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StereoElectroEncephaloGraphy (SEEG) is a minimally invasive technique that consists of the insertion of multiple intracranial electrodes to
precisely identify the epileptogenic focus. The planning of electrode trajectories is a cumbersome and time-consuming task. Current
approaches to support the planning focus on electrode trajectory optimisation based on geometrical constraints but are not helpful to
produce an initial electrode set to begin with the planning procedure. In this work, the authors propose a methodology that analyses
retrospective planning data and builds a set of average trajectories, representing the practice of a clinical centre, which can be mapped to a
new patient to initialise planning procedure. They collected and analysed the data from 75 anonymised patients, obtaining 30 exploratory
patterns and 61 mean trajectories in an average brain space. A preliminary validation on a test set showed that they were able to correctly
map 90% of those trajectories and, after optimisation, they have comparable or better values than manual trajectories in terms of distance
from vessels and insertion angle. Finally, by detecting and analysing similar plans, they were able to identify eight planning strategies,
which represent the main tailored sets of trajectories that neurosurgeons used to deal with the different patient cases.
1. Introduction: Drug-resistant focal epilepsy represents a
potentially treatable disorder, once the anatomical originating
area is defined (so-called epileptogenic zone, EZ). When the
neuroimaging is poorly supporting the definition of the
EZ, an invasive monitoring can be considered.
StereoElectroEncefaloGraphy (SEEG) is a percutaneous surgery
that allows recording the electrical activity of the brain, through
surgically implanted intracranial electrodes [1]. The surgical step
of SEEG includes the planning of the electrodes to be placed [2].
Similar to other minimally invasive neurosurgeries, trajectories
must avoid vessels, provide a small probe-skull angle at the
entry point, and reach the correct targets. Recent research in
neurosurgery has been focusing on the optimisation of trajectories
in order to decrease the planning time and improve the procedure
safety and accuracy. In [3], the authors implemented a method for
automatic trajectory proposal that computes the risk based on a
two-step approach which combines a multi-objective optimisation
and fuzzy logic. Specifically, in Deep Brain Stimulation (DBS),
in [4] the authors improved previous methodologies by
optimising both the trajectory and the stimulation point, by the
use of an anatomo-clinical atlas and an estimation of the volume
of tissue activated. However, with respect to DBS or general
key-hole neurosurgery, which requires accurate targeting of
reduced brain zones, SEEG requires a higher number of
trajectories aimed to record different cerebral regions. Automated
planning in this field has been focusing on the optimisation
of electrode trajectories based on requirements such as the
maximisation of the distance from vessels, the minimisation of
entry angle, increase of GM sampling and conflict avoidance.
Optimisation approaches usually involve one electrode at a time,
except for conflict resolution strategies where the whole set of
trajectories is considered. In [5] the authors proposed a method
able to optimise the trajectories and maximise the grey matter
volume recorded. However, their study was limited to three
electrodes at a time. Only Sparks et al. [6] propose a method
which computes the minimum number of electrodes able to cross
all the required regions selected by the surgeon. Nevertheless,
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this method has the drawback of being very dependent on the
atlas used and could lead to solutions that may not be aligned
with real clinical decisions. In addition, as shown in a recent
study [7], the planning strategy of different centres may differ
due to the hardware used for electrode placement, the imaging
protocol and the centre experience. Therefore, even if the safety
and efficacy requirements are similar, there are no standardised
rules that guide all clinical centres and a more tailored approach
may provide a better answer to specific centre requirements. In
Scorza et al. [8], electrodes are manually initialised by surgeons
by placing rough entry and target points (respectively, EP and
TP), while the atlas is only used to maintain the initial anatomical
zones during optimisation. In this way, the initialisation
guarantees to respect the clinical practice but requires a manual
intervention that may be time consuming.

