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ABSTRACT Microbial communities such as swarms or biofilms often form at the interfaces of solid substrates and open fluid
flows. At the same time, in laboratory environments these communities are commonly studied using microfluidic devices with
media flows and open boundaries. Extracellular signaling within these communities is therefore subject to different constraints
than signaling within classic, closed-boundary systems such as developing embryos or tissues, yet is understudied by comparison.
Here, we use mathematical modeling to show how advective-diffusive boundary flows and population geometry impact cell-cell
signaling in monolayer microbial communities. We reveal conditions where the intercellular signaling lengthscale depends solely
on the population geometry and not on diffusion or degradation, as commonly expected. We further demonstrate that diffusive
coupling with the boundary flow can produce signal gradients within an isogenic population, even when there is no flow within
the population. We use our theory to provide new insights into the signaling mechanisms of published experimental results, and
we make several experimentally verifiable predictions. Our research highlights the importance of carefully evaluating boundary
dynamics and environmental geometry when modeling microbial cell-cell signaling and informs the study of cell behaviors in
both natural and synthetic systems.

SIGNIFICANCE Microbial communities in natural environments and microfluidic devices are often exposed to open
boundaries and flows, but models used to characterize diffusive signaling in such systems often ignore how device geometry,
boundary conditions, and media flow influence signaling behavior. We demonstrate how the effective signaling capacity of
these communities can be shaped by population geometry and advective-diffusive boundary flow in quasi-2D environments.
Our approach provides a general framework to understand and control advection-reaction-diffusion systems—and their
interactions with cellular signaling networks—in both natural and synthetic environments.

INTRODUCTION
Diffusive signaling coordinates multicellular processes from
embryogenesis and tissue development (1) to microbial quo-
rum sensing (2–6). In the classical picture of diffusive sig-
naling, the diffusible components are confined to the vicinity
of the cells, either by external barriers such as an embryonic
envelope, or by the cell membranes themselves in the case of
direct cell-to-cell molecular exchange. In these cases, global
signaling properties are determined by basic transport param-
eters such as the diffusivity of the signaling molecule or the
speed of advective flow within the cell population (7).

However, in other cases, the diffusible components are
free to escape at the population boundaries, or are otherwise
affected by properties of the surrounding medium such as

fluid flow. These cases include microbial communities such
as biofilms or swarms, whose boundaries are usually open
and dynamic, and which often form at the interfaces of solid
substrates and fluid flows (8). In such environments, responses
at the macroscopic (population) level depend on both the fea-
tures of the domain in which the cells grow and the dynamics
of the constituent cells. In particular, open boundaries can
significantly impact signaling behavior within the commu-
nity. Such impacts include modulation of signaling depth and
spatial signaling profiles (9), as well as the challenges that
signaling systems face when trying to respond to time-varying
flows in a spatiotemporally robust manner (8, 10). Despite the
importance of these impacts, signaling in open geometries has
been understudied relative to signaling in closed geometries.
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As we will show, open geometries can induce counterintuitive
signaling characteristics.

Laboratory experiments aimed at characterizing signaling
in microbial communities often rely on microfluidic devices.
Such experiments allow researchers to characterize the be-
havior of spatially extended systems, thereby facilitating the
design of microbial consortia that maintain desired popu-
lation fractions (11) or produce emergent spatiotemporal
patterns (12). Here signaling provides the necessary intercel-
lular communication pathway to coordinate responses and
achieve population-level phenotypes. In typical microfluidic
experiments, cells are forced to grow in a monolayer, thereby
allowing for imaging of large populations at high resolu-
tion. Such imaging capability facilitates the investigation of
consortia-scale spatiotemporal dynamics, emergent collective
behavior, and nematic effects (13, 14). Importantly, many
microfluidic devices employ open boundaries between the
cell population and the surrounding fluid in order to supply
media to cells and remove waste products and excess cells.
Open boundary geometries can strongly impact the dynamics
of growing microbial collectives and therefore place such
microfluidic devices into the same understudied paradigm as
the aforementioned biofilms and swarms.

Here, we use mathematical modeling to investigate the
effects of open, advective boundaries on cell-cell signaling
within a bacterial monolayer. Surprisingly, in contrast to the
closed-boundary case, we find that the spatial extent of sig-
naling from a source cell does not depend on the diffusion
coefficient, but rather depends entirely on the population geom-
etry. When the signal can degrade, we find that the signaling
extent is determined by the minimum of the geometric length-
scale and the classical lengthscale set by the ratio of diffusion
to degradation. Further, we find that flow at the boundary can
introduce signal gradients within the population—even if flow
is absent within the population itself—due to the diffusive ex-
change of signaling molecules with the boundary region. We
compare our results to published data on bacterial monolayers
in a microfluidic device that signal via a quorum-sensing

factor.

