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ABSTRACT

The massive amount of data generated from genome
sequencing brings tons of newly identified mu-
tations, whose pathogenic/non-pathogenic effects
need to be evaluated. This has given rise to sev-
eral mutation predictor tools that, in general, do
not consider the specificities of the various protein
groups. We aimed to develop a predictor tool dedi-
cated to membrane proteins, under the premise that
their specific structural features and environment
would give different responses to mutations com-
pared to globular proteins. For this purpose, we cre-
ated TMSNP, a database that currently contains in-
formation from 2624 pathogenic and 196 705 non-
pathogenic reported mutations located in the trans-
membrane region of membrane proteins. By comput-
ing various conservation parameters on these mu-
tations in combination with annotations, we trained
a machine-learning model able to classify mutations
as pathogenic or not. TMSNP (freely available at http:
//lmc.uab.es/tmsnp/) improves considerably the pre-
diction power of commonly used mutation predictors
trained with globular proteins.

INTRODUCTION

Whole genome and exome sequencing have revealed that
Mendelian rare disease-causing missense mutations are
more frequent than previously thought and collectively af-
fect millions of patients worldwide (1). Thus, there is an
urgent need to understand the relation between genotype
and phenotype in order to identify disease-causing genetic

variants within candidate variants. For this purpose, vari-
ant prioritization tools are widely used to predict the effect
of mutations. These are mostly based on evolutionary con-
servation and expected impact on structure and function
using evolutionary conservation parameters and physico-
chemistry properties of amino acids from sequence data
[SIFT (2), Provean (3), MutationTaster (4)], while some
tools such as Polyphen-2 (5) also incorporate features re-
lated to structural data [see (6) for a review].

Membrane proteins represent 25% of all human proteins
(7) and perform essential roles in cellular functions (8). Con-
sequently, they are the target for 50% of drugs in the market
(9). Moreover, 90% of membrane proteins present disease-
associated missense mutations that may affect protein fold-
ing, stability and/or function (10). Some of them have been
related to various diseases, including cardiopathies, neuro-
logical diseases, cystic fibrosis and cancer (11,12). In fact,
mutations in membrane proteins are more likely to cause
diseases than in globular proteins (13). Membrane proteins
differ from globular proteins in terms of amino acid com-
position, distribution, inter-residue interactions and struc-
ture (14,15). The main differences are in the transmembrane
(TM) region of the proteins because of the different surface
environments, that is lipid exposed versus water exposed.
Current variant prioritization tools, which are mainly based
on data from globular proteins, present low reliability for
predicting the pathogenicity of mutations in membrane pro-
teins (13). Thus, there is a need for computational tools spe-
cific for membrane proteins to understand its relation be-
tween sequence and structure (16). This is especially impor-
tant given the scarce number of membrane protein struc-
tures compared to globular proteins due to experimental
limitations (17). Mutation prediction tools and databases
specific for membrane proteins are starting to emerge, such
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as Mut-HTP (18), Pred-MutHTP (10) or BorodaTM (19),
which are all based on evolutionary conservation parame-
ters, the former including structure descriptors and the lat-
ter focusing on regions with known structure.

With the aim of contributing to emerging mutation pre-
dictor servers for the TM region of membrane proteins, here
we present TMSNP (accessible at http://lmc.uab.es/tmsnp/),
a database of TM missense mutations (pathogenic and non-
pathogenic) and a predictor server trained using evolution-
ary conservation parameters.

MATERIALS AND METHODS

Database of pathogenic and non-pathogenic mutations in
transmembrane proteins

Our selected set of membrane proteins consisted of all hu-
man membrane proteins tagged as reviewed in the UniProt
database (20,21). For each protein, we retrieved all disease-
causing/pathogenic mutations associated with Mendelian
disorders as reported in ClinVar (22) and SwissVar (23).
We only kept in mutations occurring in the TM helices be-
cause these are the regions that mostly differ from glob-
ular proteins. The ranges of TM segments were taken
from the UniProt database (20,21). We also retrieved non-
pathogenic missense mutations and their population al-
lele frequency from GnomAD (24) and ClinVar (22). The
database (accessible at http://lmc.uab.es/tmsnp/tmsnpdb)
resulted in 196 705 non-pathogenic, 2624 pathogenic and
437 likely pathogenic mutations in the TM region of mem-
brane proteins.

