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Severe acute dysphagia commonly results from head and neck radiotherapy (RT). A model enabling pre-
diction of severity of acute dysphagia for individual patients could guide clinical decision-making.
Statistical associations between RT dose distributions and dysphagia could inform RT planning protocols
aiming to reduce the incidence of severe dysphagia. We aimed to establish such a model and associations
incorporating spatial dose metrics. Models of severe acute dysphagia were developed using pharyngeal
mucosa (PM) RT dose (dose-volume and spatial dose metrics) and clinical data. Penalized logistic regres-
sion (PLR), support vector classification and random forest classification (RFC) models were generated
and internally (173 patients) and externally (90 patients) validated. These were compared using area
under the receiver operating characteristic curve (AUC) to assess performance. Associations between
treatment features and dysphagia were explored using RFC models. The PLR model using dose-volume
metrics (PLRstandard) performed as well as the more complex models and had very good discrimination
(AUC = 0.82) on external validation. The features with the highest RFC importance values were the vol-
ume, length and circumference of PM receiving 1 Gy/fraction and higher. The volumes of PM receiving
1 Gy/fraction or higher should be minimized to reduce the incidence of severe acute dysphagia.
� 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction

Acute dysphagia is a common toxicity resulting from head and
neck (chemo)radiotherapy (RT), having a substantial impact on
patients’ quality of life [1] and personal relationships [2]. Around
half of patients experience significant acute swallowing dysfunc-
tion [3]. Moreover, severe acute reactions have been implicated in
the development of ‘‘late” radiation toxicities [4,5], including late
dysphagia [6]. Clinicians are unable to accurately predict which
patients will experience severe acute dysphagia [7]. A normal tissue
complication probability (NTCP) model with good predictive ability
would, therefore, represent a highly useful tool for clinical decision-
support, treatment plan comparison, treatment modality selection
[8] and isotoxic dose escalation (as is being evaluated in lung RT
[9]). Recently, NTCP models of dysphagia six months following RT
[10,11] were successfully validated [12–14]. However, as many
patients suffer severe acute dysphagia that resolves by six months
following RT, thesemodels do not capture the substantial early tox-
icity burden. The currently existing NTCP models for severe acute
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dysphagia, whilst promising and providing useful insights, [15–21]
possess suboptimal discriminative ability and, hence, are not rou-
tinely used to guide clinical decision-making.

In addition to the prediction of individual patient toxicity out-
comes, there is substantial interest in determining statistical asso-
ciations between RT dosemetrics and toxicity to inform the optimal
design of RT treatment planning techniques attempting to reduce
the incidence of toxicity. A large number of studies, summarized
in [22,23], with conflicting findings, have sought to establish sub-
structures within the head and neck region that are radiosensitive
for late dysphagia. However, the apparent differential radiosensi-
tivity of substructures within the pharyngeal musculature is likely
to be an artefact of the positions of the primary disease sites relative
to those substructures in these study cohorts [24]. To overcome this
bias, we combined multiple spatial dose metrics, which are sensi-
tive to both the extent of the dose distribution and regional varia-
tions in radiosensitivity, to ‘‘tease apart” these effects.
Additionally, we hypothesized that the addition of spatial dose
metrics would increase the discriminative performance of NTCP
models, compared with dose-volume metrics, as has previously
been demonstrated for xerostomia [25] and rectal toxicities [26].

The first aim of this study was to determine whether the addi-
tion of novel spatial dose metrics would improve the predictive
performance of NTCP models for severe acute dysphagia. The sec-
ond aim was to establish statistical associations between the RT
dose distribution and severe acute dysphagia that could be used
to inform RT planning techniques aiming to reduce the incidence
of severe dysphagia. This study built upon previous acute dyspha-
gia models [27,28] by introducing novel spatial dose metrics and
using machine learning approaches.
Material and methods

Patient data

Severe acute dysphagia models were generated and internally
validated using a training dataset of 335 patients with DICOM RT
Table 1
Patient cohorts making up the dataset.

Trial Patients
available

Primary disease site Radio

COSTAR (Phase III,
multicentre;
NCT01216800)

72 Parotid gland Unilat
IMRT

PARSPORT (Phase III,
multicentre) [25]

67 Oropharynx, hypopharynx Bilate
IMRT

Dose Escalation (Phase II,
single centre) [26]

26 Larynx, hypopharynx Bilate

Midline (Phase II, single
centre) [27]

116 Oropharynx Bilate

Nasopharynx (Phase II,
single centre) [28]

36 Nasopharynx Bilate

Unknown Primary (Phase II,
single centre) [29]

18 Unknown primary Bilate

Washington University
School of Medicine in
Saint Louis (Independent
external validation)

