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Abstract
Heterogeneity is a hallmark of cancer whether one considers the genotype of cancerous

cells, the composition of their microenvironment, the distribution of blood and lymphatic

microvasculature, or the spatial distribution of the desmoplastic reaction. It is logical to

expect that this heterogeneity in tumor microenvironment will lead to spatial heterogeneity

in its mechanical properties. In this study we seek to quantify the mechanical heterogeneity

within malignant and benign tumors using ultrasound based elasticity imaging. By creating

in-vivo elastic modulus images for ten human subjects with breast tumors, we show that

Young’s modulus distribution in cancerous breast tumors is more heterogeneous when

compared with tumors that are not malignant, and that this signature may be used to distin-

guish malignant breast tumors. Our results complement the view of cancer as a heteroge-

neous disease on multiple length scales by demonstrating that mechanical properties within

cancerous tumors are also spatially heterogeneous.

Introduction
Cancerous tumors in the breast often present as stiff lumps or lesions. One of the leading
causes for the increased stiffness of these tumors is stromal desmoplasia, a process that leads to
the proliferation of activated fibroblasts and myofibroblasts and the formation of a dense, colla-
gen-rich stroma around the tumor [1, 2]. The increased collagen in turn leads to a stiffer
mechanical response of the stroma. Desmoplasia is also thought to mechanically confine the
tumor causing it to grow along very specific directions (see Fig 1). In particular, it has been
observed that cancerous cells tend to migrate from a milk duct into the surrounding glandular
tissue at locations where the collagen fiber alignment departs from a circumferential orienta-
tion to a radial orientation [3]. As a result the tumor invades the surrounding tissue and grows
around these specific locations. This pattern of growth leads to the characteristic “stellate” or
“spiculated” appearance of cancerous tumors [4]. It also leads to a spatially heterogeneous
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distribution of the stroma and, by extension, a heterogeneous distribution of tissue modulus.
Other factors that contribute to the mechanical heterogeneity of the cancerous tumors include,
functional heterogeneity in cancer-associated fibroblasts (CAFs) [5], which leads to heteroge-
neity in the degree of desmoplasia, and heterogeneity in the mechanical properties of tumor-
associated vasculature and epithelium [6].

Elastography or elasticity imaging [9–11] refers to a variety of techniques to map the stiff-
ness of tissue in-vivo and hence quantify the mechanical heterogeneity of tumors. These tech-
niques rely on imaging tissue while it is mechanically deforming. Tissue motion may be either
directly measured (e.g. phase contrast MR; c.f. [12]) or computed via image processing (e.g.
cross correlation; c.f. [9, 11]. The observed tissue deformation, along with an appropriate math-
ematical model, is then used to estimate the mechanical properties.

Different approaches to elastography may be categorized by the type of imaging used to
measure tissue motion, and the type of mechanical excitation used to cause tissue deformation.
The present study was performed using quasi-static deformation that was measured via ultra-
sound. Fig 2 shows a schematic of the process. The essential features are as follows: An ultra-
sound transducer is held against the patient’s skin and provides real-time sequence of images.
While imaging, a gentle compression is applied to the tissue. Cross correlation of sequential
images provides a measurement of the displacement field within the tissue. Under conditions

Fig 1. Schematic diagram of tumorigenesis in breast cancer (adapted from [7, 8]). (a) Healthy milk duct. (b) Proliferation of tumor cells within the duct is
accompanied by desmoplasia in the extra-cellular matrix. (c) Changes in the morphology collagen fiber bundles from a wavy and tortuous state to a straight
and taut state, and the emergence of a site where the fiber orientation is predominantly radial with respect to the tumor boundary. (d) Invasion of cancer cells
to surrounding glandular tissue from this site. (e) Invasion of the cancer cells to nearby ducts. (f) A fully invasive tumor state. The dashed red curve
represents the envelope of the tumor components that would appear as a region with elevated Young’s modulus.

doi:10.1371/journal.pone.0130258.g001
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of small and relatively rapid (e.g. O(1Hz − 100Hz)) deformation, breast tissue is well modeled
as isotropic incompressible linear elastic solid. In this case, the mechanical response may be
completely characterized by a single material parameter, the Young’s modulus. The displace-
ment field is then used to reconstruct the Young’s modulus distribution using inverse problem
methods. For more details, please see Materials and Methods, below.

