution at
t/τ = 2, 3 and 4.5 in the mixing zone. Plotted in Figure 8, it is obviously observed that the self-similarity
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of temperature fluctuation is indicated by observing the PDF of εθ at distinct times collapse well on top
of each εθ. Meanwhile, the long PDF tail of εθ reveal strong temperature fluctuation. Different from
previous study [12], it is found that the PDF tail of εθ is lower than the stretched exponent function.
With the evolution of time, the simulated PDF tail of εθ gradually rises and approaches the stretched
exponent function. It indicates that the intermittency of temperature field in 3D cases are lower
than that in 2D cases when the RT convection is developing. When it is fully developed, i.e., t/τ≥4,
the intermittency of temperature field also fits the stretched exponent function.
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3.3. Fractal Dimension of Mixing Interface

More detailed dissipation events occur in the colder–hotter layer mixing interface of a single
phase fluid. To further reveal the generation mechanisms of the kinetic and thermal energy dissipation
rates with time evolution in the mixing zone, the fractal features of these interfaces are mainly focused
in 3D space. Zhou et al. [12] studied the fractal properties of these interfaces with temporal evolution
in 2D space. They argued that no constant fractal dimension occurs in the interfaces. In general,
the box-counting method is widely used to study the fractal dimension of these mixing interfaces [12].
This is due to that during the RT evolution, the mixing zone expands.

The fluid interfaces between hot and cold fluid become increasingly complex. To obtain whether
there is a constant fractal dimension for the interfaces between hot and cold fluid. In this paper,
due to six directions velocity gradient of space and temperature gradient of space inside the RT mixing
zone in the 3D case, we also continue to adopt the previous box-counting method to provide some
fundamental understanding of the fractal properties of these fluid interfaces.

dB =
∂lgN2(r)
∂lg(r)

, (19)

where dB is nearly unity, and N2 denotes the counted number. Figure 9 describes the number of square
boxes Nr of size r that mainly overlap the interfaces (the contours of θ = 0) versus the normalized
box size r/H (H, the longitudinal height of computational area) on a log-log scale at different times
t/τ = 1.5, 2, 3, 4, and 4.5. As shown in Figure 9, it is clearly observed that Nr increases with time
evolution for all the scale studies, the fractal dimension is a little higher than 2 in a range scale at time
t/τ = 1.5, and the fractal dimension for the fluid interfaces is 2.4 in a range scale at times t/τ = 2, 3, 4 and
4.5, which indicates that there is a constant fractal dimension for the interfaces between hot and cold
fluid during a certain scale and a value of 2.4 is obtained for the iso-surfaces of thermal plumes near the
interfaces between hot and cold fluid. This is consistent with that for active scalar obtained in another
buoyancy-driven turbulence, where a constant fractal dimension with some values of 1.50 ± 0.02 were
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obtained for the iso-surfaces of thermal plumes [11]. As reported in previous 2D study by Zhou [12],
the fractal dimensions are similar at t/τ ≥ 2, which indicates the self-similarity of the turbulent RT
mixing in the turbulent range. Different from 2D cases, it observed that the fractal dimension is
constant (2.4) at t/τ ≥ 2 in our simulations. This difference between 2D and 3D cases is caused by
different dimensions of the simulated fluctuation inside the RT mixing zone. The fluctuations in 2D
cases are more difficult to dissipate than in 3D cases. Therefore, at large scale, the fractal dimension
in 2D simulations increases. This further demonstrated that the mixing zone in 3D space expands,
the fluid interfaces between hot and cold fluid become increasingly complex in 3D space, and the
self-similarity of the fluid mixing zone becomes increasingly prominent during the turbulent range.
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3.4. Spatial Intermittency in Mixing Zone

The theory of a mixing layer in the self-similar regime is proposed by Chertkov (2003) [6],
which is based on the Kolmogorov–Obukhov adiabatic generalization of steady Navier–Stokes
turbulence (Kolmogorov 1941,Obukhov 1941) [22]. In order to reveal the statistical properties of spatial
intermittency, the scaling relationships of the velocity and temperature structure functions in the 3D
case are followed as [21]

SV
p (r) =

〈[
(u(r, t) − u(0, t)) ·

r
r

]p〉
' (gβθ0)

2p/3tp/3rp/3, (20)

Sθ
p (r) =

〈
[θ(r, t) − θ(0, t)]p

〉
' θ

p
0(gβθ0)

−p/3t−2p/3rp/3, (21)

where, p denotes the order of structure function. The theory of turbulent fluctuation in 2D case that
is the B59 scenario essence have been proposed by Chertkov (2003) [6]. Boffetta et al. (2009) [9],
and Biferale et al. (2010) [19] investigated the validity of the Bolgiano–Obukhov scenario by DNS in
2D and using a thermal LBM, respectively. Zhou (2013,2016) [11,13] and Qiu et al. (2014) [14] studied
B59 scaling of the velocity and temperature structure functions both in 2D space and in time by DNS
and mainly considered longitudinal velocity and temperature structure functions over horizontal
separations. Figures 8 and 9 illustrate a log-log plot of the velocity structure function and temperature
structure function of orders p = 2, p = 4 and p = 6 in the mixing zone, respectively. As shown in
Figure 8, it is clearly observed that the second-order velocity structure function SV