RESULTS
We consider a two-dimensional continuum model of bacteria
in a monolayer (Fig. 1A). Such monolayer configurations are
typical of the leading edge of growing colonies or biofilms (15–
17) and are often imposed by thin cell-trapping regions in
microfluidic devices (4, 5, 9) (Fig. 1B). To investigate bound-
ary effects, we confine the monolayer to a rectangle with
width F and height !. These parameters can be thought of as
the characteristic lengthscales of a natural population, or as
the precise dimensions of the rectangular trapping region in a
microfluidic device. We specify the boundary conditions in
detail in the following sections.

To investigate intercellular signaling, we suppose that cells
secrete a molecule at a rate U that can diffuse with coefficient
� and degrade with rate W. Secretion of diffusible molecules
is a ubiquitous signaling strategy in bacteria, employed in
natural functions such as quorum sensing (18, 19), and probed
or engineered in microfluidic experiments (4, 5, 20). In the
following sections, we investigate the effects of open bound-
aries and fluid flow on the properties of such signaling in
steady state.

Open boundaries make the signaling
lengthscale independent of diffusion
We first investigate the spatial extent of signaling from a given
source cell, without flow;wewill consider flow in a subsequent
section. To investigate the spatial extent of signaling, it is often
convenient to consider some cells as “senders” of the signaling
molecules and other cells as “receivers.” For example, in a
system with closed boundaries, such as a developing embryo,
signaling molecules are “sent” from one end of the embryo
and “received” by cell nuclei in the bulk of the embryo (7).
Similarly, in microbial communities, often one subpopulation
of cells secretes a diffusible signal that a second subpopulation
receives, as has been realized and studied in microfluidic
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Figure 1: We model bacteria growing in a spatially extended microfluidic device using a continuum framework. (A) Top view
of the device. Cells are confined to a thin trapping region T of width F and length !, wherein they grow in a monolayer. The
trapping region interfaces with two three-dimensional flow channels, an upper flow channel F+ and a lower flow channel F−.
The boundaries between the trapping region and the flow channels are open and therefore subject to flow effects. (B) Side view
of the device. The trapping region has cross-sectional area �. Flow channels each have cross-sectional area � 5 .
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experiments (9, 21).
In the case of a developing embryo, the classic synthesis-

diffusion-clearance model (7) predicts that the signal will
establish an exponential concentration profile in steady state.
With molecular diffusion coefficient � and degradation rate
W, this profile will have a lengthscale _ =

√
�/W, given that

the system is wide (F � _). However, with open boundaries,
molecules can leave the system not just by degrading but also
by diffusing across the boundary. It is thus unclear what effect
open boundaries will have on the signaling lengthscale.

To address this question, we consider the sender-receiver
system shown in Fig. 2A, where cells in the left half of the
trapping region T (G < 0) produce the diffusible signal, and
cells in the right half (G ≥ 0) do not. The signal concentration
2(G, H) therefore obeys the diffusion equation with production
rate U,

¤2 = �∇22 + U[1 − \ (G)], (1)

where the Heaviside function \ (G) ensures that signal pro-
duction only occurs for G < 0. Because we are interested
in open boundaries, where molecules can be lost by diffu-
sion, degradation is not required for 2 to reach steady state.
Signaling molecules often have a large half-life, and are not
absorbed into microfluidic device material (22). Therefore,
we neglect degradation here, and we consider its effects in the
next section.

Eq. (1) does not capture diffusion of signaling molecules
through the cell membrane, but rather describes the dynamics
of signaling molecule concentration in extracellular space.
A more detailed model would include separate PDEs for
intracellular and extracellular compartments coupled via dif-
fusion through the cell membrane. However, here we capture
the combined effects of molecule production and secretion
into the extracellular space with a single rate, U. Eq. (1)
then describes diffusion of signaling molecules within the
extracellular space.

Eq. (1) also neglects cell growth. We are interested in
the diffusion of molecules over distances ! on the order of a
hundred microns, with diffusion coefficient � on the order of
hundreds of microns squared per second. We therefore neglect
cell growth because the typical diffusion timescale !2/� is
tens of seconds, which is much smaller than the typical growth
and division timescale of tens of minutes to hours.

To determine the effect of open boundaries, we assume
that the upper and lower boundaries (H = ±!/2) between
the trapping region and the flow channels are absorbing
with respect to the signaling molecule, so that the signal
concentration vanishes there:

2(G,±!/2) = 0. (2)

We will see later that absorbing boundary conditions are
appropriate if we assume the flow channels have large cross-
sectional dimensions, an assumption we make for our sender-
receiver analysis. Since we are modeling a wide system
(F � !), we take F → ∞. A sender-receiver system of

precisely this type (with open boundaries at H = ±!/2 and
with F � !) was created in microfluidic experiments in
previous work (9). We compare our predictions to these
experiments in the Discussion.