Methods
We create in-vivo images of the Young’s modulus of breast tissue with benign and malignant
tumors using ultrasound-based, quasi-static elasticity imaging at a resolution of about 200

Fig 2. Schematic diagram of experimental setup: Ultrasound-based quasi-static elasticity imaging is a compression-basedmethod to evaluate the
mechanical properties of tissue in-vivo. First, an ultrasound transducer is gently pressed into the tissue, while acquiring a sequence of images. These
images are used in a cross-correlation algorithm in order to determine the displacement field within the tissue. This deformation is then used in an inverse
problem to determine the spatial distribution of elastic parameters.

doi:10.1371/journal.pone.0130258.g002
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microns. In this approach ultrasound images of the tumor in-vivo are acquired as the tissue is
slowly compressed to about 10–12% strain. Thereafter, using image cross-correlation, the dis-
placement field within this tissue is determined. Finally an inverse problem is solved to deter-
mine the spatial distribution of material parameters that is consistent with the observed
displacements under the constraint of the equations of equilibrium.

The Radiofrequency (RF) data used in the study reported in this manuscript was collected
for an earlier study conducted from 2002 to 2004. The patient data was anonymized and de-
identified prior to analysis. Our use of this data was given full review and approval by the Uni-
versity of Wisconsin Health Sciences Institutional Review Board. Our study was also compliant
with the Health Insurance Portability and Accountability Act.

In the earlier study, Radiofrequency (RF) echo data were recorded during in-vivo breast
imaging at three institutions: the University of Kansas Medical Center in Kansas City, KS
(approved by the KUMC Human Subjects Committee), Mayo Clinic in Rochester, MN
(approved by the Mayo Foundation institutional review board), and the Charing Cross Hospi-
tal, London, UK (approved by the Riverside research ethics committee, Chelsea &Westminster
Hospital (NHS Trust)). Informed consent was obtained from all enrolled patients.

The patient pool for the study comprised of ten patients with breast tumors selected from
an earlier study [13]. Out of the ten tumors, five were benign fibroadenomas (FAs), and five
were invasive ductal carcinomas (IDCs) as determined by percutaneous (core) or excisional
biopsies.

Breast scanning was performed using Siemens SONOLINE Elegra ultrasound scanners fit-
ted with high-frequency linear array transducers (either VFX135 or 7.5L40, Siemens Health-
care USA Inc., Mountain View, CA). Visual feedback to ensure the quality of radio-frequency
echo data, and therefore the displacement data, was provided by a real-time strain imaging
algorithm [14]. Displacement estimation between successive radio-frequency (RF) echo frames
was performed with a modified block-matching algorithm that improves on the classical
block-matching algorithm by constraining motion continuity using a dynamic programming
technique and thereby reducing large tracking errors [15] (see supplementary videos for B-
mode ultrasound movies and corresponding displacement movies). The size of each block was
approximately 0.5mm × 1mm, and displacement estimates were first obtained on a 0.2mm ×
0.2mm grid. These were then subsampled with quadratic precision onto a 0.12mm × 0.15mm
grid and used for modulus inversion.

