ISSN 2414-3146

Received 8 October 2021
Accepted 26 November 2021

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; triquinane; hemiketal; indium-catalysed; transannular cyclization.

CCDC reference: 2114309

Structural data: full structural data are available from iucrdata.iucr.org
rac-($\left.2 \mathrm{a} S, 2 \mathrm{a}^{1} R, 3 \mathrm{a} R, 3 \mathrm{a}^{1} S, 5 \mathrm{aS}, 6 \mathrm{a} R\right)$-2a-Allyl-2,4-di-chloro-2a, $2 a^{1}, 3 a^{1}, 5 a, 6,6 a-h e x a h y d r o-3 a H-3-o x a d i-$ cyclopenta[cd,gh]pentalen-3a-ol

Sambasivarao Kotha,* Saima Ansari and Naveen Kumar Gupta

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India. *Correspondence e-mail: srk@chem.iitb.ac.in

The title racemic triquinane, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$, is composed of four five-membered rings, one of which is a tetrahydrofuran ring to which an allyl group on one side and a hydroxyl group on the other side are attached. The core of the triquinane unit has a cis-syn-cis configuration. In the crystal, the molecules are linked by pairwise $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating inversion dimers featuring $R_{2}^{2}(8)$ loops.

Chemical scheme

Structure description

Compounds with three fused five-membered rings, known as triquinanes, have gained considerable importance because this core is found in several biologically active compounds (Qiu et al., 2018; Kotha et al., 2020). Therefore, convenient methods to prepare and functionalize triquinanes and the study of their stereochemistry are useful exercises (Mehta \& Rao, 1985). Our group has prepared triquinanes from cage compounds in a simplified manner using microwave irradiation (Kotha et al., 2019). Thereafter, we attempted to functionalize the triquinanes and observed a transannular attack at the keto centre $(\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2)$ leading to the formation of the title compound, 1.

Compound 1 has three carbocyclic rings ($\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5, \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$ and $\mathrm{C} 6 /$ $\mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11$) and a terahydrofuran ring ($\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 11$). The allyl group is unsymmetrically substituted at C 11 and the hydroxy group is attached to C 1 (Fig. 1a). There are six stereogenic centres in $\mathbf{1}$: in the arbitrarily chosen asymmetric molecule, the configurations are $\mathrm{C} 1 R, \mathrm{C} 4 R, \mathrm{C} 5 S, \mathrm{C} 6 R, \mathrm{C} 7 S$ and $\mathrm{C} 11 S$ but crystal symmetry generates a racemic mixture.

Figure 1
The molecular structure of $\mathbf{1}(a)$ viewed from above and (b) viewed from the front. Displacement ellipsoids are drawn at the 50% probability level.

The triquinane ring system consists of a cis-syn-cis configuration, i.e., the hydrogen atoms at the ring junction are all above the plane and the first and the third rings are below the plane (Fig. 1b). The chlorine atoms are attached to the unsaturated bonds $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 9-\mathrm{C} 10$ in anti-manner with respect to the H atoms of the ring junction. The middle cyclopentyl ring adopts an envelope conformation and the side rings are almost planar.

In the crystal, the molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating inversion dimers featuring $R_{2}^{2}(8)$ loops (Table 1, Fig. 2) but no intramolecular hydrogen bonds are present.

Synthesis and crystallization

The synthesis scheme is shown in Fig. 3. Indium ingots (51 mg , $2.7 \mathrm{eq})$ were cut into small pieces and transferred to a two-

Figure 2
The crystal packing of $\mathbf{1}$, viewed along the b-axis direction. The hydrogen bonding is shown using dotted lines.

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	2.06	$2.893(3)$	173

Symmetry code: (i) $-x,-y+1,-z+1$.
Table 2
Experimental details.
Crystal data
Chemical formula $\quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$
M_{r}
Crystal system, space group
285.15

Triclinic, $P \overline{1}$
Temperature (K)
150
7.2687 (10), 8.3648 (11),

$$
11.7460 \text { (18) }
$$

80.448 (4), 83.441 (4), 65.285 (4)
638.96 (16)

2
Mo $K \alpha$
0.50
$0.32 \times 0.29 \times 0.09$

Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.048,0.107,1.09$
No. of reflections	2241
No. of parameters	164
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.27,-0.33$

