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Abstract

Shape perception is crucial for object recognition. However, it remains unknown exactly how 

shape information is represented and used by the visual system. Here, we tested the hypothesis 

that the visual system represents object shape via a skeletal structure. Using functional magnetic 

resonance imaging (fMRI) and representational similarity analysis (RSA), we found that a model 

of skeletal similarity explained significant unique variance in the response profiles of V3 and 

LO. Moreover, the skeletal model remained predictive in these regions even when controlling for 

other models of visual similarity that approximate low-to high-level visual features (i.e., Gabor-jet, 

GIST, HMAX, and AlexNet), and across different surface forms, a manipulation that altered 

object contours while preserving the underlying skeleton. Together, these findings shed light on 

shape processing in human vision, as well as the computational properties of V3 and LO. We 

discuss how these regions may support two putative roles of shape skeletons: namely, perceptual 

organization and object recognition.
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1. Introduction

A central goal of vision science is to understand how the human visual system represents 

the shapes of objects and how shape is ultimately used to recognize objects. Research from 

computer vision has suggested that shape representations can be created and then compared 

using computational models based on the medial axis, also known as the “shape skeleton.” 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author: vayzenbe@andrew.cmu.edu (V. Ayzenberg). **Corresponding author: stella.lourenco@emory.edu (S.F. 
Lourenco). 

Declaration of competing interest
The authors declare no conflicts of interest.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuropsychologia.2021.108092.

Credit Statement
V.A. performed the experiments and analyzed the data. All authors conceived and designed the experiments, interpreted the 
experimental results, and approved the submission.

HHS Public Access
Author manuscript
Neuropsychologia. Author manuscript; available in PMC 2023 January 14.

Published in final edited form as:
Neuropsychologia. 2022 January 07; 164: 108092. doi:10.1016/j.neuropsychologia.2021.108092.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Although recent behavioral studies suggest that humans also represent shape skeletons 

(Ayzenberg and Lourenco, 2019; Firestone and Scholl, 2014), few studies have explored 

how they are represented neurally.

Shape skeletons are models of structure based on the medial axis of an object (Blum and 

Nagel, 1978). They provide a quantitative description of the spatial arrangement of object 

contours and component parts via internal symmetry axes (see Fig. 1). Computer vision 

research has shown that such a description can be used to determine an object’s shape from 

noisy or incomplete contour information (Feldman and Singh, 2006; Kimia, 2003; Wilder 

et al., 2019) and to identify objects across viewpoints and category exemplars (Sebastian et 

al., 2004; Trinh and Kimia, 2011). Indeed, incorporating a skeletal model into off-the-shelf 

convolutional neural networks (CNNs) significantly improves their performance on visual 

perception tasks (Rezanejad et al., 2019). Similarly, behavioral research with humans has 

shown that participants extract the skeleton of 2D shapes (Firestone and Scholl, 2015; 

Kovács et al., 1998; Psotka, 1978), even in the presence of border perturbations and illusory 

contours (Ayzenberg et al., 2019). Other research has shown that skeletal models are 

predictive of human object recognition (Destler et al., 2019; Lowet et al., 2018; Wilder 

et al., 2011), even when controlling for other models of vision (Ayzenberg and Lourenco, 

2019). Thus, shape skeletons potentially play an important role in shape perception and 

object recognition, but the neural correlates of shape skeletons remain poorly understood.

In one study using fMRI with humans, Lescroart and Biederman (2012) decoded skeletal 

structures from objects in V3 and LO, regions involved in constructing shape percepts 

(Caplovitz and Peter, 2010; Mannion et al., 2010) and recognizing objects (Grill-Spector 

et al., 2001). However, this study did not measure skeletal coding directly, leaving it 

unknown whether another representation of structure could account for their results, nor did 

it compare skeletons to other models of vision, a crucial analysis because changes to object 

skeletons also induce changes along other visual dimensions. Thus, the question remains: 

how are shape skeletons represented in human cortex?

To address this question, we created a novel set of objects that allowed us to systematically 

vary object skeletons and directly measure skeletal coding. We then examined the unique 

contributions of skeletal information to neural responses across the visual hierarchy (V1–

V4, LO, pFs). More specifically, we used representational similarity analysis (RSA) to test 

whether a model of skeletal similarity predicted the response patterns in these regions while 

controlling for other models of visual similarity that do not represent the shape skeleton, 

but approximate other aspects of visual processing. In particular, we included models that 

approximate early- (i.e., Gabor-jet; Margalit, Biederman, Herald, Yue, & von der Malsburg, 

2016), mid- (i.e., GIST and HMAX; Oliva and Torralba, 2006; Serre et al., 2007), and 

high-level (i.e., AlexNet; Krizhevsky, Sutskever and Hinton, 2012) visual processing. We 

also examined the robustness of skeletal representations in each region by testing whether 

a model of skeletal similarity generalizes across a change to the object’s component parts, 

which alters the non-accidental and image-level properties of the objects. Together, these 

comparisons and manipulations allowed us to directly measure skeletal coding in regions 

typically associated with perceptual organization and object recognition while ruling out 

alternative explanations.
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2. Materials and methods

2.1. Participants

Twenty participants (Mage = 19.29 years, range = 20–36 years; 8 females) were recruited 

from the Emory University community. All participants gave written informed consent to 

participate and had normal or corrected-to-normal vision. The sample size was selected 

on the basis of prior work, which has typically tested between 15 and 25 participants 

(Dwivedi et al., 2021; Kamps et al., 2019; Magri et al., 2021). A power-analysis confirmed 

that 20 participants was sufficient to achieve reliable similarity metrics for each pair of 

objects (r = 0.60, 1 − β = 0.85; Bonett, 2002). Experimental procedures were approved by 

Emory University’s Institutional Review Board (IRB). All experiments were performed in 

accordance with the relevant guidelines and regulations of the IRB.