Far from the sender cells, the signal concentration must
vanish:

2(∞, H) = 0. (3)

Far from the receiver cells, the concentration must become
independent of G. The diffusion equation there reads ¤2 =
�m2

H2 + U, which in steady state and with Eq. (2) is solved by

2(−∞, H) = U!
2

�
5 (H), with 5 (H) = 1

8
− H2

2!2 . (4)

With the four boundary conditions in Eqs. (2)–(4), we solve
Eq. (1) in steady state by separating variables and ensuring
continuity of the solution and its derivative at the sender-
receiver interface (Appendix A). The result is

2(G, H) = U!
2

�

{
5 (H) −∑∞

==0 0=4
@=G/! cos(@=H/!) G < 0∑∞

==0 0=4
−@=G/! cos(@=H/!) G ≥ 0,

(5)
where 0= ≡ 2(−1)=/@3

= and @= ≡ c(2= + 1). The signal
concentration given by Eq. (5) is shown in Fig. 2B. The
concentration vanishes at the open boundaries and decays
across the sender-receiver interface.

The signaling lengthscale is set by the decay length of the
concentration profile in the right half (G ≥ 0) of the trapping
region. The decay length is obtained by integrating the profile,
normalized by its value at the interface (G = 0). Doing so
along the midline (H = 0), we obtain a measure of signaling
depth,

Λ =

∫ ∞

0
3G
2(G, 0)
2(0, 0) =

:!

c
, (6)

where : ≡ c(∑∞==0 0=/@=)/
∑∞
=′=0 0=′ ≈ 1.021. Eq. (6) thus

shows that the signaling lengthscale Λ depends only on !, the
height of the trapping region between the two open boundaries.
Surprisingly, it is independent of the diffusion coefficient, �.
In fact, the lack of a diffusion-dependent lengthscale is already
apparent in Eq. (5), where we see that � factors out of the
solution and is absent from the exponential G-dependence.
Thus the diffusion coefficient affects the overall amplitude
of the signal, but not how it decays with distance from the
sender-receiver interface.

The previous observations elucidate the mechanism be-
hind the diffusion-independence of the signaling depth. When
diffusion increases, the amplitude of the profile decreases, in
both open and closed systems, as diffusion spreads the signal-
ing molecules across space. In closed systems, this spreading
leads to an increased signaling lengthscale as higher diffusion
allows molecules to travel farther from the source. However, in
open systems, increasing the spread of molecules across space
also increases the rate at which they cross the open boundaries.
Molecules that would have diffused farther from the source if
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Figure 2: Signaling lengthscale in a “sender-receiver” setup. (A) Cells on the left (orange) secrete a diffusible signal, whereas
cells on the right (blue) do not. (B) Steady-state concentration profile with no signal degradation (Eq. (5)). (C) Signal profile at
the midline (H = 0) with degradation rate W (Eq. (9)), characterized by diffusion lengthscale _ =

√
�/W. (D) Signaling is limited

by the minimum of _ and :!/c, where ! is the lengthscale of the trapping region (see A) and : ≈ 1.
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boundaries were closed are the ones that are more likely to
be lost. In systems with open boundaries, the two opposing
effects of signal loss across the open boundaries and signal
diffusion cancel exactly, so that the signaling lengthscale is
independent of diffusion.

With degradation, the signaling lengthscale is
bounded from above by the geometry
Degrading enzymes can introduce active degradation in mi-
crobial populations. For example, expression of AiiA lac-
tonase can significantly accelerate the degradation of signal-
ing molecules inside bacteria (23), which can translate to
an effective extracellular molecule loss for sufficiently fast
diffusion across the membrane. Moreover, extracellular signal
degradation can be induced and controlled in engineered
microbial consortia (6, 24).

To examine how degradation impacts signaling in open
geometries and to more directly compare the behavior of
our model to that of the closed-boundary synthesis-diffusion-
clearance model, we introduce degradation with rate W into
Eq. (1):

¤2 = �∇22 + U[1 − \ (G)] − W2. (7)

The solution far from the receiver cells generalizes from
Eq. (4) to

2(−∞, H) = U!
2

�
� (H), � (H) = _2

!2

[
1 − cosh(H/_)

cosh(!/2_)

]
,

(8)
where _ =

√
�/W is the closed-boundary diffusion lengthscale.