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
neck round-bottomed flask. Tetrahydrofuran (3 ml) was transferred to the flask under nitrogen at room temperature. Allyl iodide (0.5 ml) was added to this solution via a syringe. After one h , the starting material $2(40 \mathrm{mg})$ and trimethylchlorosilane (3 drops) was added to the reaction mixture. On completion of the reaction (TLC monitoring) after 1 h , water was added to the reaction mixture. The aqueous layer was extracted with diethyl ether (Lee et al. 2001). The compound was purified with column chromatography and silica gel (100200 mesh) was used. Ethyl acetate:petroleum ether (8% of ethyl acetate in total in 100 ml of solution) was used an eluent.

Figure 3
Synthesis scheme for 1.

After that, the crystals suitable for X-ray crystallographic analysis were grown in air in a glass vial using ethyl acetate as solvent (Fig. 3).

Characterization: colourless crystalline solid; m.p. 120$122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.73-5.62(m, 3 \mathrm{H})$, 5.20-5.14 (m, 2H), 3.39-3.30 ($\mathrm{m}, 2 \mathrm{H}$), 3.23-3.20 ($\mathrm{m}, 1 \mathrm{H}$), 3.02$2.98(m, 1 \mathrm{H}), 2.63(d d, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(d d, J=13.8$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.87(m, 1 \mathrm{H}), 1.78(d, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$ p.p.m.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.1,133.2,133.1,133.0$, 132.5, 119.1, 115.5, 97.7, 58.8, 54.8, 47.7, 46.4, 40.4, 35.2 p.p.m.; HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NaO}_{2}[M+\mathrm{Na}]^{+}$: 307.0262; found: 307.0263.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank Darshan S. Mhatre for his help in collecting the X-ray data and with the structure refinement.

Funding information

Funding for this research was provided by: Defence Research and Development Organisation, Aeronautics Research and Development Board (grant No. ARDB/01/104189/M/I to Prof. S Kotha); University Grants Commission (scholarship to Saima Ansari); Council of Scientific and Industrial Research, India (scholarship to Naveen Kumar Gupta).

References

Bruker (2016). APEX2, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Kotha, S., Cheekatla, S. R., Meshram, M., Bandi, V. \& Seema, V. (2019). Asia. J. Org. Chem. 8, 2097-2104.

Kotha, S. \& Tangella, Y. (2020). Synlett, 31, 1976-2012.
Lee, P. H., Ahn, H., Lee, K., Sung, S. \& Kim, S. (2001). Tetrahedron Lett. 42, 37-39.
Mehta, G. \& Rao, K. S. (1985). J. Org. Chem. 50, 5537-5543.
Qiu, Y., Lan, W.-J., Li, H.-J. \& Chen, L.-P. (2018). Molecules, 23, 20952128.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2021). 6, x211260 [https://doi.org/10.1107/S2414314621012608]
rac-(2aS, $\left.2 a^{1} R, 3 a R, 3 a^{1} S, 5 a S, 6 a R\right)$-2a-Allyl-2,4-dichloro-2a, $2 a^{1}, 3 a^{1}, 5 a, 6,6 a-h e x a-$ hydro-3aH-3-oxadicyclopenta[cd,gh]pentalen-3a-ol

Sambasivarao Kotha, Saima Ansari and Naveen Kumar Gupta

rac-(2aS, $\left.2 a^{1} R, 3 a R, 3 a^{1} S, 5 a S, 6 a R\right)-2 a-A l l y l-2,4-d i c h l o r o-2 a, 2 a^{1}, 3 a^{1}, 5 a, 6,6 a-h e x a h y d r o-3 a H-3-$
oxadicyclopenta[cd,gh]pentalen-3a-ol

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=285.15$
Triclinic, $P \overline{1}$
$a=7.2687$ (10) \AA
$b=8.3648(11) \AA$
$c=11.7460(18) \AA$
$\alpha=80.448(4)^{\circ}$
$\beta=83.441(4)^{\circ}$
$\gamma=65.285(4)^{\circ}$
$V=638.96(16) \AA^{3}$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min }=0.655, T_{\text {max }}=0.746$
19764 measured reflections
$Z=2$
$F(000)=296$
$D_{\mathrm{x}}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3239 reflections
$\theta=2.7-25.0^{\circ}$
$\mu=0.50 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, clear light colourless
$0.32 \times 0.29 \times 0.09 \mathrm{~mm}$