3. Stimuli

Twelve novel objects were selected from the stimulus set created by Ayzenberg and 

Lourenco (2019; see Fig. 2A). The selected object set was composed of six distinct skeletons 

and two surface forms. Objects were procedurally generated using the Python API for 

Blender (Blender Foundation). Each skeleton was comprised of three segments created from 

Bezier curves of a random size and curvature scaled between 0.05 and 0.25 virtual Blender 

units (vu). The first axis segment was oriented forward towards the ‘camera’. The second 

and third segments were oriented perpendicular to the first segment and attached to the first 

segment or second segment at a random point along their length. Each skeleton was rendered 

with one of two surface forms, which changed the contours and component parts of the 

object without altering the underlying skeleton. Surface forms were created by applying a 

circular bevel to the object’s skeleton along with one of five taper properties that determined 

the shape of the surface form. Finally, the overall size of the object was normalized to 0.25 

vu.

Skeletal similarity was calculated as the mean Euclidean distance between each point on one 

skeleton structure with the closest point on the second skeleton structure following maximal 

alignment. Maximal alignment was achieved by overlaying each structure by its center of 

mass and then iteratively rotating each object in the picture plane orientation by 15° until the 

smallest distance between the structures was found.

The six skeletons were chosen by first conducting a k-means cluster analysis (k = 3) on 

skeletal similarity data for 30 unique objects (for details, see Ayzenberg and Lourenco, 

2019). We selected six objects whose within- and between-cluster skeletal similarities were 

matched (2 per cluster). That is, the two objects from the same cluster were approximately 

as similar to one another as the two objects within the other clusters; objects in different 

clusters had comparable levels of dissimilarity to one another (see Fig. 2B). This method of 

stimulus selection ensured that the stimulus set used in the present study contained objects 

with both similar and dissimilar skeletons. Two additional objects were used as targets for an 

orthogonal target-detection task; these objects were not included in subsequent analyses.
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To provide the strongest test of a skeletal model, we chose the two surface forms (out of 

five) that a separate group of participants judged to be most dissimilar (see Supplemental 

Materials). Importantly, we ensured that the surface forms were as discriminable as the 

skeletal structures (t [78] = 1.47, p = .146; see Supplemental Materials). These surface forms 

were also chosen because they had qualitatively different component parts, as measured 

by human ratings of non-accidental properties (Amir et al., 2012; Biederman, 1987; see 

Supplemental Materials for details). Thus, the surface forms produced large changes to 

the objects as measured by participants’ discrimination judgments and their ratings of the 

non-accidental properties.

The number of objects in the current study was determined to ensure a sufficient number 

of presentations per object and to maximize the signal-to-noise ratio. It also allowed us 

to implement a continuous carry-over design with third-order counterbalancing, thereby 

minimizing carry-over effects across trials (Aguirre, Mattar and Magis-Weinberg, 2011).

Finally, given that our objects were artificial and might appear to have especially salient 

skeletons, we tested whether they could be discriminated using visual properties other than 

the shape skeleton and whether they evoked visual processes similar to real-world objects. 

We found that all non-skeletal models (GBJ, GIST, HMAX, AlexNet) could accurately 

discriminate objects with different skeletons (80.2%–95.3% accuracy), suggesting that 

skeletons were not the only available visual property and our objects differed along other 

visual dimensions (see Supplemental Materials for more details). Next, we tested whether 

participants could discriminate these stimuli in a speeded context (100 ms presentation), a 

task thought to evoke ‘core’ object perception (Cadieu et al., 2014; DiCarlo et al., 2012; 

see Supplemental Materials for details). This experiment revealed that participants were 

significantly above chance at discriminating these objects (M = 89.9%, t (13) = 14.02, p < 

.001; see Supplemental Materials). Thus, although we used artificial 3D objects designed to 

vary in skeletal similarity, they could also be recognized using visual properties other than 

the skeleton and they evoke processes typical of core object perception.

3.1. Experimental design

First, we used a region of interest (ROI) approach, in which we independently localized 

the ROIs (localizer runs). Second, we used an independent set of data (experimental runs) 

to conduct representational similarity analyses in each ROI. Stimulus presentation was 

controlled by a MacBook Pro running the Psychophysics Toolbox package (Brainard, 1997) 

in MATLAB (MathWorks). Images were projected onto a screen and viewed through a 

mirror mounted on the head coil.

