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Abstract
This paper presents improvements to the conventional Topology Representing Network to

build more appropriate topology relationships. Based on this improved Topology Repre-

senting Network, we propose a novel method for online dimensionality reduction that inte-

grates the improved Topology Representing Network and Radial Basis Function Network.

This method can find meaningful low-dimensional feature structures embedded in high-

dimensional original data space, process nonlinear embedded manifolds, and map the new

data online. Furthermore, this method can deal with large datasets for the benefit of

improved Topology Representing Network. Experiments illustrate the effectiveness of the

proposed method.

Introduction
Techniques for dimensionality reduction have attracted much attention in many fields such as
machine learning and data mining [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]. Dimensionality reduc-
tion methods are used for mapping high-dimensional observations into desired low-dimen-
sional space while preserving the features hidden in the original space. Over the past decades, a
number of dimensionality reduction methods have been proposed. Principal Component
Analysis (PCA) [11] [12] [13] [14] [15] [16] [17] [18] and Multidimensional Scaling (MDS)
[19] [20] [21] have been the two most popular methods because of their relative simplicity and
effectiveness. However, PCA is designed to operate when the manifold is embedded linearly or
almost linearly in the subspace, and it cannot project previously “unseen” patterns. Classical
MDS finds a low-dimensional embedding of patterns with distances in the target space that
reflects dissimilarities in the original sample. Both PCA and MDS cannot disclose nonlinearly
embedded manifolds because they operate on Euclidean distances. To overcome this limita-
tion, many nonlinear methods have been proposed. Locally Linear Embedding (LLE) [22]
maps high-dimensional original data feature space into a single global coordinate system of
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low dimensionality. Laplacian Eigenmap [23] uses spectral techniques to perform dimensional-
ity reduction. ISOMAP [24] [25] employs classical MDS for geodesic distances in the original
data feature space. L-ISOMAP [26] increases ISOMAP’s efficiency. It approximates a large
global computation in ISOMAP by a much smaller set of calculations.

Because geodesic distances are especially suitable for computing distances among data
points embedded in nonlinear manifolds, many methods to build graphs on the data have been
proposed. The Topology Representing Network (TRN) [27] [28] [29] [30] is representative
because of its effectiveness and simplicity. TRN, which combines the neural gas (NG) vector
quantization method with the competitive Hebbian learning rule is used to quantize embedded
manifolds and learn the topological relations of the input space without the necessity of pre-
specifying a topological graph. There are some dimensionality reduction methods based on
TRN. Online data visualization using the neural gas network (OVI-NG) [31] is a distance pre-
serving mapping of the codebook vectors (vector quantization) obtained by the NG algorithm.
The codebook positions (codebook vectors’ projection in low-dimensional space) are adjusted
in a continuous output space using an adaptation rule that minimizes a cost function that
favors local distance preservation. OVI-NG is not able to disclose nonlinear embedded mani-
folds because of its use of Euclidean distances. The Geodesic Nonlinear Projection Neural Gas
(GNLP-NG) algorithm [32] is an extension of OVI-NG that uses geodesic distances instead of
Euclidean distances so that GNLP-NG performs well in the projection of nonlinear embedded
manifolds. GNLP-NG and OVI-NG are not able to project new data. The method RBF-NDR
[33], which includes the NG algorithm and RBFN, can process data online. Nonetheless,
RBF-NDR sometimes has poor mapping quality and sometimes performs well due to minimiz-
ing STRESS [33] at each iteration without clear targets.

In this paper, we propose a new method for online and nonlinear dimensionality reduction
called ITRN-RBF. We improve the conventional TRN so that it builds a more appropriate
topology relationship. That is, the method we call the Improved TRN (ITRN) is more specifi-
cally suited to calculating geodesic distances. Furthermore, large amounts of data can be pro-
cessed by ITRN’s vector quantization. We chose the MDS method as the mapping method. In
contrast to classical MDS operating on Euclidean distances, our method operates on the geode-
sic distances of the topology graph reconstructed by ITRN. The mapping between the original
high-dimensional space and low-dimensional feature structures embedded is then learned by
supervised RBFN, whose target values are generated by the mapping methods. In particular, we
give two implementations of RBFN. One is trained by the Widrow-Hoff learning algorithm.
The other is an exact RBFN designed by precise mathematical calculation. Finally, the RBFN is
used to reduce the dimensions of the original high-dimensional data. ITRN-RBF can process
nonlinearly embedded manifolds, preserve the global structure of these manifolds, and project
new data online.