In this work, we propose a new methodology able to analyse
retrospective data from successful SEEG implants and extract the
most common trajectories used for the exploration of specific
brain zones in a given medical centre. The main assumption of
this work is that despite SEEG is a patient specific surgery based
on individual anatomy and brain activity, it is possible to identify
exploration strategies and trajectories that are commonly used to
explore multiple brain areas and to provide an adapted model for
the centre practice. In this way, our system can suggest an initial
plan for a new patient, which the neurosurgeon can further adjust
manually or be adapted to the specific anatomy thanks to an opti-
misation framework as the ones previously described. As far as
we know, this is the first attempt to model SEEG practice combin-
ing surgeon knowledge with specific centre retrospective data. The
final application will provide trajectory suggestions aligned with the
clinical experience, and may be a valid assistant, especially for
junior surgeons. Preliminary experiments show that, after optimisa-
tion, the initialised trajectories reach similar values in terms of
safety that those that have been manually planned (MP) by neuro-
surgeons. Finally, we were able to cluster the trajectories into
various planning strategies that have been positively recognised
by a surgeon as commonly adopted in the centre.
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2. Methodology: SEEG is a very tailored surgery, influenced by
the specific anatomy and the particular case of each patient. Most
of the time, the procedure does not require to reach a precise
target. Instead, a set of regions needs to be sufficiently sampled
to identify the epileptogenic network. Nevertheless, it is possible
to identify exploratory patterns or sets of trajectories aimed to
explore the same brain regions in different patients. With the aim
of identifying and modelling similar trajectories, the clinical
target (target zone between the ones traversed by a single
trajectory) needs to be extracted. Actually, the electrode end-point
does not necessarily match the clinical target, it can be any of the
zones that it crosses, and clinical knowledge is required here to
clearly define the target. Hence, we can associate a generic
trajectory descriptor d = [A; B], where A and B represent the
entry and the clinically relevant target regions, respectively. In
this work, retrospective data are collected and analysed with the
aim of modelling the clinical practice of a centre and use this
knowledge for the initialisation of new plans. A plan
p = {tr1, . . . , trE} is a set of trajectories aimed to explore a set of
brain zones, with E being a variable number of electrodes
depending on the case.
2.1. Problem statement: Given the MRI image of a new patient and
a planning strategy selected by the surgeon, the goal of the system is
to provide a set of trajectories based on surgeons’ past experience
adapted to current patient specific anatomy. The planning strategy
defines a reduced set of trajectories aimed for the exploration of
specific brain regions. Those trajectories will be then modified or
optimised to adapt them to the specific patient anatomy.
Fig. 1 Mean trajectories for a single pattern pta,b obtained with k-means
algorithm: insular exploration (region b) is usually performed from the
superior-temporal (region a), with a maximum of three electrodes in the
same plan Ua,b = 3
2.2. Solution strategy: The following steps were conducted for the
implementation of the proposed system:

† Trajectory descriptor and exploratory patterns: analysis of retro-
spective cases in subject space, identification of similar trajectories
among patients and their normalisation on an average brain space.
† Mean trajectories definition (mT): spatial clustering in the
average brain space of similar trajectories to produce mean trajec-
tories mT for the exploration of specific brain regions.
† Planning strategies definition (cl): analysis of the spatial rela-
tionship between mean trajectories and their clustering, based on
the macro-anatomical regions that they explore.
† Plan adaptation: mapping of the selected planning strategy from
a common average brain space to the subject space.

Finally, the trajectories obtained may be optimised similarly as
described in [8].
2.3. Trajectory descriptor and exploratory patterns: We collected
the retrospective data of N patients who successfully underwent
SEEG procedure. The inputs for our analysis are an MRI-t1
image and the original trajectories planned by the surgeon in
subject space. All data have been processed by the Freesurfer
(FS) pipeline [9], which co-registers the patient with the
MNI-305 space and labels the different brain zones using a
probabilistic atlas segmentation [10]. For each patient, a plan pj
with j = 1, . . . , N is assigned, where trajectories tri,j have been
MP by surgeons and are defined by the entry and target point
coordinates. Trajectories were regularly sampled with a method
similar to the one described in [11]. For each tri,j, we defined a
descriptor di,j = [Za