90 Oral cavity, nasal cavity,
nasopharynx, oropharynx,
hypopharynx, larynx,
parotid gland, unknown
primary

Bilate

The first six trials were used for model training and internal validation. The last trial was
# – fractions; RT – radiotherapy; Unilateral – treatment delivered to ipsilateral parotid
relevant subsite (e.g. nasopharynx, oropharynx or larynx). * All fractionation regimens
multiple fractionation schedules are listed for a single trial this means that multiple fra
data available, enrolled in one of six different clinical trials [29–
33], with institutional review board approval and signed patient
consent (Table 1). Patients for whom clinical data (age, sex, pri-
mary disease site, use of chemotherapy) were unavailable (13
patients) were excluded from the analyses. The cohort includes a
diverse range of primary disease sites and RT delivery techniques,
ensuring a large variation in the dose distributions across the
cohort. This increases the generalizability of the models and
reduces the chance of introducing biases, for example, due to the
primary tumour location. An independent external validation data-
set was provided by Washington University School of Medicine in
Saint Louis (Table 1). This consisted of 90 patients with a range of
head and neck primary tumour sites.

Toxicity data for the patients included in the training dataset
were recorded prospectively, by experienced head and neck cancer
specialists working according to standard trial protocols, prior to
the start of RT, weekly during RT, weekly from 1–4 weeks follow-
ing RT and at 8 weeks following RT using the Common Terminol-
ogy Criteria for Adverse Events (CTCAE) version 3 [34] dysphagia
instrument. The toxicity endpoint of interest chosen for analysis
was the peak grade of dysphagia, dichotomized into severe (grade
3 or worse) and non-severe (less than grade 3) dysphagia. Patients
with grade 1 or higher baseline toxicity (14 patients) or missing
baseline toxicity (9 patients) were excluded from the analysis.
Patients with missing toxicity measurements and peak grade less
than 3 were excluded from the analysis as these patients may have
experienced unreported grade 3 or worse dysphagia (126 patients).
The rationale for this strategy for handling missing toxicity data is
described in Appendix A. For the external validation cohort, severe
acute dysphagia was defined as the patient requiring percutaneous
endoscopic gastrostomy tube (PEG) insertion. It should be noted
that there was a slight difference in the scoring systems due to
the data available. All institutions treating patients used in this
study, including the training and external validation cohorts,
employed a reactive and conservative approach to PEG insertion.
After removing patients with missing data, 173 patients were
available for training and 90 patients available for external valida-
tion. The incidences of severe acute dysphagia were 66% in the
therapy technique Radiotherapy dose-
fractionation*

Concurrent
chemotherapy

eral; 3D conformal RT, 65 Gy/30 # (definitive RT),
60 Gy/30 # (post-operative
RT)

No

ral; 3D conformal RT, 65 Gy/30 # (definitive RT),
60 Gy/30 # (post-operative
RT)

No

ral; IMRT 67.2 Gy/28 #,
63 Gy/28 #

Yes

ral; IMRT 65 Gy/30 # (definitive RT),
60 Gy/30 # (post-operative
RT)

Yes

ral; IMRT 65 Gy/30 # (definitive RT),
60 Gy/30 # (post-operative
RT)

Yes

ral; IMRT 65 Gy/30 # (definitive RT),
60 Gy/30 # (post-operative
RT)

Yes

ral, unilateral; IMRT 70 Gy/35 #,
66 Gy/33 #,
60 Gy/30 #

Both concurrent and no
concurrent
chemotherapy

used for independent external validation. IMRT - intensity-modulated radiotherapy;
bed only; Bilateral – treatment delivered to ipsilateral and contralateral mucosa of
used 5 fractions per week with 1 fraction per day from Monday to Friday. Where
ctionation schedules were employed in those trials.



Fig. 1. Summary of the pharyngeal mucosa (a) DVH, (b) DLH and (c) DCH data
grouped by severe or non-severe peak dysphagia. The lines represent the group
medians and the error bars represent the 95 percentile confidence intervals.
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training dataset and 48% in the external validation dataset. The
training dataset incidence is artificially inflated by the strategy
for handling missing toxicity data.

Induction chemotherapy, concurrent chemotherapy regimen
(cisplatin, carboplatin, one cycle of cisplatin then one cycle of car-
boplatin or none), definitive versus post-operative RT, primary dis-
ease site (nasopharynx/nasal cavity, oropharynx/oral cavity,
hypopharynx/larynx, parotid gland and unknown primary), sex
and age were also included as covariates in the models. These clin-
ical covariate data are given in Appendix B.
Calculations