Localizer runs.—We used a block design for the localizer runs. Participants viewed 

images of faces, bodies, objects, scenes, and scrambled objects, as previously described 

(Dilks et al., 2011). Each participant completed three localizer runs, comprised of four 

blocks per stimulus category, each 400 s. Block order in each run was randomized. Each 

block contained 20 images randomly drawn from the same category. Each image was 

presented for 300 ms, followed by a 500 ms inter-stimulus interval (ISI), for a total of 16 

s per block. We also included five 16 s fixation blocks: one at the beginning, three in the 

Ayzenberg et al. Page 4

Neuropsychologia. Author manuscript; available in PMC 2023 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



middle interleaved between each set of stimulus blocks, and one at the end of each run. To 

maintain attention, participants performed an orthogonal one-back task, responding to the 

repetition of an image on consecutive presentations.

Experimental runs.—We used a continuous carry-over design for the experimental runs, 

wherein participants viewed images of each novel object. Each run was 360 s long. Using 

a de Bruijn sequence (Aguirre et al., 2011), we applied third-order counterbalancing on 

the image presentation order, which minimized any carry-over effects between stimuli. 

Importantly, this design supports smaller inter-stimulus intervals (ISIs) between stimuli 

(Aguirre et al., 2011; Drucker and Aguirre, 2009; Hatfield et al., 2016) and allowed for a 

greater number of presentations per image. Each image was presented for 600 ms, followed 

by a 200 ms ISI, and shown 225 times across the entire session. Each run began and 

ended with 6 s of fixation. To maintain attention, participants performed an orthogonal 

target-detection task. At the beginning of each experimental run, participants were shown 

one of two objects (not included in subsequent analyses) and were instructed to press 

a response button each time the target object appeared within the image stream. Each 

participant completed a total of nine experimental runs.

3.2. MRI scan parameters

Scanning was done on a 3 T Siemens Trio scanner at the Facility for Education and 

Research in Neuroscience (FERN) at Emory University. Functional images were acquired 

using a 32-channel head matrix coil and a gradient echo single-shot echoplanar imaging 

sequence. Thirty slices were acquired for both localizer and experimental runs. For all runs: 

repetition time = 2 s; echo time = 30 ms; flip angle = 90°; voxel size = 1.8 × 1.8 × 1.8 mm 

with a 0.2 mm interslice gap. Slices were oriented approximately parallel to the anterior and 

posterior cingulate, covering the occipital and temporal lobes. Whole-brain, high-resolution 

T1-weighted anatomical images (repetition time = 1900 ms; echo time = 2.27 ms; inversion 

time = 900 ms; voxel size = 1 × 1 × 1 mm) were also acquired for each participant for 

registration of the functional images. Analyses of the fMRI data were conducted using FSL 

software (Smith et al., 2004) and custom MATLAB code.

3.3. Data analyses

Images were skull-stripped (Smith, 2002) and registered to participants’ T1 weighted 

anatomical image (Jenkinson et al., 2002). Prior to statistical analyses, images were motion 

corrected, de-trended, and intensity normalized. Localizer, but not experimental, data were 

spatially smoothed (6 mm kernel). All data were fit with a general linear model consisting 

of covariates that were convolved with a double-gamma function to approximate the 

hemodynamic response function.

We defined regions V1–V4 bilaterally using probabilistic parcels created from a large 

sample of participants (see Wang et al., 2014 for details). Each parcel was registered from 

MNI standard space to participants’ individual anatomical space.

We also functionally defined object-selective region LO, as well as pFs, bilaterally in each 

individual as the voxels that responded more to images of intact objects than scrambled 
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objects (p < 10−4, uncorrected; Grill-Spector et al., 1998). Furthermore, to test the specificity 

of skeletal representations in object-selective regions, rather than higher-level visual regions 

more generally, we defined the extrastriate body area (EBA; Downing et al., 2001) and 

fusiform body area (FBA;Peelen and Downing, 2005), as the voxels that responded more to 

images of bodies than objects (p < 10−4, uncorrected). However, because EBA shows a high 

degree of overlap with LO, we subtracted any EBA voxels that overlapped with LO for each 

participant. The same qualitative results were found when LO and EBA were not subtracted. 

The anatomical consistency of each participant’s ROIs was confirmed using probabilistic 

parcels functionally defined using a large sample of participants (see Julian et al., 2012 

for details). We further ensured that functional ROIs were reliable for each participant by 

computing the average distance of peak voxels in each run from the peak voxel in data 

averaged across runs. This analysis revealed significant overlap such that, on average, peak 

voxels varied by only 5.66 mm across runs (~3 voxels; SD = 4.85 mm).

To ensure that our results were not influenced by different numbers of voxels in each ROI, 

we conducted analyses using the top 2000 voxels (1.8 × 1.8 × 1.8 mm) from each ROI 

(in each hemisphere) when available. For regions composed of fewer than 2000 voxels, all 

voxels in the ROI were used (see Fig. 3). To further ensure that results were not related 

to the size of the ROI, we also conducted our primary analyses using 100, 500, and 1000 

voxels. The same qualitative results were found for all ROI sizes. For each functionally 

defined ROI, we selected voxels that exhibited the greatest selectivity to the category of 

interest from the localizer runs (e.g., the 2000 most object-selective voxels in right LO). 