TMSNP predictor

Filtering, homology reduction and dataset balancing. To en-
sure that mutations used in the machine-learning models
were linked to protein function and/or structure alteration,
we discarded all mutations in proteins for which no single
pathogenic disease-causing mutations have been reported,
that is those likely involved in complex diseases or reces-
sive inheritance and tagged as ‘non-pathogenic proteins’
(25). Thus, the obtained pathogenic and non-pathogenic
missense mutations were used to classify human TM pro-
teins as ‘pathogenic proteins’ (358 proteins), when at least
one disease-causing pathogenic mutation has ever been re-
ported for this protein and as ‘non-pathogenic proteins’
(2420 proteins), elsewhere. We next performed homology
reduction by discarding mutations for proteins belonging
to the same Pfam family (26) that resulted in the same
amino acid change in the same aligned position. The dataset
after homology reduction contained 2704 pathogenic and
likely pathogenic mutations and 19 292 non-pathogenic
mutations. Data were subsequently subsampled to ob-
tain a balanced dataset (50% pathogenic and 50% non-
pathogenic mutations), by selecting the non-pathogenic mu-
tations with the highest population allele frequency accord-
ing to GnomAD (24). The final dataset used for training in
the machine-learning model presented 5408 missense mu-
tations, which implies a reduction of non-pathogenic muta-
tions by 1/6.

Feature extraction. Multiple sequence alignments for the
different families of the proteins in our dataset were taken
from the Pfam database (26). For each missense mutation in
the balanced dataset, we computed four variables related to
evolutionary conservation and the likelihood that an amino
acid change is tolerated in a position: (i) frequency of the
wild-type amino acid in the Pfam alignment, (ii) frequency
of the mutated amino acid, (iii) substitution matrix score (as
a measure of similar physicochemical properties between
wild-type and mutated amino acid) and (iv) entropy of the
position (as a measure of sequence variability or informa-
tion content) (27). For the substitution matrix score, we
used the PHAT 75/73 matrix, which is specific for mem-
brane proteins (28). The entropy of the position i is max-
imal (= 1) if all 20 amino acids at the position i present
equal frequencies and is minimal ( = 0) if only 1 amino acid
has been observed at this position. Four additional vari-
ables: type of the reference and the mutated amino acids,
Pfam and UniProt accession codes were included through
one-hot-encoding of the qualitative variables. In the final
dataset, each missense mutation had information encoded
in eight variables contributing to a total of 569 features (20
features for reference and 20 for the mutated amino acids,
358 features for the UniProt accession codes and 167 for the
Pfam accession codes).

Machine-learning models. We built three datasets from
the 5408 missense mutations (see http://lmc.uab.es/tmsnp/
datasets): (i) 8V dataset, containing all variables (569 fea-
tures); (ii) 6V dataset, lacking UniProt and Pfam accession
code variables, which are informative of the tendency of a
protein or a protein family to pathogenesis, but still includ-
ing one-hot encoded reference and mutated amino acids (60
features) and (iii) 4V dataset containing only conservation
variables (wild-type and mutated frequencies, substitution
matrix score and entropy). For each dataset, five different
training (80%) and test (20%) sets were created by random
sampling under certain restrictions for internal validation.
For external-validation, in the 8V dataset and 4V datasets,
mutations with the same UniProt code were equally split be-
tween training set and test set while for the 6V dataset Pfam
accession codes were used to split mutations either in the
training ser or in the validation set. Machine-learning mod-
els were built using Flame (https://github.com/phi-grib/
flame; a Python modeling framework which wraps scikit-
learn (http://scikit-learn.sourceforge.net)) or Keras (https:
//keras.io/). Various predictive models using different al-
gorithm settings, applicability domain and dataset were
built and internally validated using K-fold (K = 5) cross-
validation. In specific we used Random Forest (RF), Gra-
dient Boosting (XGBoost), Supporting Vector Machines
(SVM) and a sequential neural network. The conformal
prediction was used as an applicability domain technique
(29) by testing our models at three different confidences: 95,
90 and 80%.