Methods
ITRN-RBF comprises two procedures: capturing the topology of the given dataset using ITRN
and learning the mapping using RBF. The first procedure learns the topology of the input data
embedded in the high-dimensional original data feature space and generates a graph using
ITRN. ITRN connects the subgraphs together to ensure the connectivity of the resulting graph.
The method for connecting the subgraphs is discussed in the section below. Using the output
(codebook vectors with similarity relationships) from the first procedure, the second procedure
calculates the pairwise graph distances as geodesic distances and constructs the mapping
between the high-dimensional original space and low-dimensional target space. It then uses
RBFN to learn this mapping. In particular, there are variety of ways to implement RBFN. We
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give two different implementations, which are described below. Finally, RBFN is just the
dimensionality reduction tool, which has the desired capabilities of processing nonlinearly
embedded manifolds and projecting new data online. In the following, ITRN-RBF is intro-
duced and discussed in detail.

ITRN
TRN is one of the vector quantization algorithms that are based on neural network models,
which are capable of adaptively quantizing a given set of input data. Given a set of data X = {x1,
x2, . . ., xN}, xj 2 RD, TRN employs a finite set V = {v1, v2, . . ., vn}, vi 2 RD called codebook vec-
tors (or reference vectors, neural units) to encode X. TRN learns the topological relation of X
by distributing nodes among the data and connecting them using the competitive Hebbian
rule. The purpose of TRN’s learning is to reconstruct a topology graph G = (V, C) for X, where
C represents the adjacent matrix of V, whose values are constrained to 0 (unconnected) or 1
(connected). The conventional TRN algorithm operates as follows.

1. Set iteration step t = 0. Assign initial values to the codebook vectors vi(vi 2 V, i = 1, 2, . . ., n)
and set all connection edges.

2. Randomly select input pattern x from X.

3. For each codebook vector vi, calculate rank ri by determining the sequence (i0, i1, . . ., in−1) by

kx� vi0
k < kx� vi1

k < � � � < kx� vin�1
k: ð1Þ

That is, ri0 = 0, ri1 = 1, . . ., rin−1 = n−1.

4. Update all nodes vi according to

vnew
i ¼ vold

i þ � � e�ri=lðx�voldi Þ: ð2Þ

5. Connect the two nodes closest to the randomly selected input pattern x. Set ci0i1 = 1 and set
this connection’s age to zero (ti0i1 = 0).

6. Increase the age of all connections of vi0 by setting ti0j = ti0j + 1 for all nodes vj that are con-
nected to node vi0 (ci0j = 1).

7. Remove the connections of node vi0 that have exceeded their lifetime by setting ci0j = 0 for all
j with ci0j = 1 and ti0j > T.

8. Increase the iteration step t = t + 1. If the maximum number of iterations has not yet been
reached (t< tmax), continue with step 2.

There are many parameters in this algorithm. The codebook vectors’ number n and maxi-
mum number of iterations tmax are both set by the user. The parameter λ, step size � and life-
time T depend on the number of iterations. The time dependent parameters are set according
to the form

gðtÞ ¼ gi
gf
gi

� � t
tmax

: ð3Þ

Here, gi is the initial value of the variable, gf is the final value, t denotes the iteration step and
tmax represents the maximum number of iterations. Suggestions as to how to tune these param-
eters have been proposed by Martinetz and Schulten [27].
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In fact, to obtain a denser graph that is better for calculating geodesic distances, we imple-
ment some improvements. For the randomly selected input patterns at each iteration, the
method ITRN creates a connection between the 1st and (k + 1)th nearest nodes (1<= k<= kn,
typically kn 2 {2, 3, 4}) instead of only connecting the first and second closest codebook vec-
tors. In addition, we also connect the subgraphs to avoid the existence of infeasible nodes. Spe-
cific details about ITRN are presented in the statements below. Steps 1–5 are the same as steps
1–5 in the conventional TRN, hence we only list the steps that follow.

6. If the following condition is satisfied

kvis
� vik

k ¼ min ðkvi0
� vik

k; kvi1
� vik

k; . . . ; kvik�1
� vik

kÞ ð4Þ

for k = 1, 2, . . ., kn, then create a connection between nodes vis and vik by setting cisik = 1 and
tisik = 0.