The spatial distribution of the elastic modulus was determined by minimizing the difference
between the predicted and measured displacements, measured in a weighted L2 norm [16]. The
predicted displacements were constrained to satisfy the equations of equilibrium for an incom-
pressible linear elastic solid in a state of plane stress. The spatial distribution of the Young’s
modulus was varied until the predicted displacements best matched the measured displace-
ments. The predicted displacement and the Young’s modulus were both represented on the
same 0.12mm × 0.15mm grid used for the measured displacements. The number of grid points
was different for each tumor with an average of around 120 × 160 grid points. Total variation
diminishing (TVD) regularization was used to provide robustness in the presence of noise in
the measured displacements. The same regularization parameter was used for all tumors recog-
nizing that the magnitude of noise in each case was the same. The resulting minimization algo-
rithm was solved using a quasi-Newton algorithm [17] whose computational costs were
reduced by using the solution of an adjoint elasticity problem [18]. The solution of each prob-
lem took about ten minutes on a typical desktop computer with four processors. Since no force
measurements were available, the Young’s modulus distribution was determined up to an
unknown multiplicative calibration factor.
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Results and Discussion
The results for the distribution of the Young’s modulus are shown in Fig 3 for two typical
fibroadenomas (FAs) and in Fig 4 for two typical invasive ductal carcinomas (IDCs). In these
figures we have also shown the corresponding B-mode ultrasound images. First, we note that
all the tumors are observed more clearly in the modulus images, where they stand out as
regions of elevated stiffness. We also observe that modulus distribution within the cancerous
tumors (IDCs) and the surrounding tissue is more heterogeneous when compared to benign
tumors (FAs). Finally, we observe that the cancerous tumors display multiple foci of stiffness
interspersed with softer regions.

For each of the ten patients the tumor margin was determined by using the 50% of peak
tumor modulus contour in the modulus image and the B-mode image. Thereafter the

Fig 3. (A) and (C): B-mode ultrasound images of two typical fibroadenomas. (B) and (D): Corresponding Young’s modulus images generated using elasticity
imaging. The tumor boundary is represented by a black curve that is drawn using 50 modulus value. The modulus distribution within the tumors is relatively
homogeneous and the margins of the tumor are smooth.

doi:10.1371/journal.pone.0130258.g003
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heterogeneity of the modulus distribution within the tumor was quantified using a non-dimen-
sional parameter that is approximately equal to the ratio of the tumor size to the correlation
length of the modulus distribution within the tumor. This is parameter is given by,

H � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
R
OjrEj2dOR
OE

2dO

s
;

where O is the domain within the tumor, A is the area of O, and E(x) is the modulus map (see
the Appendix for a derivation of H). When the correlation length of the modulus distribution
is small compared to the size of the tumor, the tumor is mechanically heterogeneous, and the
value of H is large.

Fig 4. (A) and (C): B-mode ultrasound images of two typical invasive ductal carcinomas. (B) and (D): Corresponding Young’s modulus images generated
using elasticity imaging. The tumor boundary is represented by a black curve that is drawn using 50 peak tumor modulus value. The modulus distribution
within the tumors is heterogeneous and the margins of the tumors are rough.

doi:10.1371/journal.pone.0130258.g004
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The value of this parameter for the five FAs and IDCs is presented in Fig 5. We note that
when compared to the FAs, the value of H for the IDCs is large. This implies that heterogeneity
at this scale is not generically associated with tissue stiffening, but is specific to malignancy.
The value of H for benign lesions was 1.765 ± 0.420, and for malignant lesions it was
2.130 ± 0.285 (Mean ± standard deviation). The difference in the value ofH between benign
and malignant lesions was 0.365 with a 95% confidence interval of [-0.057, 0.788]. Since this
interval includes zero, these results would not be considered statistically significant, even
though the lower limit is quite close to zero. We attribute this to the one outlying fibroadenoma
that has a large value of H (= 2.572). If this sample is removed from our set, then the average
value of H for benign lesions becomes 1.563 ± 0.132 (Mean ± standard deviation), and the dif-
ference in the average value ofH between benign and malignant lesions is 0.567 with a 95%
confidence interval of [0.299, 0.835]. This result would be considered statistically significant.
This sensitivity to the inclusion (or exclusion) of a single sample illustrates that though our
results are promising, they need to be tested on a larger sample set in order to be considered
statistically significant. If we use the value ofH = 1.8 as a threshold of malignancy we could cor-
rectly classify 9 out of 10 lesions. These numbers compare favorably with the current diagnostic
performance of mammography in conjunction with ultrasound [19].

Our results indicate that the distribution of stiffness within and around cancerous tumors is
heterogeneous. This observation is consistent with recent results that suggest subjective obser-
vations of mechanical heterogeneity in tumors can improve the specificity (reduce false posi-
tives) of ultrasound in diagnosing breast cancer [20]. In that study the authors relied on shear-
wave elastography to generate modulus images at a resolution of about 2mm × 2mm. In com-
parison we have used quasi-static elastography, and our resolution is about ten times finer.