Radiotherapy dose metrics

The pharyngeal mucosa (PM) was considered as the organ-at-
risk for acute dysphagia. The PM was delineated, by clinical oncol-
ogists, from the roof of the nasopharynx to the level of the
suprasternal notch (Appendix C). The physical dose distribution
was converted to the fractional dose distribution (physical dose
delivered in each fraction), which was described by the dose-
volume histogram (DVH) in 20 cGy intervals from 20 (V20) to
260 (V260) cGy per fraction. The use of the fractional DVH is appro-
priate as nearly all patients who developed severe acute dysphagia
developed it before the full course of RT had been delivered (data
not shown) and follows recommendations for acute toxicity mod-
elling by Tucker et al. [35]. Using the biologically effective dose in
place of the fractional dose made very little difference to the
results due to the fractionation regimens employed (data not
shown). The dose distribution was also described spatially, using
novel dose-length (DLH; L20 – L260) and dose-circumference his-
tograms (DCH; C20 – C260) and 3D moment invariants describing
the centre of mass (g001, g010, g100, g011, g101, g110, g111), spread
(g002, g020, g200) and skewness (g003, g030, g003) of the dose dis-
tribution in the left-right, anterior-posterior and superior-inferior
directions [25,36], detailed in Appendix D.
Statistical modelling

Statistical analysis was performed using a machine learning
pipeline specifically designed for NTCP modelling [36]. Three types
of model were compared, penalised logistic regression (PLR), sup-
port vector classification (SVC) and random forest classification
(RFC). For each, a version with dose-volume mretrics (‘‘standard”)
and with the spatial dose metrics (‘‘spatial”) was trained and vali-
dated. This is described in Appendix E.
Results

The DVH, DLH and DCH data are summarized in Fig. 1.
A correlation matrix of the data is shown in Appendix F. Regard-

ing the first aim, the predictive performances of the models are
shown in Table 2.

The discrimination of the PLRstandard model was not outper-
formed by any of the more complex models, on internal (AUC =
0.76, s.d. = 0.08) or external validation (AUC = 0.82, s.d. = 0.04).
The log loss and Brier score were similar between all PLR and
RFC models on internal and external validation. SVC models do
not provide probability estimates; hence, only discrimination
could be assessed. Platt scaling was employed to convert the SVC
model outputs to probability estimates [37]. However, this led to
substantial reductions in AUC related to the algorithm used (data
not shown) so the non-scaled SVC models were preferred. The
RFC models had better calibration (calibration slope closer to 1
and intercept closer to 0) than the PLR models on internal and
external validation. The discriminative ability of PLRstandard model
was good on internal validation and very good on external valida-
tion. The calibration curve, of the predicted probabilities of severe
dysphagia against the actual toxicity outcomes, for this model
applied to the external validation data is displayed in Fig. 2a.

The model calibration assessed on the external validation data-
set was modest. However, the limitations of model calibration
assessment, particularly on a small dataset, should be considered
[38]. Fig. 2b indicates how the predicted probability of severe dys-
phagia in the external validation is related to the DVH. The regres-
sion coefficients, and covariate means and standard deviations



Table 2
Predictive performance of models.

Model Hyper-parameters Internal validation mean (standard deviation)/External validation (standard deviation)

AUC Log loss Brier score Calibration slope Calibration intercept

PLRstandard penalty = l2,
C = 0.001

0.76 (0.08)/
0.82 (0.04)

0.62 (0.04)/
0.61 (0.02)

0.21 (0.02)/
0.21 (0.01)

14.9 (13.5)/
17.6 (3.9)

�6.8 (6.8)/
�8.3 (1.9)

SVCstandard kernel = radial basis function,
C = 0.0001,
gamma = 0.001

0.75 (0.08)/
0.82 (0.04)

– – – –

RFCstandard max depth = 5,
max features = square root

0.71 (0.08)/
0.78 (0.05)

0.61 (0.09)/
0.57 (0.04)

0.20 (0.03)/
0.19 (0.02)

3.5 (1.6)/
5.7 (1.3)

�1.5 (1.0)/
�3.0 (0.8)

PLRspatial penalty = l2,
C = 10.0

0.75 (0.08)/
0.73 (0.05)

0.64 (0.04)/
0.62 (0.02)

0.22 (0.02)/
0.22 (0.01)

13.7 (11.1)/
11.2 (3.6)

�6.2 (5.6)/
�4.9 (1.6)

SVCspatial kernel = radial basis function,
C = 0.0001,
gamma = 0.001

0.74 (0.08)/
0.73 (0.05)

– – – –

RFCspatial max depth = 5,
max features = square root

0.74 (0.07)/
0.75 (0.05)

0.58 (0.07)/
0.61 (0.02)

0.19 (0.03)/
0.21 (0.01)

4.5 (2.4)/
8.6 (2.3)

�2.2 (1.6)/
�4.1 (1.1)

PLR – penalized logistic regression; SVC – support vector classification; RFC – random forest classification; l2 – ridge regularisation; C – inverse of regularisation strength;
gamma – kernel coefficient for radial basis function.

30 J. Dean et al. / Clinical and Translational Radiation Oncology 8 (2018) 27–39
required to standardize the covariates, necessary to use the model
are provided in Table 3.