7. Increase the age of all connections of vl(l = i0, i1, . . ., ikn−1) by setting tlj = tlj + 1 for all nodes
vj that are connected to node vi0 (ci0 j = 1).

8. Remove the connections of node vl(l = i0, i1, . . ., ikn−1) that have exceeded their lifetime by
setting clj = 0 for all j for which clj = 1 and tlj > T.

9. Increase the iteration step:t = t + 1. If the maximum number of iterations has not yet been
reached (t< tmax), continue with step 2.

10. If the resulting graph G = (V, C) is unconnected, it is necessary to connect the subgraphs.
Assume that G = {G1, G2, . . ., Gc}, where Gi is the subgraph that is not connected to the oth-
ers. Calculate E = eij, where eij is the shortest edge obtained by connecting the closest nodes
in Gi and Gj. Finally, choose a suitable eij to add to C and obtain the connected graph GE =
(V, CE).

Compared with conventional TRN, we note that:

• ITRN modifies the TRN strategy to establish the connections in steps 6–8 (see Fig 1) and
connect subgraphs in step 10 (see Fig 2).

• Conventional TRN causes deviation because it ignores some topological relations of the
codebook vectors. However, ITRN connects multiple points so that more topological rela-
tions can be established. In addition, a relation caused by miscalculation will be removed
when its lifetime exceeds the limit. An experiment shows the different construction, as
shown in Fig 3.

• The distance ratio defined as follows:

ratio ¼ GDij

EDij

ð5Þ

can be used to quantitatively evaluate the connection quality. Where GDij denotes the geode-
sic distance and EDij denotes the Euclidean distance between codebook vectors vi and vj. The
bar chart shown in Fig 4 displays the statistical results (the x-axis is distance ratio interval
and y-axis is the node number). Fig 4a and 4b are based on the dataset that is shown in Fig 2.
Fig 4c and 4d use the Swiss roll dataset (shown in Fig 5a). The ITRN’s bar chart has a larger
gradient and much more restricted ratio range, both of which are desirable.
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RBFN
In this section, we propose two methods to train or design an RBFN. The first approach, called
the training RBFN (TRBF), is a D-h-d network that includes an input layer with D units (equal
to the codebook vectors’ dimensionality), hidden layers with h units (set by users), and an out-
put layer with d units (equal to the dimensionality of the output space). The second approach,
named exact RBFN (ERBF), is a D-n-d network with the same parameters as the training
RBFN. Especially the number of hidden layer units n is equal to the number of codebook vec-
tors. All of them have the same codebook vector input s obtained by ITRN and the same train-
ing targets given by MDS. What is more important, MDS is based on geodesic distances that
are calculated from the graph GE = (V, CE) and the training targets defined as T = {t1, t2, . . .,
tn}, ti 2 Rd are certain, so we can obtain a stable RBFN. For more details, the interested reader
can refer to [34] [35] [36] [37] [38] [39].

TRBF. In terms of TRBF, we chose a Gaussian function as the activation function, defined
as follows:

�iðxjÞ ¼ e
�1
2

kxj�cik2

s2
i ¼ e

�1
2

PD

l¼1

ðxlj�cliÞ2

s2
li : ð6Þ

The hidden layer output is defined as

H ¼ fh1;h1; . . . ;hhg;hij ¼ �iðvjÞ; i 2 ½1; h�; j 2 ½1; n�: ð7Þ

Fig 1. Different strategies to establish connections.

doi:10.1371/journal.pone.0131631.g001
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In addition, the loss function is given by

Ej ¼
1

2
e2
j ¼

1

2
ktj � yjk2 ¼

1

2

Xd

k¼1

ðtkj � ykjÞ2: ð8Þ

The TRBF network provides four types of adjustable parameters: center cli, widths σli,
weights wik and bias bk. Based on the Widrow-Hoff learning algorithm, the calculation equa-
tions of each parameter are given by:

cli ¼ cli þ Zc
Xd

k¼1

ðtkj � ykjÞ
wik

s2
li

�iðxjÞðxlj � cliÞ; l 2 ½1;D�; i 2 ½1; h�; ð9Þ

sli ¼ sli þ Zs

Xd

k¼1

ðtkj � ykjÞ
wik

s3
li

�iðxjÞðxlj � cliÞ2; l 2 ½1;D�; i 2 ½1; h�; ð10Þ

Fig 2. Connecting the subgraphs in ITRN step 10. The dataset is formed of randomly generated nodes comprising five non-overlapping clusters (S1
Dataset). Black dots indicate the training patterns (500 nodes), and blue circles indicate the codebook vectors (100 vectors). In addition, the blue solid lines
are established by ITRN steps 1–9 and the dotted lines are established by ITRN step 10.