We use 2(−∞, H) as a boundary condition for Eq. (7), together
with the boundary conditions given in Eqs. (2)–(3). Solving
Eq. (7) using the same approach as in the previous section
(Appendix A), we obtain

2(G, H) = U!
2

�

{
� (H) −∑∞

==0 �=4
G/ℓ= cos(@=H/!) G < 0∑∞

==0 �=4
−G/ℓ= cos(@=H/!) G ≥ 0,

(9)
where �= = 2(−1)= (ℓ=/!)2/@= and ℓ= = !_/

√
@2
=_

2 + !2.
Note that in the zero-degradation limit (_ � !), we have
� (H) → 5 (H), ℓ= → !/@=, �= → 0=, and Eq. (9) reduces to
Eq. (5), as expected.

The solution given by Eq. (9) is shown in Fig. 2C, where
we see that the signal penetrates more deeply into the receiver-
cell population as _ increases, but that the signaling depth
eventually saturates. Indeed, with degradation the penetration
depth of the signal defined in Eq. (6) becomes

Λ =

∑∞
==0 �=ℓ=∑∞
=′=0 �=′

→
{
:!/c _ � !

_ _ � !,
(10)

where the second case follows from the fact that ℓ= → _

for _ � !. Eq. (10) is plotted in Fig. 2D. We recover the
diffusion-independent result given by Eq. (6) in the limit of

small degradation, _ � !. In this limit, signal loss due to
diffusion into the flow channels dominates over signal loss
due to degradation. When degradation is strong, _ � !,
signaling depth approaches the closed-boundary lengthscale,
_. In this limit, signaling molecules typically degrade before
they diffuse into the flow channels. Overall, we have

Λ ≤ min{_, :!/c}, (11)

a bound that reflects the influence of both degradation and
open boundaries on signaling depth.

Flow outside the population introduces signal
gradients within the population
Thus far we have considered the effects of open boundaries, but
not fluid flow in the boundary regions. Surrounding flows are
common in natural settings (8, 10), and flow is often desired
or operationally necessary in channels bounding the trapping
region in a microfluidic device (25, 26). To investigate the
effects of boundary flow on signaling in a bacterial population,
we return to the simplest case of a homogeneous population (all
cells secrete the signal) with no signal degradation (Fig. 3A).
We introduce flow at a constant velocity E in the G-direction
within the flow channels F± that lie outside the upper and
lower boundaries of the trapping region (H = ±!/2). Because
flow breaks the translational symmetry of the signal profile in
the G-direction, we assume the width of the trapping region, F,
is finite. Specifically, we allow the trapping region to extend
from G = 0 to G = F and impose reflective conditions at these
boundaries:

mG2(0, H) = mG2(F, H) = 0. (12)

We will see later that the signal profile in the flow channels
(and thus the trapping region) is largely insensitive to the
boundary conditions at these ends.

Sincewemodel the trapping regionT as a two-dimensional
domain, it is convenient to average over the I-direction in the
flow channels. Indeed, this type of dimension reduction is of-
ten performed when studying pollutant transport in rivers (27)
or shallow-water flows (28). Let 1± (G, H) denote the concentra-
tion of signaling molecule in F±, averaged over the I-direction.
The dynamics in the trapping region and flow channels obey

¤2 = �∇22 + U, (13)
¤1± = �∇21± − EmG1±, (14)

where U is the signal production rate and E is the flow velocity.
Although cells can exit the trapping region and enter the flow
channels, we assume that signal production in the channels is
negligible. We also assume that there is no flow in the trapping
region. However, the trapping region and the flow channels
are coupled by diffusion of molecules across the boundaries.
Correspondingly, we impose continuity of the profiles at the
boundaries,

2(G,±!/2) = 1± (G,±!/2), (15)
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Figure 3: Effects of boundary flow. (A) Rightward flow is imposed at the upper and lower boundaries. (B) The flow induces a
concentration gradient not just at the boundaries (long edge), but also within the cell population (surface). (C) The gradient
is largest for intermediate flow strength b and small flow-channel capacity Θ. B and C are plots of Eq. (19). Parameters are
b = 100, Θ = 1, and aspect ratio q = F/! = 20 in B; and q = 20 in C. Plot in B corresponds to blue circle in C.
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as well as their derivatives, mH2 |H=±!/2 = mH1± |H=±!/2.
To solve Eqs. (13) and (14), we assume that whereas the

concentration in the flow channels is heterogeneous in the G-
direction due to the flow, it is homogeneous in the H-direction,
so that 1+ (G, H) = 1− (G, H) = 1(G). Such an approximation
is valid when the length of the flow channels is an order of
magnitude larger than their width (27). Because 1 no longer
depends on H, the net flux of signal into the flow channels
can no longer be accounted for by enforcing continuity of
the H-derivative at the boundaries. Instead, this flux appears
as an effective source term in Eq. (14) whose magnitude is
determined by flux balance (the validity of this argument will
be addressed post hoc at the end of this section). Specifically,
in a slice of width ΔG, the flux of signaling molecules out of
the trapping region, U�ΔG, must equal the flux into the two
flow channels, Û(2� 5 )ΔG, where � and � 5 are the cross-
sectional areas of the trapping region and each flow channel,
respectively (Fig. 1B). Thus, the effective source term is
Û = U/2Θ for the area ratio Θ = � 5 /�, which we refer to as
the flow-channel capacity. Correspondingly, Eq. (14) becomes