For the probabilistically-defined ROIs, we selected voxels with the greatest probability value 

(e.g., the 2000 voxels most likely to describe right V1). ROIs were analyzed by combining 

left and right hemispheric ROIs (4000 voxels total).

In subsequent analyses, we used RSA to investigate the extent to which a model of 

skeletal similarity explained unique variance in each ROI (Kriegeskorte et al., 2008). 

For each participant, parameter estimates for each stimulus (relative to fixation) were 

extracted for each voxel in an ROI. Responses to the stimuli in each voxel were then 

normalized by subtracting the mean response across all stimuli. A 12 × 12 symmetric neural 

representational dissimilarity matrix (RDM) was created for each ROI and participant by 

correlating (1-Pearson correlation) the voxel-wise responses for each stimulus with every 

other stimulus in a pairwise fashion. Neural RDMs were then Fisher transformed and 

averaged across participants separately for each ROI (see Fig. 4A). Only the upper triangle 

of the resulting matrix (excluding the diagonal) was used in subsequent analyses. Although 

most dissimilarity measures produce similar results, we used Pearson correlation similarity 

because simulations have shown it to be more reliable than other similarity measures 

(Walther et al., 2016).

Neural RDMs were compared to RDMs created from a model of skeletal similarity, as well 

as other models of visual similarity (GBJ, GIST, HMAX, and AlexNet; see Fig. 4B). As 

described previously, skeletal similarity was calculated in 3D, object-centered, space as the 

mean Euclidean distance between each point on one skeleton and the closest point on the 

second skeleton following maximal alignment. Similarity for Gabor-jet, GIST, and AlexNet 

(each layer) was calculated by extracting feature vectors from each model and computing 
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the mean Euclidean distance between feature vectors. HMAX (C2-layer) similarity was 

calculated as the Pearson correlation between feature vectors. Because our primary analyses 

involve comparing the amount of unique variance explained by the skeletal model relative 

to the other models, we ensured that the skeletal model did not exhibit a high degree of 

multicollinearity with any other model, VIF = 2.65. Multicollinearity statistics for control 

models (GBJ, GIST, HMAX, AlexNet) were also within an acceptable range (VIFs <4.60; 

O’Brien, 2007).

4. Results

How are shape skeletons represented in the visual system?

We first tested whether skeletal similarity was predictive of the multivariate response pattern 

in each ROI by correlating the neural RDMs from each ROI with an RDM computed 

from the skeletal model. Significant correlations were found for V1–V4, and LO, rs = 0.35–

0.67, r2 = 0.13–0.50 (ps < .004; significance determined via permutation test with 10,000 

permutations; see Fig. 5). Skeletal similarity was not predictive of the response pattern in 

pFs, EBA, or FBA (ps > .23), revealing specificity in the predictive power of the skeletal 

model (see Table 1 for correlations between the ROIs and all other models).

Next, we tested whether skeletal similarity explained unique variance in each region or 

whether these effects could be explained by another model of visual similarity. To test 

whether the skeletal model explained unique variance in each ROI, we conducted linear 

regression analyses with each neural RDM as the dependent variable and the different 

models of visual similarity as predictors (Skeleton ∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet; 

see Fig. 4B). Only the AlexNet layer that best correlated with each ROI was included in 

the regression. These analyses revealed that the skeletal model explained unique variance in 

V3 (β = 0.38, p = .016) and LO (β = 0.51, p = .024), but not in the other regions (βs > 

0.32, ps < .186; the results of the other models is described separately below). Moreover, to 

examine the specificity of the skeletal model to these regions, we swapped the independent 

and dependent variables and tested whether V3 and LO explained significant variance in 

the skeletal similarity between objects when controlling for the other regions. Separate 

regression analyses were conducted in which the predictors were either V3 and the other 

early visual regions (V1, V2, V4) or LO and the other high-level visual regions (pFs, EBA, 

FBA). The skeletal RDM was the dependent variable in both cases. These analyses revealed 

that V3 (β = 0.60, p = .040) and LO (β = 0.68, p = .002) explained unique variance in 

skeletal similarity, even when controlling for other early- and high-level visual regions, 

respectively.

We also conducted variance partitioning analyses (VPA) to explore how much unique 

variance was explained by the skeletal model in V3 and LO relative to the other models 

(Bonner and Epstein, 2018; Lescroart et al., 2015). VPA, also known as commonality 

analyses, estimates how much of the total variance explained (R2) is unique to the different 

models (e.g., r2
skeleton = R2 − r2 GBJ ∪ GIST ∪ HMAX ∪ AlexNet). Each value is expressed as 

a percentage of the total variance explained by all of the models (r2
skeleton ÷ R2) × 100. 

These analyses revealed that the skeletal model uniquely accounted for 6.0% of the total 

explainable variance in V3 and 27.4% of the explainable variance in LO (see Fig. 6A and 
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B). Thus, shape skeletons account for significant unique variance in V3 and LO even when 

compared with other models of visual similarity.