Web server

TMSNP web application tool was constructed using a
Python backend (v.3.7) with the Flask framework (v.1.0.2).
Both the application and the associated datasets used for
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Table 1. Model statistics in cross-validation

Dataset Algorithm Confidence Sensitivity Specificity MCC Coverage Accuracy

8V (569 features) RF 0.95 0.92 0.88 0.80 0.42 0.90
RF 0.90 0.89 0.83 0.72 0.62 0.86
RF 0.80 0.82 0.77 0.58 0.88 0.79

XGBOOST 0.95 0.96 0.93 0.89 0.39 0.94
XGBOOST 0.90 0.92 0.88 0.80 0.58 0.90
XGBOOST 0.80 0.85 0.81 0.66 0.86 0.83

SVM 0.95 0.96 0.93 0.89 0.46 0.95
SVM 0.90 0.92 0.90 0.82 0.63 0.91
SVM 0.80 0.88 0.84 0.71 0.86 0.85

6V (44 features) RF 0.95 0.91 0.71 0.63 0.13 0.81
RF 0.90 0.87 0.72 0.60 0.29 0.79
RF 0.80 0.79 0.67 0.46 0.58 0.72

XGBOOST 0.95 0.88 0.73 0.60 0.08 0.79
XGBOOST 0.90 0.81 0.74 0.55 0.25 0.77
XGBOOST 0.80 0.76 0.69 0.45 0.57 0.72

SVM 0.95 0.90 0.77 0.68 0.08 0.84
SVM 0.90 0.81 0.74 0.55 0.25 0.77
SVM 0.80 0.76 0.69 0.45 0.57 0.72

4V (4 features) RF 0.95 0.86 0.59 0.46 0.12 0.72
RF 0.90 0.77 0.64 0.42 0.29 0.71
RF 0.80 0.71 0.63 0.34 0.57 0.67

XGBOOST 0.95 0.87 0.72 0.59 0.09 0.79
XGBOOST 0.90 0.82 0.72 0.54 0.21 0.76
XGBOOST 0.80 0.73 0.67 0.40 0.48 0.70

SVM 0.95 0.93 0.30 0.29 0.15 0.71
SVM 0.90 0.90 0.41 0.37 0.34 0.69
SVM 0.80 0.73 0.65 0.38 0.67 0.69

The table shows quality metrics (5-fold) for the machine-learning models created using 8V, 6V and 4V datasets with different conformal significance. MCC
stands for Matthews correlation coefficient, which is a measure that combines sensitivity and specificity. Coverage stands for the percentage of samples
inside the applicability domain.

training and testing the predictor were built automati-
cally using Python/Bash scripts that collected the required
data and stored it in a MySQL database (v.8.0.18), fa-
cilitating regular updates. All scripts could be found in
a GitHub repository (https://github.com/adriangarciarecio/
TMSNP).

RESULTS AND DISCUSSION

We initially constructed a database of missense muta-
tions in human membrane proteins that exclusively fo-
cused on TM helices (accessible at http://lmc.uab.es/tmsnp/
tmsnpdb; see ‘Materials and Methods’). The database cur-
rently contains 2624 pathogenic, 437 likely pathogenic
and 196 705 non-pathogenic mutations. We used a sub-
set of this database (see ‘Materials and Methods’) to de-
velop machine-learning models able to classify mutations
as pathogenic or not. We assessed three different algorithms
(RF, SVM and XGBoost) and three different datasets (8V,
6V and 4V). All combinations showed good performance in
both internal (5-fold cross-validation; Table 1) and external
validation (independent 20% test set; Table 2) with none of
them clearly outperforming the other two. RF showed the
best performance on the 4V dataset, while XGBoost and
SVM were the best on 6V and 8V, respectively. Although we
also tested a sequential neural network, we could not find
advantages of using this method despite performance being
close to the other algorithms used in this study. Models that
use only four features reach a maximum accuracy of ∼70%,
without the increase in the confidence of the model bring-
ing additional improvement. The two additional features

(type of reference and mutated residues) included in the 6V
dataset increase the average performance up to ∼80% ac-
curacy (at the maximum confidence) except for SVM which
keeps at ∼70%. 8V dataset clearly shows the best perfor-
mance both in internal cross validation and external val-
idation. SVM provides the best models, which reach 94%
accuracy with 46% coverage (95% confidence), or 85% with
86% coverage (80% confidence). XGBoost and RF mod-
els follow closely although with slightly worse performance
(<5%).