¤1 = �m2
G1 − EmG1 + U/2Θ. (16)

We impose absorbing boundary conditions on the flow chan-
nels at either end,

1(0) = 1(F) = 0, (17)

which corresponds to rapid removal of signaling molecules
there. In Appendix B, we show that for long flow channels with
sufficiently fast flow, the profile 1(G) in the bulk is insensitive
to the boundary conditions.

We solve Eqs. (13) and (16), with the boundary conditions
in Eqs. (12), (15), and (17), using separation of variables
(Appendix C). The result is

1(G) = U!
2

�

q2

2Θb

(
G

F
− 1 − 4 b G/F

1 − 4 b

)
, (18)

2(G, H) = U!
2

�

[
5 (H) +

∞∑
==0

�= cos
(=cG
F

)
cosh

(
=cH

q!

)]
,

(19)

where

�0 =
q2

2Θb

(
1
2
− 1
b
− 1

1 − 4 b

)
, (20)

�=>0 = −
q2

Θb
sech

(
=c

2q

) {
1 − (−1)=
=2c2 + b [1 − (−1)=4 b ]

(=2c2 + b2) (1 − 4 b )

}
.

(21)

Here, 5 (H) is as in Eq. (4), b = EF/� is the Péclet number
of the flow channel (a dimensionless determinant of the flow
strength relative to diffusion), and q = F/! is the aspect
ratio of the trapping region. Note that for either Θ → ∞ or
b → ∞, Eq. (18) reduces to 1(G) = 0, and Eq. (19) reduces

to Eq. (4) because �= → 0. The reduction occurs because
in either of these limits—very large flow channels or very
fast flow, respectively—molecules leaving the trapping region
never return, and the flow channel becomes an absorbing
boundary.

Eqs. (18) and (19) are shown, for representative values
of b, Θ, and q, in Fig. 3B: 2(G, H) is the surface and 1(G)
is the long edge. We see that the concentration increases
in the flow channels along the flow direction. For b � 1,
the increase in 1(G) is linear in G, sufficiently far from the
boundaries at G = 0 and G = F (Appendix B). We see that
the concentration increases not only in the flow channels
(the edge), but also within the cell population (the surface).
Thus, diffusive coupling between the flow channels and the
trapping region induces a signal gradient in cell population,
even though the population itself is not subjected to the flow.

To get a sense of the magnitude of the gradient within the
cell population, we plot in Fig. 3C the derivative mG2(G, H),
scaled by the characteristic lengthscale F and concentration
value U!2/�, and evaluated at the midpoint of the trapping
region, G = F/2 and H = 0, as a function of the flow strength b
and the flow-channel capacity Θ. We see that the gradient van-
ishes in the two absorbing-boundary limits mentioned above
(Θ→∞ and b →∞). On the other hand, the gradient can be
large for flow of intermediate strength and channels of limited
capacity. For example, the case plotted in Fig. 3B, correspond-
ing to the blue circle in Fig. 3C, has parameters estimated
from recent microfluidic experiments with E. coli (9), and we
see that the gradient is substantial. We comment further on
this point in the Discussion.

Our solution Eq. (19) relies on the validity of the effective
source term U/2Θ in Eq. (16). This term is a local approxima-
tion in G for the rate of increase of flow channel concentration
due to diffusive coupling with the trapping region under a
flux balance argument. Our use of the effective source term
is therefore an approximation, which we validate by com-
puting the transverse flux, −� × mH2 × XΔG, evaluated at the
boundary H = ±!/2, where the trap depth is X = �/!. Indeed,
considering only the term 5 (H) in Eq. (19), we have

−� mH
U!2

�
5 (H) (�/!)ΔG = (U�ΔG)/2 (22)

at this boundary location, which after volume scaling is equiv-
alent to the effective source term U/2Θ. Thus, the additional
flux due to the series solution in Eq. (19) is a residual flux
that violates our original assumption regarding the validity of
the effective source term.