Several follow-up analyses were conducted to ensure that the significant variance explained 

in V3 and LO by the skeletal model was not due to ROI or model selection decisions. First, 

as mentioned previously, we analyzed each ROI using 100, 500, and 1000 voxels and found 

qualitatively similar results (see Supplemental Data). We also evaluated different variations 

of our functionally-defined LO ROI. We found that the skeletal model continued to explain 

significant unique variance (relative to other models of visual similarity) when LO was split 

into LO1 (VPA = 7.7%, β = 0.42, p = .006) and LO2 (VPA = 13.0%, β = 0.48, p = .009), 

using probabilistic parcels (Wang et al., 2014), and when LO was functionally defined using 

an object > scene contrast (“LOscene”; VPA = 28.3%, β = 0.58, p = .008).

Next, we ensured that our results were not specific to the choice of CNN (i.e., AlexNet). 

To this end, we replicated our analysis with another CNN, namely VGG-19 (Simonyan 

and Zisserman, 2014), using the layer best correlated with each ROI within the regression 

analysis. We found qualitatively similar results such that the skeletal model explained unique 

variance in V3 (VPA = 6.6%, β = 0.39, p = .013) and LO (VPA = 14%, β = 0.34, p = 

.127), though the effect in LO did not reach the criteria for statistical significance. However, 

the skeletal model explained significant unique variance in LO1, LO2, and LOscene (VPAs 

>8%, βs > 0.43, ps < .009), suggesting consistency of results across different types of neural 

network models in LO.

Finally, we tested whether the success of the skeletal model might be explained by the fact 

that it has access to 3D object properties, whereas the other models do not. To this end, we 

reanalyzed our data using a 2D implementation of the skeletal model, which computed the 

medial axis from the object’s silhouette (Rezanejad and Siddiqi, 2013); we found that even a 

2D skeleton continued to explain unique variance in V3 (VPA = 10.7%, β = 0.39, p < .001) 

and LO (VPA = 28.42%, βs = 0.39, ps = .020), as well as LO1, LO2, and LOscene (VPAs 

>11.7%, βs > 0.34, ps < .043), suggesting that access to 3D information cannot explain our 

results.

To further explore how skeletal structure is represented neurally, we conducted a whole-

brain searchlight analysis examining where the 3D skeletal model explained unique variance 

(Kriegeskorte et al., 2006). For each participant, an 8 mm sphere was centered on every 

voxel within the slice prescription and a neural RDM was constructed. Each central voxel 

was assigned the standardized parameter estimate for the skeletal model (βskeleton) from 

a regression analysis with each neural RDM as the dependent variable and the different 

models of visual similarity as predictors (Skeleton ∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet). 

The best correlated layer of AlexNet was used in each search iteration. The resulting 

map from each participant was then registered to a MNI space, averaged together, and 

normalized into a single FDR-corrected (p < .05) map. As can be seen in Fig. 7, the skeletal 

model explained unique variance in regions corresponding to V3 and LO (LO1/LO2), 

with a particularly large cluster centered around left V3 (see Supplemental Materials for 

searchlight results with other models). Together, these findings suggest that skeletal structure 
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is represented in early visual regions involved in creating shape percepts, such as V3, as well 

as higher-level regions involved in object recognition, such as LO.

Does skeletal coding in V3 and LO generalize across changes in surface form?

As described previously, a strength of skeletal models is that they can be used to describe an 

object’s shape across variations in contours or component parts. Thus, if V3 and LO indeed 

incorporate a skeletal model, then these regions should represent objects by their skeletons 

across changes in surface form (see Fig. 2). To test this prediction, new dissimilarity vectors 

were created from neural and model RDMs by extracting similarity values from only those 

object pairs whose surface forms differed and, then, correlating them to one another.

Skeletal similarity was a significant predictor of the response profile in both V3 (r = 0.77, p 
< .001) and LO (r = 0.47, p < .001), even though object pairs were comprised of different 

surface forms. Notably, the finding that both V3 and LO represent shape skeletons across 

changes in surface form provides further evidence that skeletal coding in these regions 

cannot be accounted for by low-level shape properties such as contours and component 

parts.

But might another model of visual similarity account for these results? Here we conducted 

a similar regression analysis as that conducted above (neural RDMs ~ f [Skeleton ∪ GBJ 

∪ GIST ∪ HMAX ∪ AlexNet]) but now including subject as the random effect because 

fewer object pairs were involved. This analysis revealed that the skeletal model explained 

the greatest amount of variance in both V3 (β = 0.24, p < .001) and LO (β = 0.28, p < .001; 

see Supplemental Table 1 for variance explained by the other models). Thus, not only are V3 

and LO sensitive to object skeletons, but these skeletal representations in these regions are 

also invariant to changes in surface form.

Are V3 and LO predictive of participants’ similarity judgments of objects?

Previous research has shown that shape skeletons are predictive of human participants’ 

behavioral judgments of object similarity (Ayzenberg and Lourenco, 2019; Destler et al., 

2019; Lowet et al., 2018). Our neuroimaging results suggest that these judgments may 

be supported by areas V3 and LO. Here we directly tested this possibility by examining 

whether the response patterns of V3 and LO explain unique variance in humans’ judgments 

of object similarity.