In order to check for possible overfitting of the models
using the largest (8V) dataset, we performed feature selec-
tion for the three different algorithms. Supplementary Table
S1 compares the performance of the models with the orig-
inal and the reduced features using K-best feature selection
performed with K = 60 or 30 (number of variables reduced
to 10% and ∼5%, respectively). The mean accuracy loss for
RF, XGBoost and SVM was, respectively, 2%, -2% and 3%
for K = 60, and 4%, 0% and 6% for K = 30. These small dif-
ferences suggest lack of overfitting and also point out that
SVM is less robust than RF or XGBoost algorithms. In or-
der to assess the presence of bias due to dataset balancing
(see ‘Materials and Methods’), we generated an additional
dataset containing the first 3000 non-pathogenic mutations
following those used in training. This bias might lead to un-
realistic predictions, possibly translated to an excess of false
positives. Supplementary Table S2 shows prediction results
using 8V models at 95%, 90% and 80% confidence. Mini-
mum true negatives/false positives ratio is ∼4, being most
of the predictions either negatives or out of the applicabil-
ity domain and always sticking to the confidence restraints.
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Table 2. Model statistics at external validation

Dataset Algorithm Confidence Sensitivity Specificity MCC Coverage Accuracy

8V (569 features) RF 0.95 0.90 0.86 0.76 0.38 0.88
RF 0.90 0.86 0.82 0.68 0.58 0.84
RF 0.80 0.81 0.75 0.56 0.86 0.78

XGBOOST 0.95 0.90 0.88 0.78 0.30 0.89
XGBOOST 0.90 0.85 0.84 0.70 0.48 0.85
XGBOOST 0.80 0.79 0.78 0.57 0.77 0.78

SVM 0.95 0.91 0.89 0.80 0.39 0.90
SVM 0.90 0.86 0.85 0.71 0.55 0.85
SVM 0.80 0.77 0.79 0.56 0.81 0.78

6V (44 features) RF 0.95 0.86 0.66 0.54 0.78 0.74
RF 0.90 0.81 0.69 0.51 0.76 0.73
RF 0.80 0.76 0.66 0.42 0.71 0.70

XGBOOST 0.95 0.87 0.69 0.58 0.09 0.80
XGBOOST 0.90 0.82 0.70 0.53 0.24 0.77
XGBOOST 0.80 0.77 0.68 0.45 0.54 0.73

SVM 0.95 0.90 0.77 0.68 0.08 0.84
SVM 0.90 0.81 0.74 0.55 0.25 0.77
SVM 0.80 0.76 0.69 0.45 0.57 0.72

4V (4 features) RF 0.95 0.85 0.60 0.47 0.13 0.75
RF 0.90 0.79 0.66 0.46 0.29 0.73
RF 0.80 0.71 0.67 0.37 0.56 0.69

XGBOOST 0.95 0.79 0.65 0.45 0.09 0.73
XGBOOST 0.90 0.76 0.67 0.43 0.21 0.72
XGBOOST 0.80 0.69 0.66 0.35 0.47 0.68

SVM 0.95 0.92 0.38 0.37 0.14 0.74
SVM 0.90 0.84 0.55 0.41 0.35 0.73
SVM 0.80 0.72 0.68 0.40 0.67 0.70

The table shows performance metrics in external validation (20% of the original dataset) for the machine-learning models created using 8V, 6V and 4V
datasets with different conformal significance. MCC and coverage are described in Table 1.

These results demonstrate lack of sampling bias. Interest-
ingly, the RF model at 95% confidence correctly predicts
658 non-pathogenic mutations with only 6 false positives
out of 3000 non-pathogenic mutations.

Random Forest 8V was selected as the final model to
be implemented in the web application. Although the per-
formance of RF was not the best, it demonstrated to be
the more robust algorithm at different conditions. While
XGBoost performed on average better than RF, it pro-
vides more importance to protein classification features
rather than sequence conservation (amino acid frequen-
cies, substitution matrix score and entropy), questioning
its ability to generalize the predictions (Supplementary Ta-
ble S3). On the other hand, SVM was discarded because
it was less robust towards feature reduction and also be-
cause the implementation of the SVM algorithm using ra-
dial basis function kernel did not allow to inspect feature
importances.