To simplify our model, enforce the flux boundary coupling,
and obtain a prediction that the concentration gradient within
the cell population is linear in G in the bulk (away from the
left and right boundaries), we replace the series solution in
Eq. (19) with the linear flow channel approximation

1(G) = U!
2

�

q2

2Θb
G

F
=

1
2Θ

UG

E
. (23)
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(This is Eq. (43) from Appendix B.) This enforces the flux
balance approximation since the diffusion operator in Eq. (13)
satisfies ∇2 (2(G, H) + 1(G)) = ∇22(G, H) when 1 is linear. The
resulting 2(G, H) is quadratic in H and linear in G:

2(G, H) = U!
2

�

[
5 (H) + q2

2Θb
G

F

]
=
U!2

�
5 (H) + 1

2Θ
UG

E
.

(24)
Here 5 (H) is given by Eq. (4). Note that this simplification is
self-consistent in that it satisfies our flux boundary coupling
assumption.

Eq. (24) suggests that in the bulk (away from the left
and right boundaries), boundary flow induces a linear (in G)
gradient within the cell population. Fig. 3B is consistent with
this prediction.

DISCUSSION
We described and analyzed a tractable model to explain
how advective-diffusive boundary conditions shape signaling
response in spatially-extended microbial communities. We
assumed bacteria are trapped in a monolayer within a region
bounded by two adjacent channels through which fluid flows.
In the limit of zero flow speed with large, absorbing channels,
we found that the signaling lengthscale is determined (or, with
degradation, bounded) by the monolayer geometry, not the
diffusion coefficient, because diffusion disperses molecules
but also hastens their loss at the boundaries.We also found that
flow at the boundaries can induce significant signal gradients
in the population and that this effect is most pronounced with
small flow channels at intermediate flow speeds. Although
we based the model on a microfluidic trap setting, a similar
approach can be used to describe more general situations.
For instance, a thin bacterial film growing in a pipe could be
modeled by assuming that an adjacent channel lies above a
layer of cells.

Our results could have significant impact on quorum
sensing in microbial populations. A principal function of
quorum-sensing (QS) circuits in natural systems is the detec-
tion of a quorum of cells that triggers induction of a gene
network. For example, a QS signal can trigger the production
of proteins that release the extra-cellular matrix so that cells
move to a mobile state under starvation (2). Pai and You have
described this as the QS circuit’s sensing potential, which
depends on the local environment and a threshold level of
signaling molecule sensed by the cell (3). Our results can be
used to generalize this sensing potential framework to include
environmental influence on QS activation. We did not model
cellular responses to the QS signal, but assumed that cells
that express the signal do so uniformly. Bacteria can respond
to QS signals in complex ways, however. Dalwadi and Pearce
have used a model similar to the one we analyzed to show
that positive feedback can act as a low-pass filter and ensure
a robust collective response to oscillatory flow (8). In their
model the flow passes over the surface of a cell population

trapped in a pocket. Their analytical results are based on the
assumption that diffusion across this surface dominates the
diffusion in the direction of the flow, allowing them to derive
a tractable one-dimensional PDE for the signal concentration
in the direction perpendicular to the flow.

Our model provides several experimentally testable pre-
dictions. First, for bacterial collectives growing in geometries
with open boundaries, chemical signaling depth can be inde-
pendent of the diffusion rate of the signalingmolecule. Second,
when a flow channel borders a bacterial collective, signaling
molecule flux into the flow channel can induce a graded signal
concentration profile there. This graded profile in the flow
channel can induce signaling molecule concentration gradi-
ents within the bacterial collective, even when the bacterial
collective is isogenic. In this way, flow may play a role in
differentiation. These predictions are testable, as bacteria such
as E. coli can be engineered to respond to the presence of
a quorum-sensing signal by producing a fluorescent protein
in a graded manner, or when signal concentration reaches a
threshold.

As a first step in comparing our results to experiments,
we can consider a previous study in which a sender-receiver
system of the type in Fig. 2A was constructed in a microfluidic
device (9). The height of the trapping region was ! = 100
`m, from which Eq. (6) predicts that the signal should extend
for a lengthscale of Λ ≈ !/c ≈ 32 `m. The measured
lengthscale was Λ = 20 `m, which agrees within a factor of
two. The prediction could be refined by considering the effects
of boundary flow (Fig. 3) on the sender-receiver geometry
(Fig. 2), which could conceivably increase the predicted
lengthscale (the experimental parameters F = 2000 `m,
� = 500 `m2/s, E ∼ 25 `m/s, � = 100 `m × 1 `m, and
� 5 = 10 `m × 10 `m give b = EF/� = 100,Θ = � 5 /� = 1,
and q = F/! = 20, as in Fig. 3B). On the other hand, the
fact that cells in the experiment are nematically ordered with
their long axis pointing toward the open boundaries, as in
Fig. 2A (13, 14), could conceivably decrease the predicted
lengthscale because diffusing molecules are subject to steric
barriers more often in the G-direction than in the H-direction.
Even without these refinements, it is encouraging that our
prediction is close to the experimental observation.