The model is given by: NTCP ¼ e f =ð1þ e f Þ where f ¼ aþP
i
bixi

where a is the intercept, bi is the regression coefficient for covari-
ate i and xi is the, centred and scaled, value of covariate i. To use the
recalibrated version of the model f is instead given by
f recalibrated ¼ cintercept þ cslopeðaþP

i
bixiÞ where cintercept and cslope are

the external validation intercept and slope (Table 2).
Concerning the second aim, the feature importance values for

the RFC models are displayed in Fig. 3.
These indicate increasing importance of the DVH, DLH and DCH

metrics, in terms of predicting severe dysphagia in the models,
with increasing dose level up to a fractional dose of 180 cGy, for
RFCstandard, or 220 cGy, for RFCspatial. There is a decrease in impor-
tance at higher doses in this, data-driven, analysis. In the RFCstan-

dard and RFCspatial models, the V140 and C220 were the covariates
most strongly associated with severe dysphagia, respectively. The
3D moment invariant with the highest feature importance was
g002, describing the spread of the dose in the superior-inferior
direction. For completeness, the RFC feature importance values
were calculated for a model including both dose-volume and spa-
tial dose metrics (Appendix G).

In both RFC models, the clinical covariates with the highest fea-
ture importance were parotid gland primary disease site, no con-
current chemotherapy and age. Parotid gland primary disease
site correlated strongly with the dose metrics (Appendix F) as
patients with parotid gland primaries received unilateral irradia-
tion and, hence, a smaller volume of PM irradiated. No concurrent
chemotherapy was correlated with parotid gland primary disease
site and the dose metrics (Appendix F) as the parotid gland cancer
patients, treated in the COSTAR trial, did not receive concurrent
chemotherapy. These correlations should be considered when
interpreting the results. When interpreting the apparent impor-
tance of age it is important to consider that it may have been arti-
ficially inflated due to the larger number of possible values than
the other clinical covariates [39]. The RFC model feature impor-
tance results agreed with the PLRstandard model regression coeffi-
cients (Table 3).
Discussion

We met our first aim of determining whether the addition of
novel spatial dose metrics could improve the predictive perfor-
mance of NTCP models of severe acute dysphagia. We suggest
that the PLRstandard model should be preferred over the other
models, for prediction, on the grounds of at least as good dis-
crimination as the other models, similar log loss and Brier score
and greater simplicity. The good discriminative ability of this
model, on internal and external validation, makes it a suitable
aid for supporting clinical decision-making. The ‘‘spatial” models
trained in this study did not have better discriminative ability
than the ‘‘standard” models so we do not recommend their
use. This may have been due to the DLH and DCH metrics being
highly correlated with the DVH metrics (Appendix F). Hence, the
spatial variations in the dose distributions across the cohort
were captured by the DVHs. It is important to note that we can-
not rule out the possibility that using different spatial dose met-
rics, combinations of features, models or datasets would improve
model performance compared with dose-volume based acute
dysphagia models. Potential uses of the model are discussed in
Appendix H.

We also achieved our second aim of establishing associations
between the RT dose distribution and acute dysphagia. The
decrease in feature importance for the highest dose levels was
due to a lack of variation in these metrics between patients, as
they are either 0 or close to 0 for all patients, rather than indicat-
ing reduced biological effects at these dose levels. Our results do
not support the existence of regional variations in radiosensitivity
of the PM for severe acute dysphagia. The fact that g002 was the
3D moment invariant with the highest feature importance sug-
gests that the length, which is correlated with the volume, of
the PM irradiated is more important for toxicity than the irradia-
tion of any sub-region of the structure. Other studies suggested
that different pharyngeal muscles were more radiosensitive
[19,21–23]. However, this is likely related to the primary disease
sites of the patients used in those studies [24]. The inclusion of
multiple spatial dose metrics, sensitive to different spatial aspects
of the dose distribution, and a cohort with a wide variety of dose
distributions allowed us to explore regional variations in
radiosensitivity more thoroughly than has previously been per-
formed. However, we cannot exclude the possibility that different
spatial dose metrics [19], combinations of features, models or
datasets could support the existence of spatially dependent
radiosensitivity for severe acute dysphagia. The feature impor-
tance measures (Fig. 3) indicate that the volume of PM receiving
intermediate and high doses are most strongly associated with
severe acute dysphagia. This is in agreement with another study
using the same data, but a different approach to statistical mod-



Fig. 2. (a) Calibration of the probabilities of severe dysphagia, as predicted by of the PLRstandard model (x-axis), against the observed fraction of severe dysphagia in the
external validation dataset (y-axis). The curve shows a logistic regression model of the predicted probabilities (independent variable) against the observed fraction of patients
with severe dysphagia (dependent variable). The inset figure shows the histogram of the predicted probabilities and the observed toxicity outcomes (1 = severe dysphagia; 0
= no severe acute dysphagia). (b) Median dose-volume histograms (error bars show 95% confidence intervals) for external validation patients grouped by probability estimate
quintiles using the recalibrated PLRstandard model.
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elling [28]. RFC feature importance does not provide information
on whether the correlations between features and outcome are
positive or negative. However, the regression coefficients for the
PLRstandard model (Table 3) indicate that the higher the value of
the dose metrics the greater the probability of severe dysphagia.
There is a relatively large increase in feature importance between
V80 and V100 (Fig. 3A). A pragmatic recommendation for RT
planning techniques aimed at reducing the incidence of severe
acute dysphagia, based on these findings, would be to reduce
the volume of the entire PM receiving greater than 1 Gy/fraction
as much as possible without compromising other aspects of the
treatment plan.