doi:10.1371/journal.pone.0131631.g002
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Fig 3. Comparison of TRN and ITRN. Black dots indicate the training patterns, and blue circles indicate
codebook vectors. In the first experiment, 20 randomly generated training patterns (S1 Dataset) and 10
codebooks were selected, and (a) and (b) show the results generated by TRN and ITRN, respectively. In the
second experiment, 100 randomly generated training patterns (S1 Dataset) and 25 codebooks were
selected, and (c) and (d) show the results generated by TRN and ITRN, respectively.

doi:10.1371/journal.pone.0131631.g003
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Fig 4. Comparison of distance ratio. (a) and (b) show the ratios for TRN and ITRN, respectively, calculated
with an artificial point set, and (c) and (d) show the ratio s for TRN and ITRN, respectively, calculated with a
Swiss roll dataset.

doi:10.1371/journal.pone.0131631.g004
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Fig 5. ITRN-ERBF results for Swiss roll. (a) shows Swiss roll dataset, (b) shows learing result by ITRN, (c)
shows mapping of the training patterns, (d) shows mapping of the new dataset.

doi:10.1371/journal.pone.0131631.g005
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wik ¼ wik þ Zwðtkj � ykjÞe
�1
2

PD

l¼1

ðxlj�cliÞ2

s2
li ; i 2 ½1; h�; k 2 ½1; d� ð11Þ

bk ¼ bk þ Zbðtkj � ykjÞ; k 2 ½1; d�; ð12Þ

where ηc, ησ, ηw, and ηb which are individual step sizes for cli, σli, wik, and bk, respectively, can
be defined by users.

ERBF. ERBF’s weightW and output layer bias B are obtained by mathematical calculation,
so the RBFN can ensure zero error, in theory. The linear equations are given as follows:

fW;Bg � fH; onesgT ¼ T: ð13Þ

The input layer bias bin is set as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log0:52

p
=spread so there is only one parameter that needs

to be set by users. How to set the spread is described in the results section.

ITRN-RBF method
The detailed algorithm process is as follows:

1. Construct graph GE = (V, CE) using ITRN. In reality, the graph is connected.

2. Calculate the geodesic distances on GE.

3. Construct the mapping between the high-dimensional original space and low-dimensional
target space by using MDS operating on the geodesic distances of the topology graph. For
every vj, we get output tj as an expectation.

4. Train or design an RBFN with explicit inputs V and outputs T. In this step, any appropriate
RBFNs such as ERBF or TRBF could be applied.

5. Use the RBFN to map the dataset.

Results
In this section, ITRN-RBF is used for visualization and feature extraction, and is also compared
with others including methods based on TRN and classical dimensionality reduction methods
such as ISOMAP, L-ISOMAP and PCA. We also present the computational complexity analy-
sis of the method and a table with running times.

There are many parameters for experimental data. The common parameters of TRN,
OVI-NG and GNLP-NG were set as follows: tmax = 20n, �i = 0.1, �f = 0.05, λi = 0.05n, λf = 0.01,
Ti = 0.05n, and Tf = n. The auxiliary parameters of the OVI-NG and GNLP-NG were set as αi
= 0.3, αf = 0.001, σi = 0.7n, and σf = 5. The extra parameter for ITRN kn was set to two (for the
Swiss roll) or three (for the artificial faces, handwritten digit “2” and UMist faces datasets). The
parameters of RBFN in the Swiss roll experiment were set as follows: ηc = 0.03, ησ = 0.03, ηw =
0.2. For the image processing experiments, they were changed to ηc = 0.002, ησ = 0.002, and ηw
= 0.05. The ERBF’s parameter spread can be obtained as follows:

spread ¼ maxðdijÞ; ð14Þ

where dij denotes the Euclidean distances between the codebook vectors. The number of neigh-
bors used in the compuations for ISOMAP and L-ISOMAP is set to 12. The number of land-
marks used in L-ISOMAP is set to 0.1n.
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Comparison with the methods based on TRN
We chose two standard metrics for mapping quality. They are widely used for analysing
dimensionality reduction methods based on TRN.