Fig 5. Value of the heterogeneity parameter for the five invasive ductal carcinomas (represented by
red squares) and fibroadenomas (represented by green circles). The average value for the IDCs is 2.13
and the average value for the FAs is 1.76. Using H > 1.8 as a criterion for malignancy yields 90% diagnostic
accuracy.

doi:10.1371/journal.pone.0130258.g005
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This allows us to compute a quantitative measure to the mechanical heterogeneity within the
tumor. They are also consistent with recent observations of mechanical heterogeneity in an
excised transgenic mammary mouse tumor model [6]. In this study the spatial variation of
stiffness was determined at a resolution of 0.1mm × 0.1mm using atomic force microscopy
(AFM) and it was observed that tumorigenesis led to significant mechanical heterogeneity.
Taken together with results at the cellular level [5], stromal level [3], and microvasculature [6],
these results round out the picture of mechanical heterogeneity of cancer across multiple length
scales.

Based on the organization of collagen fibers (see Fig 1) malignant tumors would likely dis-
play anisotropic elastic behavior. Indeed, this has already been reported in some studies [21,
22]. However, when solving the inverse problem we have assumed that the tissue is isotropic.
This raises the question whether in our reconstructions anisotropy has been misconstrued as
heterogeneity. Based on or earlier results [23], we believe that this is not the case. In [23], we
considered an anisotropic inclusion embedded in an isotropic medium, and first calculated its
deformation in response to a load. Thereafter, we used this deformation in conjunction with an
isotropic constitutive law, and reconstructed the spatial distribution of elastic parameters. That
is we incorrectly assumed that the material was isotropic. We found that incorrect assumption
lead to an error in the value of the reconstructed elastic parameters but did not introduce any
spurious heterogeneity.

A cancerous tumor is comprised of several components that include cancerous epithelial
cells, tumor microvasculature and the extra-cellular matrix. The resolution of our modulus
images is such that we do not discern the stiffness of each individual component; rather, we
create modulus images of an aggregate of these components. Thus the heterogeneity we
observe may be attributed to the mechanical heterogeneity observed in these components, as
discussed below.

Extra-cellular matrix. It is well known that desmoplastic reaction to cancer leads to the for-
mation of a dense collagen-rich stroma around the tumor that confines the tumor. An increase
in the concentration of collagen leads to an increase in the stiffness of tissue. As a result cancer-
ous tumors are clearly seen as regions of elevated modulus in elastic modulus images. Further,
at some specific sites in the stroma the alignment of the collagenous fibers is altered from a cir-
cumferential to a radial orientation and the tumor cells migrate and invade the surrounding tis-
sue from these sites [3]. Consequently, the tumor and the stroma grow around these specific
sites and the tumor attains a heterogeneous shape rather than a simple spherical form. This
mechanism of growth (represented schematically in Fig 1) then implies that the tumor would
appear as a heterogeneous region of elevated elastic modulus in a modulus image also. In addi-
tion to this, significant phenotypic and functional heterogeneity has been observed in cancer-
associated fibroblasts (CAFs) [5] even within the same tumor. Since CAFs are associated with
enhanced extra-cellular matrix production, it is reasonable to expect that their functional het-
erogeneity would lead to varying levels of stiffness within the same tumor.

Tumor-associated vasculature. Recent high-resolution atomic force microscopy (AFM)
indentation experiments in live and snap-frozen fluorescently labeled mammary tissues in
PyMT mice have indicated that there is significant variability in the stiffness of the vasculature
within a tumor [6]. In particular the Young’s modulus of the vasculature in the tumor core is
significantly larger than that of the vasculature at the invasive front of the tumor. This would
contribute to the overall mechanical heterogeneity observed in our in-vivomodulus maps.