Behavioral RDMs for the present objects were generated using discrimination data from 

Ayzenberg and Lourenco (2019). Using linear regression analyses, we first tested whether 

a model of skeletal similarity explained unique variance in behavioral judgments, after 

controlling for other models of visual similarity (GBJ, GIST, HMAX, AlexNet). We found 

that the skeletal model explained the greatest amount of variance in participants’ judgments 

(VPA = 20.5%, β = 0.85, p < .001), replicating Ayzenberg and Lourenco (2019; see Fig. 

2C). Next, we tested whether the response profiles of V3 and LO were also predictive of 

the behavioral RDM. These analyses revealed significant correlations for both regions and 

participants’ judgments: V3, r = 0.81, p < .001; LO, r = 0.46, p < .001.
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In a final analysis, we examined the specificity of V3 and LO in explaining participants’ 

behavioral judgments by testing whether another region could explain this effect. We tested 

whether V3 and LO explained unique variance in participants’ judgments by conducting 

separate regression analyses in which the predictors were either V3 and the other early 

visual regions (V1, V2, V4) or LO and the other high-level visual regions (pFs, EBA, FBA). 

The behavioral RDM was the dependent variable in both cases. These analyses revealed that 

V3 (VPA = 10%, β = 0.83, p = .002) and LO (VPA = 70%, β = 0.70, p < .001) explained 

unique variance in participants’ similarity judgments, even when controlling for other early- 

and high-level visual regions, respectively.

What role do other models of visual similarity play in the visual processing of objects?

Although the skeletal model was predictive of the response profiles of V3 and LO, even 

across different surface forms, one might ask what role the other models of visual perception 

play in the neural processing of objects. For example, previous research has shown that other 

models of visual similarity account for unique variance in participants’ object similarity 

judgments (Ayzenberg and Lourenco, 2019; Cadieu et al., 2014; Schrimpf et al., 2018). 

Linear regression analyses revealed that the Gabor-jet model, which approximates early 

visual neurons, accounted for unique variance in the response profile of V2 (β = 0.44, p = 

.031), but not other regions. Likewise, HMAX, which may approximate complex cells in 

extrastriate visual cortex, explained significant variance in V2 (β = 0.24, p = .009), V3 (β = 

0.26, p = .007), and V4 (β = 0.23, p = .027). We also found that different layers of AlexNet 

explained significant variance in the ROIs—namely, AlexNet-conv5 explained significant 

variance in V2 (β = 0.35, p = .024) and V4 (β = 0.46, p = .011) and AlexNet-fc7 explained 

significant variance in LO (β = 0.35, p = .020). None of the models were predictive of the 

response profiles of V1, pFs, EBA, or FBA (ps > .070; see Table 1). Thus, the predictive 

power of these models of visual processing is largely consistent with the hypothesized 

regions they are meant to approximate.

5. General discussion

In the present study, we examined how shape skeletons are represented neurally. We found 

that a model of skeletal similarity was predictive of the response pattern in V3 and LO. 

Moreover, and crucially, skeletal representations in these regions could not be explained by 

low-, mid-, or high-level image properties, as described by other computational models of 

vision, nor by representations based on contours or component parts (i.e., surface forms) 

of the objects. These results provide novel neural evidence for the processing of shape 

skeletons in V3 and LO.

The finding of skeletal processing in V3 is consistent with human neuroimaging studies 

showing its involvement in perceptual organization (Sasaki, 2007). Indeed, V3 has been 

consistently implicated in creating shape percepts (Caplovitz et al., 2008; McMains and 

Kastner, 2010; Montaser-Kouhsari et al., 2007) and is the earliest stage of the visual 

hierarchy where symmetry structure has been decoded (Keefe et al., 2018; Sasaki et al., 

2005; Van Meel, Baeck, Gillebert, Wagemans and Op de Beeck, 2019). But how might 

shape skeletons arise in V3? One possibility is that shape skeletons reflect the response 
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profile of grouping cells (G-cells), which play an important role within neural models of 

perceptual organization. More specifically, these models suggest that perceptual organization 

is accomplished by border ownership cells (B-cells) in V2, which selectively respond to 

the contours of a figure (rather than the background), as well as G-cells in the subsequent 

visual region (e.g., V3), which coordinate the firing of B-cells via top-down connections 

and help to specify the contours that belong to the same figure (von der Heydt, 2015; Zhou, 

Friedman, & von der Heydt, 2000). Interestingly, G-cells exhibit properties associated with 

shape skeletons. For example, G-cells specify the relations between contours, which may 

allow the visual system to determine an object’s shape despite noisy or incomplete visual 

information (Craft, Schütze, Niebur, & von der Heydt, 2007; Martin & von der Heydt, 

2015). Moreover, the response profile of G-cells within a shape corresponds to the points 

of the shape’s skeleton (Craft et al., 2007), as would be expected if they implement a 

skeletal computation. Indeed, pruned shape skeletons, resembling those extracted from 2D 

shapes by human participants (Ayzenberg et al., 2019), can be generated using a model of 

perceptual organization that incorporates the response profile of G-cells (Ardila, Mihalas, 

von der Heydt and Niebur, 2012).