• Distance preservation: This value evaluates the distance difference between nodes in input
space and nodes in output space. We chose the classical MDS [19] [20] and Sammon stress
functions [40] to quantify this value. Their expressions are as follows:

EMDS ¼
Xn

i<j

ðdij � d̂ ijÞ2; ð15Þ

ESM ¼ 1Pn
i<j dij

Xn

i<j

ðdij � d̂ ijÞ2
dij

; ð16Þ

where dij is the distance between nodes in the original space and d̂ij is the distance between

nodes in output space. Moreover, when the mapping method uses geodesic distances, the
expression is calculated using geodesic distances. Otherwise, the method uses Euclidean
distances.

• Neighborhood preservation: This value evaluates the degree to which adjacent patterns in
input space are close in output space. The measures of trustworthinessM1(k) and continuity
M2(k) [41] [42] are suitable. Their expressions are given below:

M1ðkÞ ¼ 1� 2

nkð2n� 3k� 1Þ
Xn

i¼1

X
vj2UkðviÞ

ðrij � kÞ; ð17Þ

M2ðkÞ ¼ 1� 2

nkð2n� 3k� 1Þ
Xn

i¼1

X
vj2VkðviÞ

ðr̂ ij � kÞ; ð18Þ

where Uk(vi) is the set of nodes that are in the k-size neighborhood of the codebook vector i
in the output space but not in the original space. In contrast, Vk(vi) denotes the set of nodes
that belong to the k-size neighborhood of codebook vector i in the original space rather than

in output space. Rank rij refers to rank in the original space, but r̂ij denotes the order in out-

put space. In fact, trustworthiness and continuity are functions of the number of neighbors k.

Three methods, OVI-NG, GNLP-NG, and RBF-NDR, were selected for comparison. In par-
ticular, OVI-NG and GNLP-NG can only map the codebook vectors. Hence, to keep the com-
parison fair, we used the RBFN obtained by RBF-NDR and ITRN-RBF to map the codebook
for comparison. All methods’ line charts with respect to trustworthiness and continuity are
given after each experiment, except for OVI-NG, because the method cannot process nonlinear
embedded manifolds. (We only show the results separately in the Swiss roll experiment.)
Table 1 presents the stress functions for the different methods.

Swiss roll. The Swiss roll (S2 Dataset) corresponds to a two-dimensional pattern distrib-
uted uniformly on a plane and embedded nonlinearly in 3D (Fig 5a). We used ITRN to learn
this manifold and ensure the connectivity of the resulting graph. The graph given in Fig 5b
shows the reconstructed manifold embedded in the high-dimensional original data feature
space by ITRN. We then trained an RBFN to reduce the dimensionality. The projection esti-
mated by the ERBF module is given in Fig 5c and 5d. Fig 5c shows the mapping of the training
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pattern (2000 nodes), and Fig 5d shows the mapping of the new dataset (5000 nodes) that was
taken from the Swiss roll by random sampling. We observe that TRN-RBF is able to recover
the intrinsic two-dimensionality of the Swiss roll and process a new dataset.

The different mappings of the Swiss roll’s codebook vectors are presented in Fig 6. All meth-
ods disclose the embedded manifolds of the Swiss roll except OVI-NG. The neighborhood
preservation achieved by OVI-NG is presented in Fig 7. This method shows such a poor per-
formance, only ITRN-RBF, RBF-NDR, and GNLP-NG are discussed in the following. More-
over, for RBF-NDR and GNLP-NG, the purpose of iterative adjustment is to minimize the
stress function, hence they have similar mapping structures.

Analyzing each of the measures shown in Fig 8 and Table 1, it is clear that ITRN-ERBF
retains two distinct advantages with respect to distance and neighborhood preservation. Clos-
est to ITRN-ERBF in performance is RBF-NDR. Methods GNLP-NG and ITRN-TRBF per-
form almost as well.

Artificial and real-world images. The artificial images (S3 Dataset) are from the domain
of visual perception. The dataset contains 698 artificially generated images of faces (image size:
64 × 64, 688 images for training and 10 for testing, referred to as AFs) under different poses
and different illumination conditions.