EP; Z
b
TP], where ZEP and ZTP are groups

containing the labels of the brain zones that are considered as
meaningful entry and target zones, respectively (Za

EP [ ZEP and
Zb
TP [ ZTP). This definition of ZEP and ZTP resulted from the

analysis of the most explored zones in our samples, their
anatomical positions, and surgeons suggestions. Finally, sets of
similar trajectories pta,b = {tri,j}, ∀tri.j if di,j = [Za

EP; Z
b
TP] were
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built from all patient data and represent exploratory patterns to
explore the regions [Za

EP; Z
b
TP].

2.4. Mean trajectory definition: Once similar trajectories have been
grouped in subject space, their coordinates were transformed into
the MNI-305 space by using the registration matrix provided by
the FS pipeline. Since we based our analysis on an anatomical
atlas, we must assume that, due to their size, some regions are
explored with several electrodes for higher coverage. Therefore,
for a given plan pj we may find a variable number of trajectories
tri,j with the same descriptor pta,b. To keep the spatial relationship
between those trajectories, we used a k-means algorithm to
automatically cluster entry and target coordinates into Ua,b groups
and generate a set of mean trajectories mTu

a,b, where
u = 1, . . . , Ua,b. The number of groups Ua,b is defined as the
maximum number of trajectories aimed to explore the same
regions a and b in a single plan among all plans pj,
j = 1, . . . , N . To avoid an erroneous definition of groups due to
particular cases, an mTu

a,b is considered significant only if
contains at least 5% of trajectories described by pta,b. Otherwise,
the maximum number of clusters Ua,b is decreased by 1 and the
k-means algorithm applied iteratively. Fig. 1 shows an example
of the procedure for trajectories commonly used to explore the
insular region. Finally, we obtained a set of mean trajectories
mT = {mTu

a,b} where a [ ZEP, b [ ZTP and u = 1, . . . , Ua,b,
composed of couples of mean entry and target coordinates and
their standard deviations.

2.5. Planning strategies: To find a high-level feature describing a
precise planning strategy, the different plans were compared and
clustered. Since we defined a set of mean trajectories mT from
MP trajectories tri,j, we can define and assign to each plan pj a
new binary descriptor fj of fixed length #(mT), which contains
only Boolean values and represent the presence or the absence of
a mean trajectory mTy, with y = 1, . . . , #(mT) in a plan pj. Since
the plans can be hierarchically connected (e.g. one can be the
composition of others), we opted for a hierarchical clustering
method which operates on the basis of an empirical coefficient of
similarity (the Jaccard distance) computed over the descriptors
fj (Fig. 2).

By the analysis of the generated dendogram, we grouped the
plans into G clusters by the selection of a cut-threshold. Finally,
for each group g [ G, we defined a new binary descriptor clg of
length #(mT) and we set clyg = True if at least
#( f yj = True) .= 2, ∀fj in g. The new descriptor clg codifies a
set of mean trajectories to explore macro-regions of the brain and
represents a planning strategy.

2.6. Clinical scenario and validation: To construct our model we
used 75 anonymised patient data provided by Niguarda Hospital
(Milan, Italy), for a total of 1100 trajectories. For each patient,
MR images were acquired using the hospital system 1.5T
Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 167–171
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Fig. 2 Binary vector representation fj for each plan pj, representing the
presence or the absence of a mean trajectory. The Jaccard distance is
computed to measure the dissimilarity between binary vectors
(Intera Achieva, Philips Medical System, The Netherlands,
T1 3D FFE sagittal images, 0.90mm× 1.07mm× 0.90mm voxel
dimensions, without any inter-slice gap, then reconstructed and
reformatted on the axial plane with the 560× 560× 220 matrix,
0.45mm× 0.45mm× 0.9mm voxel dimensions). The FS
pipeline was used to obtain the cortical reconstructed surface and
the probabilistic atlas segmentations (the Desikan–Killiany atlas,
with 75 labels per hemisphere, was used in this study). The
pipeline also provides the affine registration matrix used to map
patients and trajectories from the subject space to the average
space (MNI-305). As a preliminary validation of our method, we
used a test set composed of ten patients that were not included to
build our model. For each patient’s plan, we identified the MP
trajectories corresponding to mean trajectories mTy and mapped
them to the subject’s space generating and initialised plan (IP).
Hence, we computed the Euclidean distances da,bep and da,btp
between entry and target point coordinates, respectively, where
a, b are two corresponding trajectories between the mapped
mean trajectories and those planned by the surgeon. We
considered that a trajectory has been correctly mapped when
da,bep ≤ 2s(mTep