Our modeling could be extended, for example to include
diffusion of signaling molecules across the cell membranes.
Currently we assumed that cell-internal and cell-external
signaling molecule concentrations are equal at steady state.
This is tantamount to assuming that the diffusion rate of
signaling molecules through the cell membrane, 3, is infinite.
When 3 is low, however, cross-membrane timescale, which
scales as 3−1, can become important. First, when 0 < 3 <

∞, in steady state cell-internal and cell-external signaling
molecule concentrations will differ in the trapping domain.
This difference will increase as 3 decreases. Second, when the
cell membrane is impermeable (3 = 0), cells will sequester
all of the signaling molecules they produce before said cells
exit the trapping region, resulting in no signaling through the
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extracellular space. This sequestration effect will continue
to limit cell-cell signaling efficacy when 3 > 0, provided
the 3−1 timescale is long relative to other system timescales.
We anticipate that this and other modeling advances can be
included in future work.

APPENDIX A
Here we derive Eq. (9). As mentioned in the main text, Eq. (5)
follows in the limit of no degradation (_ � !).

In the receiver domain (G ≥ 0), the source term U is absent
from Eq. (7). Separating variables as 2(G, H) = - (G). (H),
Eq. (7) in steady state in this domain becomes

m2
G-

-
+
m2
H.

.
=

1
_2 , (25)

where _ =
√
�/W. Because the two terms on the left are

each a function of a different variable, and both sum to a
constant, they must each equal a constant themselves. Calling
the second term’s constant −@2/!2 for some unknown @, we
have m2

H./. = −@2/!2, whose general solution is

. (H) = � sin(@H/!) + � cos(@H/!). (26)

The boundary conditions in Eq. (2) require that � = 0 and
@ = c(2= + 1) ≡ @= for nonnegative integer =. The first term
in Eq. (25) then satisfies m2

G-/- = @2
=/!2 + 1/_2 ≡ 1/ℓ2

=,
whose general solution is

- (G) = �4G/ℓ= + �4−G/ℓ= . (27)

The boundary condition in Eq. (3) requires that � = 0. Thus,
the solution in the receiver domain is

2(G ≥ 0, H) = U!
2

�

∞∑
==0

�=4
−G/ℓ= cos(@=H/!) (28)

for some unknown �=.
In the sender domain (G < 0), the source term U is present

in Eq. (7). We write the steady state solution in this domain
as the sum of a particular solution, which is any function that
satisfies Eq. (7) with U present, and the homogeneous solution,
which satisfies Eq. (7)withU absent. For the particular solution
we use the limit far from the receiver cells, Eq. (8). For the
homogeneous solution, we use Eqs. (26) and (27), where
again � = 0, but in this domain � = 0 to prevent the solution
from diverging as G → −∞. Thus,

2(G < 0, H) = U!
2

�

[
� (H) +

∞∑
==0

�=4
G/ℓ= cos(@=H/!)

]
(29)

for some unknown �=, where � (H) is as in Eq. (8).
Differentiating Eqs. (28) and (29) with respect to G, we

see that continuity of the derivative at G = 0 requires that

�= = −�= for all = due to the orthogonality of the cosines.
Continuity of the solution at G = 0 then requires

2
∞∑
==0

�= cos(@=H/!) = � (H). (30)

The orthogonality of cosines, expressed as∫ !/2

−!/2
3H cos(@<H/!) cos(@=H/!) =

!

2
X<=, (31)

allows us to invert Eq. (30),

�= =
1
!

∫ !/2

−!/2
3H � (H) cos(@=H/!). (32)

Inserting � (H) from Eq. (8) and evaluating the integrals yields

�= =
2(−1)=ℓ2

=

@=!
2 . (33)

This completes the derivation of Eq. (9).

APPENDIX B
Here we show that, for long channels with sufficiently fast
flow, the profile 1(G) in the bulk is linear and insensitive to
the boundary conditions. We will illustrate this point by using
two different choices for the boundary condition at G = F and
showing that the bulk profile is the same linear function of G
for both choices.

The bulk is defined by values of G that are small com-
pared to the size of the system in that direction, F, but large
compared to the characteristic lengthscale of the system. The
characteristic lengthscale is a function of diffusion and flow
speed and consequently required by dimensional analysis to
scale as �/E. Thus, the bulk is defined by �/E � G � F.
Dividing by F and recalling that b = EF/�, this expression
becomes

1/b � G/F � 1. (34)

Defining n = G/F, the two conditions in Eq. (34) become

bn � 1, (35)
n � 1, (36)

respectively. For a bulk regime to exist, the two extremes in
Eq. (34) must be well separated, and therefore we must also
have 1/b � 1, or

b � 1. (37)

Given that b = EF/�, Eq. (37) makes clear that a bulk regime
exists for sufficiently long channels (large F) with sufficiently
fast flow (large E).