The real-world images (S4 Dataset) come from the Mixed National Institute of Standards
and Technology (MNIST) database. We chose the handwritten digit “2” (image size: 28 × 28,
1000 images for training and 10 for testing, referred to as “2”) for this experiment because of its
varied forms.

In particular, for the different datasets, there are two treatments: AF are preprocessed by
PCA. The principal components that contribute less than 0.1% to the explained variance are
discarded, hence dimensionality reduction methods are used for mapping the primed dataset.
However, for “2,” we chose the original dataset as the training patterns.

ITRN-ERBF and other methods were used for the task of visual perception. The resulting
two-dimensional projection of training patterns obtained by ITRN-ERBF is given in Figs 9 and
10. A comparison of the mapping quality is presented in Figs 11 and 12 as well as Table 1. Blue
plusses represent the two-dimensional projections of training patterns and red circles represent
testing patterns’ position. For easy inspection, only part of the training patterns’ corresponding
images were plotted. The major articulation features of the AF, left-right (x-axis) and up-bot-
tom (y-axis), are captured from the input space. For the “2” dataset, the bottom loop (x-axis)
and lean (y-axis) are captured from input space.

In terms of mapping quality, ITRN-ERBF has a high adaptability and performance. In con-
trast, ITRN-TRBF, GNLP-NG, and RBF-NDR perform less well. In very rare cases, GNLP-NG
shows the best distance preservation feature because the goal of GNLP-NG is to minimize the
stress function.

Table 1. Stress functions for different methods.

Methods Swiss roll AF “2”

EMDS ESM EMDS ESM EMDS ESM

ITRN-ERBF 2.5204E+03 0.0094 6.2399E+03 0.0125 5.4540E+07 0.9379

ITRN-TRBF 3.6855E+03 0.0153 1.3094E+04 0.0295 4.8321E+07 0.9851

RBF-NDR 2.6040E+03 0.0114 3.1725E+04 0.0812 4.4090E+06 0.0892

GNLP-NG 3.4730E+03 0.0116 2.6486E+04 0.0507 4.6615E+06 0.1064

doi:10.1371/journal.pone.0131631.t001
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Fig 6. Different mappings of the Swiss roll’s codebook vectors for different methods. (a) ITRN-ERBF, (b) ITRN-TRBF, (c) RBF-NDR, (d) GNLP-NG,
and (e) OVI-NG.

doi:10.1371/journal.pone.0131631.g006
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Comparison with RBF-NDR. Most dimensionality reduction methods can process new
datasets because of RBFN. However, an imprecise RBFN could lead to imprecise projections.
Hence, ITRN-ERBF, ITRN-TRBF, and RBF-NDR were selected to determine whether they
were able to generate definitive results. All of them use RBFN to project the dataset.

All methods ran 20 times on a uniform Swiss roll dataset. At each iteration, the manifold
learning procedure was executed afresh and the RBFN was also designed or trained again. The
results are shown in Fig 13. Here, the x-axis denotes the iterations and the y-axis represents the
value of EMDS or ESM. We observe that ITRN-ERBF has the smoothest line, indicating that ITR-
N-ERBF has the most definitive results. In contrast, ITRN-TRBF and RBF-NDR have obvious
fluctuations because of their trained RBFN, which could not minimize the stress function or
loss function.

Comparison against the classical methods
In this section, ITRN-RBF was compared with classical dimensionality reduction methods
including ISOMAP, L-ISOMAP, PCA. Three quality metrics [43], namely, stress function, the

Fig 7. OVI-NGmapping quality for Swiss roll.

doi:10.1371/journal.pone.0131631.g007
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Fig 8. Mapping quality for the Swiss roll.

doi:10.1371/journal.pone.0131631.g008
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correlation coefficient, smooth neighborhood preservation were used for analysis. We detail
the three quality metrics in the following.

• Stress function. You can refer to Eq 16.

• Correlation coefficient. This value measures how distances in the original space are corre-
lated to those in the visual space. The expression are as follows:

ECC ¼ 1�< D� D̂ > � < D >< D̂ >

sDsD̂

; ð19Þ

where D and D̂are the upper triangular distance metrics before and after projection,� is the
element-by-element product,<> is the average operator and σ is the standard deviation of
the vector’s elements. The smaller the value of ECC, the better the performance of the visuali-
zation is.