2 (r) displays a linear
scaling in a range of 7 ≤ r/η ≤ 20, the fourth-order velocity structure function SV

4 (r) shows a linear
scaling in a range of 9 ≤ r/η ≤ 29, the sixth-order velocity structure function SV

4 (r) represents a linear
scaling in a range of 7 ≤ r/η ≤ 22, which is well consistent with the previous theoretical prediction [6],
where r denotes the space scale and η represents the Kolmogorov scale [11]. We further note that this
feature is qualitatively consistent with those observed in 3D cases [16,19]. Here, η is the Kolmogorov
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scale. Structure functions are computed by taking differences of the second components of the velocity
in the r = x, and y direction to reveal the powerful anisotropy and inhomogeneity of turbulent RT
mixing flow, again averaging over the central and over the y-direction part of the mixing layer.

Plotted in Figure 9, one can see that the second-order temperature structure function Sθ
2 (r)

indicates a linear scaling in a range of 7 ≤ r/η ≤ 20, the fourth-order temperature structure function
Sθ

4 (r) represents a linear scaling in a range of 9 ≤ r/η ≤ 29, the sixth-order temperature structure
function Sθ

4 (r) displays a linear scaling in a certain range of 7 ≤ r/η ≤ 22, which is well consistent with
the previous theoretical prediction [6]. Although a log-log scaling the global overall is in agreement
between present results and dimensional Bolgiano scaling, important deviations can be obtained both at
the crossover between viscous and inertial range. Figures 10 and 11 also demonstrate that in the mixing
zone, the kernels of integration are extraordinarily asymmetric for both velocity and temperature,
a linear signature of persistence of cliff-ramp-like structures of the velocity and temperature fields,
like fronts of plumes/spikes [9,11,21].Entropy 2020, 22, 652 14 of 18 
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4. Conclusions

In this paper, an investigation into the temporal–spatial evolution of kinetic and thermal energy
dissipation rates in three-dimensional turbulent Rayleigh–Taylor mixing has been performed using the
lattice Boltzmann method. Some key conclusions are as follows:

First of all, small scale thermal plumes initially at section H/2 increasingly develop large-scale
plumes with time evolution. The kinetic energy dissipation rate is mainly concentrated in areas of large
velocity gradients and small-scale flow gradually polymerizes with time evolution, and the thermal
energy dissipation rate is mainly concentrated in zones with large temperature gradients, which is
consistent with the theoretical assumption.

Moreover, the thermal energy dissipation rate mainly dominates in the transport of thermal energy,
and the values of the kinetic energy dissipation rate can almost be neglected compared to the growth
rate of the total kinetic energy of the system in the mixing zone. The ratio between thermal energy
dissipation rate versus kinetic energy dissipation rate evidently increases two orders of magnitude
in the 3D case compared to the previous studies of kinetic and thermal energy dissipation rates in
2D cases.

In addition, the PDF tail of εθ is lower than the stretched exponent function in the mixing zone
which is different from previous studies in 2D cases. The simulated PDF tail of εθ gradually rises
and approaches the stretched exponent function with temporal evolution, which indicates that the
intermittency of the temperature field in 3D cases is lower than that in 2D cases when the RT convection
is developing to turbulence.

Furthermore, the slope of fractal dimension increases at early time evolution, however, the fractal
dimension for the fluid interfaces is 2.4 at times t/τ ≥ 2 in the 3D turbulent RT mixing zone.
The fluctuations in 3D cases are easier to dissipate than those in 2D cases. This is mainly due
to the rising iso-surfaces of thermal plumes, which again demonstrates the self-similarity of the
turbulent RT mixing in the turbulent range. Moreover, the real 3D turbulent RT mixing in the turbulent
range are noticeably different from the 2D simulation prediction. The difference in slope between 2D
and 3D can be caused by six directions velocity spatial gradient and temperature spatial gradient
inside the RT mixing zone in the 3D case. This is further demonstrated that the mixing zone in 3D
space expands, the fluid interfaces between hot and cold fluid become increasingly complex in 3D
space, and the self-similarity of the fluid mixing zone becomes increasingly prominent during the
turbulent range.

Finally, our numerical results reveal that the second, fourth and sixth-order structure functions
for velocity and temperature possess a linear scaling over a certain range within the inertial range,
which is consistent with the previous theoretical prediction.

The present study can only be a first step. A formal conclusion on the transitional behaviour
of the kinetic and thermal energy dissipation rates requires data to consider the effect of rotation at
larger Rayleigh numbers. The dependence on the dimensionless Rossby number will be studied in
the follow-on work. This would also help us to better understand the parameter dependence of the
kinetic and thermal energy dissipation rates in comparison to the other scales. In the present study,
the kinetic and thermal energy dissipation rates are similar in magnitude, since the dimensionless
Rossby number is close to zero, but for larger dimensionless Rossby numbers, the kinetic and thermal
energy dissipation rates will differ significantly. In particular, for very high Rossby numbers, we can
expect dramatic changes in the mixing layer dynamics and the related self-similar regime based on our
current investigation in this direction, which will be discussed in our future work.
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