Table 3
Regression coefficients and covariate transformation values for the PLRstandard model required to use the model for clinical decision-support.

Covariate Regression coefficient Mean Standard deviation

intercept 0.002 – –
definitiveRT �0.003 0.86 0.35
male 0.015 0.66 0.47
age �0.007 57.9 12.0
indChemo 0.023 0.54 0.50
noConChemo �0.029 0.47 0.50
cisplatin 0.024 0.38 0.49
carboplatin 0.009 0.08 0.27
cisCarbo 0.002 0.006 0.24
hypopharynx/larynx 0.014 0.14 0.35
oropharynx/oral cavity 0.015 0.50 0.50
nasopharynx/nasal cavity �0.003 0.10 0.31
unknown primary 0.001 0.06 0.23
parotid �0.029 0.20 0.40
V020 0.019 95.5 9.4
V040 0.020 93.5 10.8
V060 0.021 92.2 11.9
V080 0.024 90.3 13.7
V100 0.026 87.7 16.3
V120 0.028 83.8 19.3
V140 0.027 77.5 20.2
V160 0.024 66.4 18.7
V180 0.024 57.0 17.2
V200 0.023 47.0 20.8
V220 0.025 20.0 16.2
V240 0.013 2.3 8.4
V260 0.011 0.0 0.0

definitiveRT – definitive radiotherapy (versus post-operative radiotherapy); indChemo – induction chemotherapy; noConChemo – no concurrent chemotherapy; cisCarbo –
one cycle of cisplatin followed by one cycle of carboplatin; Vx – volume of organ receiving x cGy of radiation per fraction.
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A previous model of severe acute dysphagia, without the novel
spatial dose metrics, but with a different statistical modelling
approach, functional data analysis, had similar discriminative
ability to the models trained in this study, but superior perfor-
mance in terms of the probability calibration [28]. Hence, we rec-
ommend that the model recommended in [28] should be
preferred over the models presented here for clinical decision-
support. The Groningen group have produced and validated mod-
els of dysphagia measured six months following RT [10–
13,40,41]. Models of severe dysphagia at earlier time points
focused on establishing associations between covariates and out-
come and, hence, either did not optimize or measure discrimina-
tion [15,18,20], included much smaller numbers of patients
[19,21] or had lower discriminative ability than the PLRstandard

model [16,17]. In addition, with the exception of one study
[42], no external validation has been performed. We did not have
access to data pertaining to all the covariates, for example genetic
polymorphisms, in those published models and, so, were unable
to validate them. Moreover, our study featured a more thorough
exploration of RT dose-response associations for severe acute dys-
phagia, including multiple dose levels and different types of spa-
tial dose metric, than previous studies. This resulted in novel
insights that could inform RT planning.

Our study possesses several limitations. Firstly, the scoring
systems used to assess dysphagia severity differed between the
training data and external validation data. The threshold for
‘‘severe” dysphagia in the external validation data is higher than
in the training data. However, the models generated using the
training data generalized well to the external validation data.
Whilst the limitations of the CTCAE dysphagia scoring system,
which was almost exclusively used when the trials incorporated
in this study were conducted, have been demonstrated [43], it
has been shown to correlate well with multiple patient-
reported quality of life measures [44]. As CTCAE grade 3 and
PEG-dependence indicate clinical interventions these are relevant
endpoints. The slight difference in the dysphagia scoring systems
between the training and external validation cohorts may have
reduced the performances of the models on external validation.
However, the models performed at least as well on external val-
idation as internal validation. Moreover, it is believed that severe
acute dysphagia is a highly complex, multifactorial toxicity with
a range of different factors having been implicated. These
include tobacco and alcohol use, a patient’s pain tolerance and
genetic predispositions to severe (chemo)radiation-induced toxi-
city. Tobacco and alcohol use were not collected in the PAR-
SPORT or COSTAR trials. Therefore, these factors could not be
included in the analysis. It is also likely that chemotherapy is
insufficiently characterized, using binary variables, in our analy-
sis. Finally, like most radiotherapy outcomes modelling studies,
the size of the training and validation cohorts are smaller than
recommended for clinical decision-support tools [45,46]. We
suggest that investigators should strive to collect larger datasets
for future development and validation of radiotherapy clinical
decision-support tools.
Conclusions

In conclusion, we have trained and externally validated a NTCP
model of severe acute dysphagia with very good discriminative
ability (external validation AUC = 0.82). We suggest that this model
may be suitable for clinical decision-support. Additionally, we
established that the volumes of the PM receiving intermediate
and high doses, greater than 1 Gy/fraction, are most strongly asso-



Fig. 3. Bootstrapped feature importance values for the covariates included in the (a) RFCstandard and (b) RFCspatial models. The whiskers indicate the 95 percentile confidence
intervals (data non-normally distributed). Note that the y-axis scales are different in (a) and (b).
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ciated with severe acute dysphagia. These should be minimized in
RT planning, where possible, to reduce the incidence of severe
acute dysphagia. Our data did not support a regional variation in
radiosensitivity for the PM.
Table B1
Clinical covariate data in the training and external validation data sets.