In terms of n , Eq. (18) reads

1(G) = U!
2

�

q2

2Θb

(
n − 1 − 4 b n

1 − 4 b

)
. (38)
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Eqs. (35) and (37) allow us to neglect the ones in the numerator
and denominator, respectively, giving

1(G) = U!
2

�

q2

2Θb

[
n − 4 b (n−1)

]
. (39)

Eq. (36) allows us to neglect the n in the exponent, and Eq. (37)
then allows us to neglect the exponential altogether, giving

1(G) = U!
2

�

q2

2Θb
G

F
, (40)

where we have restored n = G/F. We see that 1(G) is a linear
function of G in the bulk.

Eq. (18) satisfies 1(F) = 0, but alternatively we may have
the no-flux boundary condition mG1 |G=F = 0, corresponding,
for example, to a concentration reservoir beyond G = F. The
solution of Eq. (16) that satisfies this condition, along with
1(0) = 0, is

1(G) = U!
2

�

q2

2Θb

(
n + 1 − 4 b n

b4 b

)
, (41)

in terms of n = G/F. Again, Eq. (35) allows us to neglect the
one in the numerator, giving

1(G) = U!
2

�

q2

2Θb

[
n − 4

b (n−1)

b

]
, (42)

and Eq. (36) allows us to neglect the n in the exponent, at
which point Eq. (37) allows us to neglect the exponential term
altogether, giving

1(G) = U!
2

�

q2

2Θb
G

F
, (43)

where we have once again restored n = G/F. Eq. (43) is the
same as Eq. (40), showing that the bulk profile is insensitive
to the choice of boundary condition.

APPENDIX C
Here we derive Eqs. (18) and (19). Eq. (16) in steady state
is solved by directly integrating to find mG1 and integrating
again to find 1(G). The boundary conditions in Eq. (17) set
the integration constants, giving

1(G) = UF

2ΘE

(
G

F
− 1 − 4 b G/F

1 − 4 b

)
, (44)

where b = EF/�. With q = F/!, Eq. (44) becomes Eq. (18).
As in Appendix A, we write the steady state solution to

Eq. (13) as the sum of a particular solution and the homoge-
neous solution. For the particular solution we use Eq. (4). For
the homogeneous solution 20 = - (G). (H), we separate vari-
ables as in Appendix A, but here using sinusoidal functions

in G and exponential functions in H is more conducive to the
boundary conditions. Specifically,

- (G) = � sin([G/F) + � cos([G/F), (45)

. (H) = �4[H/F + �4−[H/F , (46)

for a constant [ that arises from the separation. The boundary
conditions in Eq. (12) require that � = 0 and [ = =c for
nonnegative integer =, respectively. Symmetry in H requires
that � = �. Thus, the steady state solution to Eq. (13) reduces
to

2(G, H) = U!
2

�

[
5 (H) +

∞∑
==0

�= cos
(=cG
F

)
cosh

(=cH
F

)]
,

(47)
for some unknown �=, where 5 (H) is as in Eq. (4). The
boundary condition in Eq. (15) requires

U!2

�

∞∑
==0

�= cos
(=cG
F

)
cosh

(
=c!

2F

)
= 1(G), (48)

where 1(G) is as in Eq. (44), and we have used the fact that
5 (±!/2) = 0. The orthogonality of cosines, expressed as∫ F

0
3G cos

(<cG
F

)
cos

(=cG
F

)
=

{
FX<0 = = 0
FX<=/2 = > 0,

(49)

allows us to invert Eq. (48),

�0 =
�

UF!2

∫ F

0
3G 1(G), (50)

�=>0 =
2�
UF!2 sech

(
=c!

2F

) ∫ F

0
3G cos

(=cG
F

)
1(G). (51)

Inserting 1(G) from Eq. (44) and evaluating the integrals
yields

�0 =
�F

2ΘE!2

(
1
2
− 1
b
− 1

1 − 4 b

)
, (52)

�=>0 = −
�F

ΘE!2 sech
(
=c!

2F

)
×

{
1 − (−1)=
=2c2 + b [1 − (−1)=4 b ]

(=2c2 + b2) (1 − 4 b )

}
. (53)

With b = EF/� and q = F/!, Eqs. (47), (52), and (53)
become Eqs. (19), (20), and (21), respectively.
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