y ) and da,btp ≤ 2s(mTtp
y ). The value of s varies

based on the trajectories used to define the average mTy. This
metric provides a measure of the generalisability of trajectories
mT. However, the mapped mean trajectories may not comply
with clinical criteria (e.g. safe distance to vessels), and therefore
they need to be optimised to produce valid initial plans and adapt
to the specific patient anatomy. For the optimisation, we used the
method presented in [8] and verified the compliance in terms of
distance from vessels and insertion angle. We evaluated initial
quantitative values comparing manual planned (MP) trajectories,
the corresponding initialised trajectories (IP), and their optimised
solution OMP and OIP, respectively. Finally, the groups obtained
by the hierarchical clustering have been presented and
qualitatively evaluated by a surgeon. Results are reported in the
following section.
Fig. 3 Sagittal view of the mean trajectories computed in the average space:
dimensions have been enlarged for visualisation purposes
3. Results
3.1. Exploratory patterns and mean trajectories: The analysis of the
planned trajectories based on the Desikan–Killiany atlas reduced
the possible target regions used to classify the trajectories. We
did not take into account the white matter, while other structures
such as ventricles, brain stem or cerebellum, where automatically
excluded since they were classified as outliers. Following the
clinician’s advice, electrodes crossing the insula and ending in
the putamen were included in the Insular pattern. In the same
way, we consider as a single target point the hippocampus and
the para-hippocampus, since it is not possible to explore the last
without crossing the hippocampus, and on the other side by
prolonging the trajectory we easily reach the para-hippocampus,
increasing the recorded information. Finally, since our data had a
poor representation of occipital trajectories, we joined the
Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 167–171
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occipital zones of lingual cortex, cuneus, pre-cuneus and
pericalcarine, assuming that the spatial distribution of those was
more important than the specific description pattern in terms of
entry and target zones.

By grouping the trajectories with the reduced descriptors pre-
sented in Section 2.3, we found 30 exploratory patterns pta,b, for
a total of 61 mean trajectories mT that represent the mean coordi-
nates of the most representative trajectories in our data. Fig. 3
shows the mean trajectories in the average space.

To test the viability of our method, we mapped the recognised
trajectories on 10 patients that were not included in the initial data-
base as explained in Section 2.6, for a total of 95 initialised trajec-
tories. By computing the initial Euclidean distance with their
corresponding MP trajectories at EP and TP in subject space, we
found that the 90% of the initialised ones satisfy the criteria pre-
sented in Section 2.6. Finally, to test the viability of our initialisa-
tion method, we compared the values of the distance from vessels
at the entry points, distance from vessels in the second tract and in-
sertion angle before and after the optimisation for both groups
(MP and IP). The results are shown in Fig. 4.

Even if the mapped trajectories (IP) could not be considered safe
in terms of indices, the optimisation performed provides a better
solution (OIP group) with respect to the MP trajectories and a
comparable solution with respect to the optimised MP (OMP)
ones, making this a valid method to initialise an optimisation
strategy provided by an automated planner. No statistical difference
has been found between the indices of the two groups OMP and
OIP after optimisation.
3.2. Planning clustering and strategies definition: The hierarchical
clustering method applied and the cutting-threshold chosen led
to eight different clusters composed by similar plans. The
cut-threshold has been chosen empirically, in order to balance the
number of groups and its components (Fig. 5).