• Smooth neighborhood preservation. This is also a neighborhood preservation metric, but it’s
based on distance instead of rank order compared with trustworthiness and continuity. The

Fig 9. AF results.

doi:10.1371/journal.pone.0131631.g009
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local misplacing metrics are defined as follows:

WTðviÞ ¼
1

jNTðviÞj
X

vj2NT ðviÞ
wðr̂ i; d̂ ijÞ NTðviÞ 6¼ �;

0 others;

ð20Þ
8<
:

WFNðviÞ ¼
1

jNFNðviÞj
X

vj2NFN ðviÞ
wðri; dijÞ NFNðviÞ 6¼ �;

0 others;

ð21Þ
8<
:

where NT(vi) is the set of nodes in the k-nearest neighborhood (we set k = 12 for this analysis)
of an node i that are not mapped among the k-nearest neighbors of i in the output space and
NFN(vi) is the set of nodes that are not among the k-nearest neighbors of i but are mapped
among the k-nearest neighbors of i in the output space, jWj is the number of elements in the

Fig 10. Handwritten digit “2” results.

doi:10.1371/journal.pone.0131631.g010
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Fig 11. Mapping quality for AFs.

doi:10.1371/journal.pone.0131631.g011
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Fig 12. Mapping quality for handwritten digit “2”.

doi:10.1371/journal.pone.0131631.g012
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Fig 13. Comparison with RBF-NDR.

doi:10.1371/journal.pone.0131631.g013

Novel Dimensionality Reduction Method

PLOS ONE | DOI:10.1371/journal.pone.0131631 July 10, 2015 20 / 26



set and w(r, t) is given below:

wðr; tÞ ¼
28

5

t � r
r

� �5

� 14
t � r
r

� �4

þ 46

5

t � r
r

� �3

þ 1

5

t � r
r

� �2

r <= t <= 2r;

1 others:
ð22Þ

8<
:

Smooth Neighborhood preservation can be obtained by simply computing:

ENP ¼
1

2jSj
X
vi2S

ðWTðviÞ þWFNðviÞÞ; ð23Þ

where S is the set of nodes under analysis. The smaller the value of ENP means the better
neighborhood preservation.

We add a dataset, three people’s face images (S5 Dataset) in UMist Faces database (575 total
images, 112 × 92 size, manually cropped by Daniel Graham [44]), for showing feature extrac-
tion (Fig 14). Table 2 presents the quality metrics’ value for the different methods. We observe
that PCA has poor performance because of nonlinear datasets. ISOMAP is better than L-ISO-
MAP because L-ISOMAP approximates a large global computation. ITRN-ERBF is better than
ITRN-TRBF because ITRN-TRBF is trained and it has less center nodes in network.
ITRN-RBF, ISOMAP and L-ISOMAP have similar results. In some cases, ITRN-RBF performs
better than ISOMAP and L-ISOMAP. That illustrates the effectiveness of ITRN-RBF.

Computational complexity analysis
Assume that input space’s nodes number is N, codebook vectors number is n, TRN’s epochs is
k1 and TRBF’s epochs is k2. The most time consuming part of TRN corresponds to sorting the
distances for rank ri which goes with O(Nlog2N). Our improvement of TRN increases time cost
because of building connecting graph. The extra time cost is O(n2). However, in most applica-
tions, this time cost can be neglectable because of the small value of n. The MDS has complexity
O(n3). The TRBF is O(k2n) and the ERBF is O(n). So ITRN-RBF runs in O(k1Nlog2N + n3 +
k2n) (based on TRBF) or O(k1Nlog2N + n3) (based on ERBF).

We list the running times in Table 3. Specially, training RBF and mapping dataset are sepa-
rated, so the extent to which RBFN maps the dataset fast are quite remarkable. We note that:

• In most applications, n<< N, so MDS and training RBFN run faster.

• If we get RBFN, mapping the dataset only costs O(N).

• ITRN-TRBF is slower than ITRN-ERBF because trained RBFN has iterative procedure. How-
ever, if we get RBFN, the mapping based TRBF is always faster than ERBF’s, because ERBF
has larger number of center nodes in network.

Discussion
The classical dimensionality reduction methods, such as PCA and MDS cannot disclose non-
linear embedded manifolds. ISOMAP and L-ISOMAP uses geodesic distantce to improve
MDS, providing good performance. ITRN-RBF offers performance near that, but has a faster
mapping speed and an ability to deal with new data.