2241 independent reflections
1662 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.106$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.107$
$S=1.09$
2241 reflections
164 parameters
0 restraints
Primary atom site location: dual

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0235 P)^{2}+1.1376 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} *_{\text {eq }}$
C11	$0.06076(13)$	$0.17026(12)$	$0.42861(8)$	$0.0269(3)$
C12	$-0.06759(13)$	$0.53279(13)$	$0.15245(8)$	$0.0328(3)$
O1	$0.1461(3)$	$0.5253(3)$	$0.37821(19)$	$0.0191(5)$
O2	$0.2783(3)$	$0.3694(3)$	$0.55085(19)$	$0.0221(6)$
H2	0.157708	0.391949	0.574798	0.033^{*}
C1	$0.2966(5)$	$0.3622(4)$	$0.4322(3)$	$0.0185(8)$
C11	$0.2225(5)$	$0.5758(4)$	$0.2653(3)$	$0.0192(8)$
C3	$0.4551(5)$	$0.0894(4)$	$0.3551(3)$	$0.0209(8)$
H3	0.474728	-0.022512	0.335419	0.025^{*}
C10	$0.1821(5)$	$0.4890(4)$	$0.1739(3)$	$0.0194(8)$
C6	$0.4571(5)$	$0.4848(4)$	$0.2673(3)$	$0.0179(7)$
H6	0.518199	0.572267	0.266037	0.021^{*}
C2	$0.2846(5)$	$0.1995(4)$	$0.4009(3)$	$0.0198(8)$
C9	$0.3446(5)$	$0.3828(4)$	$0.1197(3)$	$0.0211(8)$
H9	0.342144	0.317963	0.061141	0.025^{*}
C4	$0.6154(5)$	$0.1623(4)$	$0.3377(3)$	$0.0203(8)$
H4	0.732882	0.086130	0.386498	0.024^{*}
C7	$0.5363(5)$	$0.3772(4)$	$0.1626(3)$	$0.0206(8)$
H7	0.604311	0.435233	0.101481	0.025^{*}
C8	$0.6874(5)$	$0.1927(5)$	$0.2120(3)$	$0.0240(8)$
H8A	0.688215	0.100747	0.168389	0.029^{*}
H8B	0.826068	0.188696	0.207430	0.029^{*}
C5	$0.5042(5)$	$0.3485(4)$	$0.3779(3)$	$0.0195(8)$
H5	0.584893	0.371253	0.431830	0.023^{*}
C13	$0.1802(5)$	$0.8510(5)$	$0.1251(3)$	$0.0270(9)$
H13	0.152010	0.810452	0.061014	0.032^{*}
C12	$0.1281(5)$	$0.7775(4)$	$0.2438(3)$	$0.0253(8)$
H12A	-0.02149	0.820022	0.254500	0.030^{*}
H12B	0.174476	0.823785	0.301924	0.030^{*}
C14	$0.2611(6)$	$0.9658(5)$	$0.1035(4)$	$0.0399(11)$
H14A	0.291514	1.009520	0.165285	0.048^{*}
H14B	0.289666	1.006095	0.025767	0.048^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0202(5)$	$0.0279(5)$	$0.0360(6)$	$-0.0142(4)$	$-0.0005(4)$	$-0.0023(4)$
C12	$0.0145(5)$	$0.0479(6)$	$0.0353(6)$	$-0.0122(4)$	$-0.0051(4)$	$-0.0026(5)$
O1	$0.0093(12)$	$0.0173(12)$	$0.0240(14)$	$0.0000(10)$	$0.0021(10)$	$-0.0013(10)$
O2	$0.0154(13)$	$0.0278(14)$	$0.0207(14)$	$-0.0065(11)$	$0.0014(10)$	$-0.0045(11)$
C1	$0.0109(17)$	$0.0171(18)$	$0.023(2)$	$-0.0020(14)$	$0.0003(14)$	$-0.0012(15)$
C11	$0.0128(18)$	$0.0183(18)$	$0.022(2)$	$-0.0031(15)$	$0.0037(14)$	$-0.0039(15)$
C3	$0.0184(19)$	$0.0157(18)$	$0.027(2)$	$-0.0049(15)$	$-0.0040(15)$	$-0.0026(15)$
C10	$0.0112(18)$	$0.0185(18)$	$0.028(2)$	$-0.0057(15)$	$-0.0039(15)$	$0.0008(15)$
C6	$0.0095(17)$	$0.0166(18)$	$0.026(2)$	$-0.0038(14)$	$0.0024(14)$	$-0.0049(15)$