Covariate ntraining (%) nvalidation (%)

Definitive RT 148 (86) 44 (49)
Male 114 (66) 68 (76)
Induction chemotherapy 94 (54) 21 (23)
No concurrent chemotherapy 82 (47) 46 (51)
Cisplatin 66 (38) 28 (31)
Carboplatin 14 (8) 0 (0)
Cisplatin/Carboplatin 11 (6) 0 (0)
Hypopharynx/Larynx 24 (14) 25 (28)
Oropharynx/Oral cavity 87 (50) 41 (46)
Nasopharynx/Nasal cavity 18 (10) 15 (17)
Unknown primary 10 (6) 3 (3)
Parotid gland 34 (20) 6 (7)
Covariate mediantraining

(range)
medianvalidation

(range)
Age 59 (23–88) 58 (21–87)

Concurrent chemotherapy was administered in two cycles, on days 1 and 29 of RT,
in the training data cohort and in three cycles on days 1, 22 and 43 of RT for
platinum chemotherapy or weekly during RT with the first dose 1 week before day
1 of RT for cetuximab in the external validation cohort.
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Appendix A. Strategy for handling missing data

If weekly toxicity data are incomplete this can lead to assign-
ment of an incorrect peak toxicity grade. For example, a patient
has grade 1 toxicity for weeks 1 to 3, grade 2 toxicity for weeks
4 and 5, missing toxicity week 6 and 1 week following treatment
and grade 2 toxicity from 2 weeks following RT to 8 weeks fol-
lowing RT. They would be assigned a peak grade of 2. However,
they may, in fact, have experienced grade 3 toxicity, which was
not scored, as they were unable to attend their follow-up
appointments. This would introduce an error into the analysis.
As this type of error can only lead to peak toxicity being
under-scored and not over-scored it could introduce bias. There-
fore, to reduce bias at the expense of statistical power, patients
with any missing toxicity scores and a peak score below 3 were
excluded from the analysis. Missing toxicity data were not
imputed as many patients (with full toxicity data) with peak
toxicity of grade 3 were only scored as grade 3 for one week.
We previously investigated the effects of imputing missing toxi-
city measurements, where there were non-consecutive missing
values and found that this made little difference [36]. Patients
with some missing toxicity measurements, but at least one mea-
surement scored as grade 3 were included as they must have a
peak grade of 3 or higher. It should be noted that retaining
patients with missing data, but having a peak grade of 3 skews
the apparent incidences of peak toxicity grades. Unbalanced out-
come classes were accounted for in the statistical modelling, as
described in the manuscript. It should be noted that our
approach to handling missing data might still result in bias.
Where there are missing data, there is always a risk of bias, par-
ticularly where the data are not missing at random. Ultimately,
the performance of the model, including any bias introduced
by the missing data handling strategy, is assessed by external
validation. The external validation dataset had no missing PEG-
dependence data.
Appendix B. Comparison of clinical covariate data between
training and external validation datasets
Appendix C. Pharyngeal mucosa contouring

Fig. C.1 displays an example of the pharyngeal mucosa contour-
ing technique employed.

In addition to the pharyngeal mucosa, irradiation of the cervical
oesophagus can also cause dysphagia [21,47]. Therefore, the
oesophagus, down to the level of the suprasternal notch, is
included in the pharyngeal mucosa organ-at-risk structure. The
cranial extent of the structure is the roof of the nasopharynx and
the caudal extent is the level of the suprasternal notch. Most
patients in the training data cohort were treated with extended
neck positioning, to reduce oral cavity doses. Patients in the exter-
nal validation cohort were treated with a neutral neck position.
Contouring the structure took approximately 5 min per patient.
Appendix D. Spatial dose metrics

For the ‘‘spatial” models, multiple different metrics, encoding
different types of spatial information, were used to represent the
fractional dose distribution. The longitudinal and circumferential
extents of the dose distribution to the pharyngeal mucosa were
extracted by transforming the Cartesian co-ordinates of the pha-
ryngeal mucosa structure into cylindrical co-ordinates, with the
long axis in the superior-inferior direction. Binary masks were gen-
erated with thresholds at each fractional dose level from 20 cGy to
260 cGy in 20 cGy intervals. For each binary mask, the longitudinal
extent was calculated by summing the number of axial slices con-
taining a 1 and multiplying this by the slice thickness. The circum-
ferential extent was calculated by determining the maximum
angle subtended in the axial plane by the binary mask, with the
angle measured from the centre of mass of the pharyngeal mucosa.
The absolute longitudinal and circumferential extents were nor-
malized to the entire length (by dividing by the length of the pha-
ryngeal mucosa OAR and converting to a percentage) and