For the dimensionality reduction methods based on TRN, OVI-NG can also not process
nonlinear dataset because it uses Euclidean distances in the observation space. GNLP-NG
makes improvements that are similar to ISOMAP’s. Both of OVI-NG and GNLP-NG cannot
project new data online.
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Fig 14. Visualizations of the UMist faces dataset.Different people’s faces denote different marks (black
rhomb, red cross, blue circle). (a) ITRN-ERBF, (b) ITRN-TRBF, (c) ISOMAP, (d) L-ISOMAP and (e) PCA.

doi:10.1371/journal.pone.0131631.g014
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ITRN-RBF and RBF-NDR overcome these problems. They can project nonlinear data for
using geodesic distances and can map new data because of RBFN. In this paper, we proposed
two methods to obtain the RBFN. Each has distinct advantages and disadvantages. ERBF has
only one parameter, its spread. Larger spread will generate more robust networks, but too large
a spread will cause mathematical calculation problems. ERBF only calculates once without
accumulating error, hence it is fast and exact. However, a large number of training patterns will
result in a large-scale network. ITRN uses the vector quantization technique to decrease the
number of training patterns, hence ERBF is the recommended approach to obtain an RBFN.

Table 2. Values of quality metrics for ITRN-RBF and classical dimensionality reductionmethods.

Swiss roll

Quality Metrics ITRN-ERBF ITRN-TRBF ISOMAP L-ISOMAP PCA

ECC 6.7798E-04 0.0067 3.0124E-04 5.3887E-04 0.1536

ENP 0.0493 0.1082 0.1330 0.1537 0.7373

ESM 0.0094 0.0153 0.0012 0.0923 0.4921

AF

Quality Metrics ITRN-ERBF ITRN-TRBF ISOMAP L-ISOMAP PCA

ECC 0.0313 0.2569 0.1760 0.1326 0.1111

ENP 0.3271 0.4159 0.4752 0.4199 0.5887

ESM 0.0152 0.0295 0.0857 0.1608 0.1700

“2”

Quality Metrics ITRN-ERBF ITRN-TRBF ISOMAP L-ISOMAP PCA

ECC 0.2069 0.3200 0.2316 0.2641 0.4014

ENP 0.5184 0.5504 0.5657 0.5837 0.5806

ESM 0.9379 0.9851 0.1219 0.2529 0.3814

UMist face

Quality Metrics ITRN-ERBF ITRN-TRBF ISOMAP L-ISOMAP PCA

ECC 0.0057 0.0429 0.0080 0.0051 0.0583

ENP 0.0252 0.1813 0.1788 0.1129 0.1729

ESM 0.9877 0.9840 0.0138 0.1177 0.1305

doi:10.1371/journal.pone.0131631.t002

Table 3. Running times (specified in seconds) for different methods.

Dataset ITRN-ERBF ITRN-TRBF

Training RBFN Mapping Training RBFN Mapping

Swiss roll 24.3739 0.0626 47.5088 0.0031

AF 14.2524 0.2210 199.2901 0.2271

“2” 81.6783 2.8812 387.0357 0.3082

UMist face 5.7719 0.2558 588.1310 0.3176

Dataset RBF-NDR GNLP-NG ISOMAP L-ISOMAP PCA

Swiss roll 18.2267 175.9537 11.7621 5.1544 0.0016

AF 41.6311 99.7312 1.1107 0.7062 0.0152

“2” 184.3450 106.8090 2.8570 1.4513 0.2179

UMist face ——— ——— 0.0443 0.0422 0.0293

doi:10.1371/journal.pone.0131631.t003
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The other method, TRBF, obtains a training RBFN, which requires a large number of adjust-
able parameters and calculation time.

Compared with RBF-NDR, ITRN-RBF has definitive results and high mapping quality.
ITRN-RBF has good scalability with reasonable hardware costs. That is, if more effective meth-
ods for getting RBFN are adopted, better performance is obtained.

To sum up, the proposed ITRN-RBF that uses ITRN, which is suitable for geodesic distances
because it builds a more appropriate topology relationship, does well with nonlinearly embed-
ded manifolds, large amounts of data, and the online projection of new data. This method can
be applied to a wide range of applications including visualization, feature extraction, and other
applications.
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