C2	$0.0189(19)$	$0.0156(18)$	$0.024(2)$	$-0.0074(16)$	$-0.0053(15)$	$0.0039(15)$
C9	$0.023(2)$	$0.0166(18)$	$0.022(2)$	$-0.0073(16)$	$-0.0035(16)$	$-0.0008(15)$
C4	$0.0108(18)$	$0.0173(18)$	$0.026(2)$	$0.0015(15)$	$-0.0040(14)$	$-0.0026(15)$
C7	$0.0134(18)$	$0.0202(18)$	$0.025(2)$	$-0.0049(15)$	$0.0038(14)$	$-0.0021(15)$
C8	$0.0125(18)$	$0.024(2)$	$0.030(2)$	$-0.0022(16)$	$-0.0001(15)$	$-0.0045(16)$
C5	$0.0116(17)$	$0.0228(19)$	$0.025(2)$	$-0.0075(15)$	$-0.0002(14)$	$-0.0042(15)$
C13	$0.026(2)$	$0.0174(19)$	$0.032(2)$	$-0.0030(16)$	$-0.0035(16)$	$-0.0018(16)$
C12	$0.019(2)$	$0.0178(19)$	$0.031(2)$	$-0.0016(16)$	$0.0050(16)$	$-0.0032(16)$
C14	$0.056(3)$	$0.043(3)$	$0.032(2)$	$-0.033(2)$	$-0.002(2)$	$-0.0005(19)$

Geometric parameters ($\AA,{ }^{\circ}$)

C11-C2	1.731 (3)	C3-C4	1.506 (5)
C12-C10	1.734 (3)	C10-C9	1.315 (5)
O1-C1	1.444 (4)	C6-C7	1.557 (5)
$\mathrm{O} 1-\mathrm{C} 11$	1.445 (4)	C6-C5	1.545 (5)
O2-C1	1.394 (4)	C9-C7	1.515 (5)
C1-C2	1.506 (5)	C4-C8	1.526 (5)
C1-C5	1.536 (4)	C4-C5	1.552 (5)
C11-C10	1.508 (5)	C7-C8	1.534 (5)
C11-C6	1.550 (4)	C13-C12	1.501 (5)
C11-C12	1.520 (5)	C13-C14	1.300 (5)
C3-C2	1.316 (5)		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 11$	110.0 (2)	C5-C6-C11	105.6 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	112.9 (3)	C5-C6-C7	106.9 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5$	107.0 (3)	C1-C2-Cl1	119.8 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	107.8 (3)	C3-C2-Cl1	126.3 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	113.5 (3)	C3-C2-C1	113.9 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 5$	113.0 (3)	C10-C9-C7	111.3 (3)
C2-C1-C5	102.5 (3)	C3-C4-C8	114.6 (3)
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 10$	111.4 (3)	C3-C4-C5	103.4 (3)
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 6$	106.4 (2)	C8-C4-C5	106.3 (3)
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12$	106.8 (3)	C9-C7-C6	103.2 (3)
C10-C11-C6	101.7 (3)	C9-C7-C8	115.4 (3)
C10-C11-C12	113.9 (3)	C8-C7-C6	105.4 (3)
C12-C11-C6	116.5 (3)	C4-C8-C7	105.9 (3)
C2-C3-C4	111.8 (3)	C1-C5-C6	105.2 (3)
C11-C10-Cl2	118.3 (2)	C1-C5-C4	107.3 (3)
C9-C10-Cl2	126.5 (3)	C6-C5-C4	106.6 (3)
C9-C10-C11	115.1 (3)	C14-C13-C12	125.0 (4)
C11-C6-C7	107.5 (3)	C13-C12-C11	113.3 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$D — \mathrm{H} \cdots A \quad D — \mathrm{H} \quad \mathrm{H} \cdots A \quad D \cdots A \quad D — \mathrm{H} \cdots A$

$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	2.06	$2.893(3)$	173

Symmetry code: (i) $-x,-y+1,-z+1$.