Therefore, for each cluster obtained we selected those trajectories
which appear in at least two plans and generate the planning strat-
egies clg . The clusters were evaluated by a neurosurgeon, who
recognised the main trends in the trajectories proposed.
Therefore, we were able to name each cluster, as reported in Fig. 6.

Since SEEG is a patient-specific procedure, the clusters obtained
do not completely match with actual patient plans. In addition,
some of the clusters (e.g. Fronto-central) result to be over-
populated, since we preferred a reduced number of clusters with
more trajectories rather than more groups to be combined. From a
usability point-of-view, we considered that removing trajectories
from a suggested strategy would be easier for the surgeon in
order to adapt the plan for a specific patient than to combine differ-
ent cluster and then refine the plan. However, they seem to be a
good representation of the planning strategies adopted in the
centre to explore specific macro-areas of the brain. Notice that the
results have been obtained from a reduced set of data, with an un-
balanced distribution of plans. However, the system was able to
group the plans into clinically meaningful clusters, that can be
169
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Fig. 4 Comparison of quantitative indices between manual planning (MP), initialised planning (IP) trajectories and their optimised versions (OMP and OIP).
The mean values of insertion angle and distance from vessels (first and second tracts as reported in [8]) present no statistical difference between OIP and OMP

Fig. 5 Dendrogram obtained by the hierarchical clustering performed using the Jaccard distance. The cutting threshold defined eight groups

Fig. 6 Lateral view of the eight clusters obtained, with the labels defined according to the surgeon suggestions
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used as an initial starting point for a new patient planning. By the
use of those clusters, the clinician should only remove or add few
specific trajectories, while the rest would be directly mapped
to the patient anatomy. Nonetheless, the use of a cluster is not
mandatory, since there may be specific patients where the direct
choice of single trajectories from the mT set would provide a
faster initialisation.
4. Conclusion: In this work, we presented a new methodology that
merges clinical knowledge with the analysis of retrospective data of
a given clinical centre. The approach presented has been able to
identify and model the most used trajectories, and define specific
planning strategies by clustering similar plans. To the best of our
knowledge, this is the first application that provides a trajectory
initialisation method adapted to a single centre strategy based on
its retrospective data analysis. The final application allows to
easily visualise and selects the most common trajectories, and
cluster electrodes commonly used for a specific exploration.
Preliminary results show that mean trajectories can be
successfully mapped to patient plans that were not included to
build our model, and provide a meaningful initialisation for an
automated planner as the work presented in [8]. The clusters
obtained have been positively recognised by surgeons as
exploratory strategies used in their centre and we were able to
map 90% of the trajectories. Finally, those initialised trajectories
have been correctly optimised by the automated planner, adapting
to the subject anatomy and reaching quantitative results
comparable or superior to MP trajectories, in terms of safety. An
extended validation with surgeons is still needed to assess the
viability of those trajectories. Current limitations of this approach
are represented by the need of FS pipeline and of a large amount
of data. Since the trajectories extracted represent the most
common trajectories used in the centre, a new patient plan would
be unlikely initialised completely by a chosen set and surgeons
will still have to manually plan few trajectories depending on
specific patient requirements (e.g. lesions). Nonetheless, the
method presented provides a model of the clinical practice mostly
based on the data provided by the centre. The database
constructed for this work will store new patient information and
their planned trajectories, allowing our model to continuously
adapt while new patients are added. To improve our model,
especially regarding the planning strategies proposed, Diffusion
Weighted Imaging and tractography may be used to identify
specific brain networks and generate more specific electrode
clusters to map them. Similarly, in the future, we would like to
include other functional imaging techniques as functional-MRI
and/or EEG-signals. Future work will be focused on the
Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 167–171
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generalisation of this methodology and to provide a more
complete validation.
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