Tumor-cells. The same in situ AFM study [6] revealed that cancerous cells are significantly
stiffer than their healthy counterparts, and that they contribute to the stiffness of the tumors. It
was also observed that the mechanical properties of cells within the same tumor were signifi-
cantly different. It was argued that this could be due to the spatial variation in the stress state
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within the tumor, which would cause cells in highly-stressed regions to be stiffer, or due to the
inherent genetic heterogeneity of the cancer cells. In either case, this variation in the mechani-
cal properties of cancerous epithelial cells will further contribute to the observed heterogeneity
in the elastic modulus in our images.

Conclusions
Heterogeneity has long been considered the hallmark of cancer. In this study, by creating high-
resolution, in-vivo images of the Young’s modulus of breast tissue, we have demonstrated this
heterogeneity also extends to the mechanical properties of cancerous tumors. Further, we have
quantified this heterogeneity through a single parameter that is determined from these images
and demonstrated that this parameter has the potential to non-invasively diagnose malignant
tumors.

Appendix
For a field E(x), the normalized autocorrelation function (denoted by gx(r)) along the unit vec-
tor ex, is defined as

gxðrÞ ¼
hEðx þ rex=2ÞEðx � rex=2Þi

hE2ðxÞi ; ð1Þ

where the angular brackets denote an ensemble average. For fields that are assumed to be spa-
tially homogeneous the ensemble average may be replaced by an area integral (in two dimen-
sions). That is

gxðrÞ ¼
R
OEðx þ rex=2ÞEðx � rex=2ÞdxR

OE
2ðxÞdx : ð2Þ

Here O is the extent of the domain. Expanding the integrand in a Taylor’s series about x, and
retaining terms that are O(|r|2), we arrive at

gxðrÞ �
R

O E2 þ r2

4
� @E

@x

� �2 þ E @2E
@x2

� �� �
dxR

OE
2dx

: ð3Þ

Performing integration by parts on the last term in the numerator, and neglecting the resulting
boundary term (whose integrand may change signs along the boundary) in favor of the integrals
over the domain (whose integrand are of the same sign over the entire domain), we obtain

gxðrÞ � 1� r2

2

R
O

@E
@x

� �2
dxR

OE
2dx

: ð4Þ

Let ρx denote the distance at which the correlation vanishes, that is gx(ρx) = 0. This condition
yields,

r2
x ¼

2
R
OE

2dxR
O

@E
@x

� �2
dx

: ð5Þ

Similarly along the y-direction, ρy is given by

r2
y ¼

2
R
OE

2dxR
O

@E
@y

� �2

dx
: ð6Þ
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The harmonic mean of the squares of these lengths, denoted by ρ2 is

r2 ¼ 2

r�2
x þ r�2

y

¼ 4
R
OE

2dxR
OjrEj2dx : ð7Þ

By its definition ρ is a measure of the correlation length of the spatial distribution of E (in turbu-
lence, when applied to the velocity field, it is referred to as the Taylor microscale). Therefore an
appropriate measure of the heterogeneity in this distribution is the ratio of the size of the domain

(
ffiffiffiffi
A

p
, where A is the area ofO) to the correlation length ρ, that is

H ¼
ffiffiffiffi
A

p

r
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
R
OjrEj2dxR
OE

2dx

s
: ð8Þ

Supporting Information
S1 Video. A sequence of b-mode ultrasound images for the fibroadenoma depicted in (A)
and (B) in Fig 3. This sequence is acquired as the tissue is compressed to around 12% strain.
(MP4)

S2 Video. A sequence of displacement vector images for the fibroadenoma depicted in (A)
and (B) in Fig 3. This sequence is obtained by cross-correlating the radio-frequency ultra-
sound data acquired as the tissue is compressed to around 12% strain.
(MP4)

S3 Video. A sequence of b-mode ultrasound images for the invasive ductal carcinoma
depicted in (C) and (D) in Fig 4. This sequence is acquired as the tissue is compressed to
around 12% strain.
(MP4)

S4 Video. A sequence of displacement vector images for the invasive ductal carcinoma
depicted in (C) and (D) in Fig 4. This sequence is obtained by cross-correlating the radio-fre-
quency ultrasound data acquired as the tissue is compressed to around 12% strain.
(MP4)
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