Fig. C1. Axial (left), sagittal (top right) and coronal (bottom right) views of an example of the pharyngeal mucosa structure used.
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circumference (by dividing by 360 degrees and converting to a per-
centage) of the pharyngeal mucosa. It should be noted that the
length and circumference could alternatively be characterized by
the minimum or mean extent for each binary mask. However,
due to the nature of the pharyngeal mucosa dose distributions
for head and neck radiotherapy patients these are very similar to
the maximum extent (data not shown).

This approach differed from other methods used to characterize
the spatial distribution of the dose to other tubular organs, such as
2D dose-surface maps for the rectum [48,49]. The reasons for this
were twofold. Firstly, the pharynx is a straight rigid structure
(although there could be some deformation anteriorly), unlike some
other tubular organs, like the rectum, which are more tortuous.
Therefore, more sophisticated methods that account for this curva-
ture in construction of the dose-surface maps would not be
expected to offer any significant improvement in the accuracy of
the spatial description of the dose distribution, compared with our
pragmatic approach. Secondly, the pharynx is not a simple tubular
shape, but contains ‘‘internal structure”, such as the uvula and glos-
soepiglottic fold. Hence, it is not trivial to ‘‘unwrap” it into a 2Dmap.

3D moment invariants, gabc [25] describing the spatial distribu-
tion of the dose were calculated using the expression

gabc ¼ labc=l
aþbþc

3 þ1
000 ð1Þ

where

labc ¼
X

x

X

y

X

z

jðx� xÞjaðy� yÞbðz� zÞcDðx; y; zÞIðx; y; zÞ ð2Þ

where x, y and z are the voxel coordinates, D(x,y,z) is the dose
delivered to the voxel with coordinates ðx; y; zÞ, Iðx; y; zÞ is an iden-
tity function, which takes a value of 1 if the voxel belongs to the
OAR and 0 if it does not, and ðx; y; zÞ is the centre of gravity of
the OAR. The moments are translational and scale invariant. The
left-right symmetry is accounted for such that the moments in
the left-right direction describe how lateralized or centralized
the dose is. Moments describing the centre of mass (g001, g010,
g100, g011, g101, g110, g111), spread (g002, g020, g200) and skewness
(g003, g030, g003) of the dose distribution in the three orthogonal
directions (left-right, anterior-posterior, superior-inferior) within
each structure were calculated. These allow for regional variations
in radiosensitivity to be probed. These would manifest as differ-
ences in one or more of the moment invariants between patients
who experienced severe mucositis and those who did not. The dose
metrics were used as covariates in the statistical modelling.

The software, to extract the planned dose distributions to the
pharyngeal mucosa from the DICOM data and compute the frac-
tional DVHs and spatial dose metrics, was developed using the
Python version 2.7.9 programming language [50] and the NumPy
version 1.9.2 [51], SciPy version 0.15.1 [51], Matplotlib version
1.4.3 [52], Seaborn version 0.6.0 [53] and PyDicom version 0.9.9
[54] modules.

Appendix E. Machine learning methods

All features were transformed to standardized scores (mean = 0,
standard deviation = 1) to avoid scale-related feature dominance.
Three different types of classification model were trained: penal-
ized logistic regression (PLR) [55], support vector classification
(SVC) [56] and random forest classification (RFC) [57]. The models
all penalize complexity to prevent overfitting due to the high num-
ber of covariates per toxicity event. We have previously discussed
these techniques and their advantages over ‘‘conventional” uni-
variable and multivariable logistic regression models in NTCPmod-
elling [36]. Two different versions of each of the three types of
model were generated. One with ‘‘standard” dose covariates,
describing the dose-distribution using the DVH, and the other with
‘‘spatial” dose covariates, describing the dose distribution using the
DLH, DCH and 3Dmoment invariants. During model fitting the out-
come classes, severe and non-severe dysphagia, were weighted
inversely proportional to the class frequencies in the training data
to account for the fact that the frequencies of the outcomes were
unbalanced. Model hyper-parameter tuning was carried out using
a cross-validated grid search with shuffled stratified cross-
validation (with 80/20 training/test split) with 100 iterations. The
possible hyper-parameters over which the grid-searchers were
performed were:

� PLR: regularization = {LASSO (L1), ridge (L2)}; inverse regular-
ization strength (C) = {0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}.

� SVC: kernel = {linear, radial basis function}; C = {0.0001, 0.001,
0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}; kernel coefficient for radial
basis function = {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0,
1000.0}.