Nevertheless, one might ask why we did not find evidence of skeletal representations in 

either V2 or V4, given that these regions are also frequently implicated in perceptual 

organization (Cox et al., 2013; McMains and Kastner, 2010; Zhou et al., 2000), particularly 

in electrophysiology studies with monkeys (von der Heydt, 2015). First, if shape skeletons 

reflect the response profile of G-cells, then they would not arise in V2, which is primarily 

comprised of B-cells. Moreover, G-cells are thought to arise in the visual region directly 

following V2 (Craft et al., 2007; Martin & von der Heydt, 2015) which, in humans, is V3 

but, in monkeys, is often delineated as V4 (DiCarlo et al., 2012; Gross et al., 1993; Serre 

et al., 2007). Studies have shown that V3 in humans is proportionally much larger than 

in monkeys and there is debate regarding whether monkeys have a human-like V3 at all 

(Arcaro and Kastner, 2015; but, see Brewer et al., 2002). Most relevant here is the fact that 

few studies on perceptual organization with monkeys have recorded from V3. Instead, these 

studies primarily focus on V2 and V4 (Hegdé and Van Essen, 2006; Poort et al., 2012; Zhou 

et al., 2000). Given that we found evidence of skeletal representations in V3, an intriguing 

possibility is that V3 may be the locus of G-cells and that skeletal representations within V3 

may be an emergent property of G-cell responses.

We also found evidence of shape skeletons in LO, which is consistent with a role for 

skeletons in object recognition. Much work has illustrated the importance of LO in using 

shape for object recognition (Chouinard et al., 2009; Grill-Spector et al., 2000). This region 

has been shown to be particularly sensitive to object-centered shape information and is 

tolerant to some viewpoint changes and border perturbations (Grill-Spector et al., 2001; 

Grill-Spector et al., 1998). Our results suggest that LO may achieve such invariance by 

incorporating a skeletal description of shape, which provides a common format by which to 

compare shapes across variations in contours and component parts. Importantly, our results 

are consistent with electrophysiology work in monkeys in which the skeletal structure of 

3D objects can be decoded from monkey IT across changes in both object orientation and 

surface form (Hung et al., 2012). Our findings are also consistent with patient studies in 

which damage to LO results in a specific impairment perceiving the spatial relations of 
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component parts, but not the parts themselves, as would be predicted by a skeletal model 

(Behrmann et al., 2006; de-Wit et al., 2013; Konen et al., 2011). Building on these studies, 

the present work provides direct evidence of skeletal representations in human LO and, 

crucially, demonstrates that such representations cannot be accounted for by other models of 

visual processing.

Interestingly, we did not find evidence of skeletal representations in another object-selective 

region, namely pFs. This finding may reflect a division of labor between LO and pFs, 

following the posterior-to-anterior anatomical gradient of shape-to-category selectivity in the 

ventral stream (Bracci and Op de Beeck, 2016; Dilks et al., 2011; Freud et al., 2017). More 

specifically, many studies have illustrated that shape selectivity peaks in posterior regions of 

the ventral stream and decreases in higher-level anterior regions (Brincat & Connor, 2004, 

2006; Freud et al., 2017). By contrast, sensitivity to semantic category-level information, 

and other non-shape visual information, progressively increases in anterior regions of the 

temporal lobe (Barense et al., 2007; Behrmann et al., 2016). Given that skeletal models are 

exclusively descriptions of shape, such that they do not take semantic content into account, it 

follows that we did not find evidence of shape skeletons in pFs. Nevertheless, this response 

profile could reflect the relatively artificial nature of our objects. Future research might test 

whether the shape skeleton model explains unique variance in the response profile of pFs 

when familiar objects are used.

Although we found that HMAX was predictive of the response profile in V3 and that 

AlexNet-fc7 was also predictive in LO, the predictive value of a skeletal model in V3 

and LO held even when controlling for other models. Not only are these other models 

representative of different levels of visual processing, but they also approximate different 

theories of object recognition, such as those based on image-level similarity (i.e., Gabor-jet 

and HMAX; Tarr and Bülthoff, 1998) and feature descriptions (i.e., AlexNet; Ullman, Assif, 

Fetaya and Harari, 2016; Yamins et al., 2014). Moreover, by changing the object’s surface 

forms, we changed the non-accidental properties of the objects’ component parts, thereby 

allowing for a test of component description theories (Biederman, 1987; Kayaert et al., 

2003). These results directly address concerns of previous studies that skeletal coding could 

be accounted for by other models of vision (e.g., Lescroart and Biederman, 2012) and 

provide more direct evidence of skeletal coding in the neural processing of objects in V3 and 

LO.