Feature importance analysis (Supplementary Table S4)
shows that for the original RF model as well as for the 60
and 30 best feature-reduced models, conservation features
contribute the most clearly driving the predictive power
of the algorithms (30%, 60% and 75% of the total contri-
bution, respectively). Pfam PF00520 (ion channel family)
and UniProt P35498 (sodium channel protein) accession
codes follow in contribution (∼2% each), probably indicat-
ing high sensitivity of this family of receptors to become
pathogenic upon a mutation. Mutation to proline and to
arginine (P m and R m features) appear as the next fea-
tures in importance (∼1% each). This is compatible with
the known distorting effects of these amino acids when
present at TM helices (13). Accordingly, the loss of per-

formance for the 6V or 4V dataset might be related to
not using UniProt and Pfam codes as features, as they are
related to different vulnerability of proteins and/or pro-
tein families to amino acid change in their transmembrane
region.

TMSNP returns the unambiguous class prediction at the
highest confidence possible. Predictions with a confidence
below 0.75 are considered outside the domain of appli-
cability. Table 3 shows the comparison between TMSNP
models (8V dataset) generated at three levels of significance
together with the results of SIFT, Polyphen-2 and Pred-
MutHTP. Pred-MutHTP is also specific for membrane pro-
teins, whereas both SIFT and Polyphen-2 are not. As re-
flected by the equilibrated sensitivity/specificity and the
higher accuracy at the different confidence levels, TMSNP
not only provides a more balanced model but also performs
very well when tested against a full non-pathogenic dataset
of 3000 mutations. Importantly, TMPSNP brings higher
specificity compared to the other methods. The robustness
of the algorithm relies on the quality of the extracted con-
servation features, which are the most important according
to the feature contribution analysis of the model. Notewor-
thy, TMSNP is using conformal prediction as an applicabil-
ity domain and uncertainty framework, providing predic-
tions under confidence restraints. Our models demonstrated
to be good at all confidence limits, which translates into the
corresponding accuracy (i.e. a confidence of 0.8 sets to ∼0.2
the maximum error rate). The higher specificity and accu-
racy of TMSNP compared to SIFT and PolyPhen-2, which
also rely on similar conservation parameters, might be re-
lated to using a dataset for training specific for membrane
proteins, as the used evolutionary conservation parame-
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Table 3. Sensitivity, specificity, Matthews correlation coefficient (MCC) and coverage of TMSNP model (8V dataset) and comparison to Pre-MutHTP,
SIFT and Poyphen-2

Predictor types Method Sensitivity Specificity MCC Coverage Accuracy

Specific for membrane proteins TMSNP (0.95 confidence) 0.90 0.86 0.76 0.38 0.88
TMSNP (0.90 confidence) 0.86 0.82 0.68 0.58 0.84
TMSNP (0.8 confidence) 0.81 0.75 0.56 0.86 0.78
Pre-MutHTP (0.95 confidence) 0.96 0.54 0.56 0.76 0.64
Pre-MutHTP (0.90 confidence) 0.96 0.53 0.55 0.76 0.67
Pre-MutHTP (0.80 confidence) 0.96 0.53 0.56 0.76 0.71

Non-specific for membrane proteins Polyhen-2 0.93 0.35 0.35 1 0.64
SIFT 0.88 0.52 0.42 1 0.70

Data are shown at various levels of significance in external validation. MCC and coverage are described in Table 1.

ters differ between globular and membrane proteins. When
compared to the previously reported membrane-specific
predictor Pred-MutHTP, the higher specificity and accu-
racy of TMSNP might be related to the better curated non-
pathogenic TM variants as the result of (i) only considering
the highest allele frequencies in GnomAD and (ii) discard-
ing non-pathogenic mutations in proteins for which no sin-
gle causative disease mutation has been identified that might
be affecting the structure and function of the protein with-
out being related to pathogenesis (recessive inheritance and
complex diseases). Compared to MutHTP database, TM-
SNP (i) contains mutations in the TM segments of mem-
brane proteins but discards mutations in the extracellular
and intracellular regions of membrane proteins, as these re-
gions and domains of the proteins are exposed to an en-
vironment similar to globular proteins; (ii) is based on a
bigger dataset of non-pathogenic variants as MutHTP does
not include variants from GnomAD database (24); and (iii)
does not include somatic mutations.

CONCLUSIONS

TMSNP is a regularly updated web server that presents two
main functionalities: on the one hand, it brings a search-
able database of reported pathogenic and non-pathogenic
mutations in TM segments of membrane proteins; on the
other hand, it provides a mutation prediction tool able to
predict pathogenicity for previously non-reported TM mis-
sense mutations. The predictive model developed specif-
ically for membrane proteins allows to improve the pre-
diction power compared to unspecific mutation predictor
servers.
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