Fig. F1. Correlation matrix of the model variables. The colour scale shows the Spearman correlation coefficients between the model covariates. definitiveRT – definitive
radiotherapy (versus post-operative radiotherapy); indChemo – induction chemotherapy; noConChemo – no concurrent chemotherapy; cisCarbo – one cycle of cisplatin
followed by one cycle of carboplatin; independentValidation – patients included in external validation cohort and not used for model training or internal validation; Cx –
normalized circumference of pharyngeal mucosa receiving x cGy of radiation per fraction; Lx – normalized length of pharyngeal mucosa receiving x cGy of radiation per
fraction; Vx – normalized volume of pharyngeal mucosa receiving x cGy of radiation per fraction; etax – 3D moment invariants (described in Appendix D); severe acute
dysphagia – peak acute dysphagia severity (non-severe = 0, severe = 1).
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� RFC: number of estimators = 1000; maximum depth = {5, 10, 15,
20}; maximum features = {number of features, number of fea-
tures/2, square root of number of features}.

To address the first aim, the generalizability of the models to
correctly predict dysphagia severity for ‘‘unseen” patients was
measured through internal and external validation. Internal valida-
tion used a nested shuffled stratified cross-validation, with 80/20
training/test split. Covariate transformation to standardized scores
and hyper-parameter tuning with a 5-fold cross-validated grid
search with 100 iterations, were nested within the internal valida-
tion cross-validation to give unbiased error estimates. For external
validation NTCP was calculated for each of the 90 external valida-
tion patients, using the models generated with the training data,
and compared with the known PEG-insertion data. The external
validation was bootstrapped with 2000 replicates.

Predictive performance was assessed, using several metrics, on
internal and external validation. The area under the receiver
operating characteristic curve (AUC) was used to measure discrim-
inative ability for model training and validation. Log loss [58] was
calculated to assess the model probability estimates and the Brier
score [59] was calculated to evaluate the overall model perfor-
mance. Model calibration was assessed, using the slope and inter-
cept of a logistic regression model of the actual toxicity outcomes
against the predicted probabilities of severe dysphagia [60,61]. Fol-
lowing external validation, the best model was updated for the
Washington University patients with PEG-dependence outcome
data by recalibrating it using logistic regression (logistic calibra-
tion) [62]. This improves model calibration, but does not affect dis-
crimination. More complex model updating was not attempted due
to the relatively small size of the external validation cohort [63].

To address the second aim of establishing associations between
the model covariates and severe dysphagia, the feature importance
values for each covariate in the RFC models were bootstrapped
with 2000 replicates. We have previously determined this



Fig. G1. Bootstrapped feature importance values for a RFC model containing all of the covariates considered in the study. The whiskers indicate the 95 percentile confidence
intervals.
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approach to provide a more interpretable understanding of the
relationship between the RT dose distribution and toxicity than,
the conventionally used, logistic regression, in the context of corre-
lated dose metrics [36]. The feature importance is the total
decrease in node impurity, weighted by the probability of reaching
that node, approximated by the proportion of patients reaching
that node, averaged over all of the trees in the ensemble [57]. Lar-
ger values correspond to more important features. The importance
values of all the covariates sum to 1. The Pandas version 0.18.0 [64]
and Scikit Learn version 0.17 [65] Python modules and val.prob.ci.2
[66] R package were used for statistical analysis.
Appendix F. Correlation matrix

Fig. F.1 shows the correlation matrix of the covariates and out-
come variables included in the study.
Appendix G. Combined dose-volume and spatial dose metrics
feature importance

Fig. G.1 displays the feature importance values for a RFC model
including both the dose-volume and spatial dose metrics.

For equivalent dose levels the volume of pharyngeal mucosa
had higher feature importance than the length or circumference.
For completeness, the discriminative ability of this model was
measured on internal and external validation in the same manner
as for the other models (described in the manuscript). The mean
internal validation AUC = 0.73 (s.d. = 0.07) and external validation
AUC = 0.75 (95 percentile confidence intervals = 0.64–0.85) for this
model.
Appendix H. Potential applications of the model

A potential application, for institutions operating a prophylac-
tic, rather than reactive, approach to PEG insertion, would be to
use the model to exclude a subset of patients, at low risk of PEG-
dependence, from receiving this prophylactic intervention. This
may result in improved long-term swallowing outcomes for these
patients, as early reliance on PEG feeding has been associated with
poorer long-term swallowing function in some [67,68] studies.
Other potential applications include treatment plan or regimen
comparison, using the model to calculate and compare the proba-
bilities of a patient experiencing severe acute dysphagia with alter-
native treatment plans. Alternatively, the model could be directly
used in treatment plan optimisation in place of physical dose con-
straints [69], for informing treatment modality selection [8] and
isotoxic dose escalation, in a similar manner to approaches being
evaluated in lung RT [9]. We recommend the use of decision curve
analysis [70] when determining the utility of a prediction model
for individualized clinical decision-making for a specific
intervention.

Appendix I. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ctro.2017.11.009.
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