Nevertheless, there are important caveats to the current findings. We used novel 3D objects 

because they allowed us to systematically control both the object skeletons and other visual 

features. Yet a potential concern with these stimuli is whether our results would generalize 

to real objects. Although we did not test this possibility directly, we predict generalizability 

given that participants readily discriminated these stimuli in speeded contexts, suggesting 

that perception of our stimuli evoke processes similar to those of real objects (DiCarlo et 

al., 2012). Indeed, two recent studies demonstrated unique selectivity to skeletal information 

in natural images within the ventral visual stream (Papale et al., 2019, 2020). Moreover, 

although one might argue that our stimuli made the skeleton especially salient, not typical 

of other objects, we would point out that other models of vision could readily discriminate 
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these objects and that the different surface forms directly mimic real world contexts in which 

different objects with the same skeletons vary in external features.

We would also acknowledge that the spatial and temporal resolution of fMRI places 

important qualifiers on these conclusions. First, although our results were consistent across 

different ROI sizes and localization approaches (see Supplemental Data), it is nevertheless 

possible that shape skeletons are represented in sub-populations of neurons within each 

region and that these regions have secondary functions. For instance, V3 and LO have been 

shown to be sensitive to other types of visual cues, including motion (Dupont et al., 1997; 

Felleman and Van Essen, 1987) and depth (Parker, 2007; Welchman, 2016). Moreover, our 

own results illustrate how multiple models explain unique variance within the same region. 

Second, although we found that skeletal sensitivity peaks in V3 and LO, our searchlight 

results nevertheless suggest that skeletal sensitivity may exist along a gradient within the 

visual hierarchy much like shape sensitivity more generally (Freud et al., 2017; Freud et 

al., 2019). Third, our data cannot address whether skeletal representations in these regions 

arise via feedforward or feedback processes. Indeed, feedback processes are known to be 

important for both perceptual organization (Mannion et al., 2010; Murray et al., 2002; 

Wokke et al., 2013) and invariant object recognition (Kar et al., 2019; Tang et al., 2018). 

A more complete understanding of V3 and LO, along with experiments designed to test the 

causal role of shape skeletons in human vision, will be needed to confirm the claims of the 

present research.

In conclusion, our work highlights the unique role that shape skeletons play in the neural 

processing of objects. These findings not only enhance our understanding of how objects 

may be represented during visual processing, but they also shed light on the computations 

implemented in V3 and LO. Lastly, our results underscore the importance of incorporating 

shape information, and skeletons in particular, into models of object recognition, which 

currently are not implemented by most state-of-the-art CNNs (Baker et al., 2018; Geirhos et 

al., 2018).
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Fig. 1. 
An illustration of the shape skeleton for a 2D airplane with (B) and without (A) perturbed 

contours. A strength of a skeletal model is that it can describe an object’s shape structure 

across variations in contour. Skeletons computed using the ShapeToolbox (Feldman and 

Singh, 2006).
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Fig. 2. 
Experimental stimuli and multi-dimensional scaling (MDS) plots illustrating the similarities 

between objects as computed by a skeletal model and as judged by human participants. 

(A) Six objects with unique skeletal structures were generated. Each object was rendered 

with two surface forms to change the objects’ component parts without disrupting the 

skeleton. (B) Objects were selected in pairs using the skeletal model, such that within- and 

between-pair skeletal similarity were approximately matched across objects. (C) Human 

similarity judgments closely align with skeletal similarity. Surface form similarity is not 

illustrated in the MDS plot.
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Fig. 3. 
Group averaged ROIs displayed in MNI standard space. Each color corresponds to a 

different ROI. Early visual cortex ROIs (V1–V4) were defined using probabilistic maps. 

Higher-level visual regions (LO, pFs, EBA, FBA) were functionally defined in each 

participant using an independent localizer. Numerical values correspond to the MNI 

coordinates (x, y, z) of each example slice. Primary data analyses were conducted in each 

participant’s native space. (For interpretation of the references to color in this figure legend, 

the reader is referred to the Web version of this article.)
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Fig. 4. 
Representational dissimilarity matrices (RDMs) for (A) primary regions of interest (ROIs), 

as well as (B) models and model layers.
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Fig. 5. 
Bar plot displaying the correlations between the skeletal model and the multivariate response 

pattern in each ROI. The model of skeletal similarity was significantly correlated with 

response patterns in V1–V4 and LO. The skeletal model was not predictive of the response 

pattern in pFs, EBA, or FBA. Error bars were calculated by resampling the data 10,000 

times (with replacement) and computing a bootstrapped SE. Blacks circles indicate the noise 

ceiling for each ROI (see also Table 1). Note that the model correlation in V1 exceeds 

the noise ceiling. Although rare, model fits can exceed noise ceilings, particularly for 

early visual regions where there may be more variability across participants (c.f. Xu and 

Vaziri-Pashkam, 2021).
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Fig. 6. 
Variance partitioning results. Bar plot displaying the percentage of unique variance 

accounted for by each model in (A) V3 and (B) LO. A model of skeletal similarity explained 

unique variance in both V3 and LO, but not in other cortical regions. For AlexNet, the best 

correlated layer for each ROI was used. Error bars represent bootstrapped SE.
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Fig. 7. 
Unique variance explained by the skeletal model displayed on a whole-brain flat-map. 

Colored regions indicate significantly positive clusters (FDR corrected, p < .05).
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