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Abstract

Background: Few studies have examined prognostic outcomes-associated molecular signatures other than overall
survival (OS) for gastric cancer (GC). We aimed to identify DNA methylation biomarkers associated with multiple
prognostic outcomes of GC in an epigenome-wide association study.

Methods: Based on the Cancer Genome Atlas (TCGA), DNA methylation loci associated with OS (n = 381), disease-
specific survival (DSS, n = 372), and progression-free interval (PFI, n = 383) were discovered in training set subjects
(false discovery rates < 0.05) randomly selected for each prognostic outcome and were then validated in remaining
subjects (P-values < 0.05). Key CpGs simultaneously validated for OS, DSS, and PFI were further assessed for disease-
free interval (DFI, n = 247). Gene set enrichment analyses were conducted to explore the Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes pathways simultaneously enriched for multiple GC prognostic outcomes.
Methylation correlated blocks (MCBs) were identified for co-methylation patterns associated with GC prognosis.
Based on key CpGs, risk score models were established to predict four prognostic outcomes. Spearman correlation
analyses were performed between key CpG sites and their host gene mRNA expression.

Results: We newly identified DNA methylation of seven CpGs significantly associated with OS, DSS, and PFI of GC,
including cg10399824 (GRK5), cg05275153 (RGS12), cg24406668 (MMP9), cg14719951(DSC3), and cg25117092
(MED12L), and two in intergenic regions (cg11348188 and cg11671115). Except cg10399824 and cg24406668, five of
them were also significantly associated with DFI of GC. Neuroactive ligand-receptor interaction pathway was
suggested to play a key role in the effect of DNA methylation on GC prognosis. Consistent with individual CpG-
level association, three MCBs involving cg11671115, cg14719951, and cg24406668 were significantly associated with
multiple prognostic outcomes of GC. Integrating key CpG loci, two risk score models performed well in predicting
GC prognosis. Gene body DNA methylation of cg14719951, cg10399824, and cg25117092 was associated with their
host gene expression, whereas no significant associations between their host gene expression and four clinical
prognostic outcomes of GC were observed.

Conclusions: We newly identified seven CpGs associated with OS, DSS, and PFI of GC, with five of them also
associated with DFI, which might inform patient stratification in clinical practices.
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Introduction
Gastric cancer (GC) is the fifth most common cancer and
third leading cause of cancer deaths worldwide [1]. A consid-
erable proportion of GC patients are diagnosed at advanced
stages and their prognosis remains poor [2]. Moreover, GC
patients with same clinical stage may develop diverse prog-
nostic outcomes due to the epigenetic or genetic host hetero-
geneities. Hence, identifying molecular signatures to predict
GC prognosis would be warranted for tailored clinical proce-
dures. However, established molecular biomarkers which
could predict the prognosis of GC are still very limited.
DNA methylation is a covalent chemical modification,

which results in the addition of a methyl (CH3) group at the
carbon 5 position of the cytosine ring [3]. Alterations in
DNA methylation, possessing several merits, such as high
frequency in tumor, easy detection, and stability in fixed sam-
ples over time, have been considered as promising targets for
developing prognostic biomarkers [4]. Based on the Cancer
Genome Atlas (TCGA), several studies have identified DNA
methylation-based biomarkers associated with overall sur-
vival (OS) of GC patients, with three of them based on differ-
entially methylated genes between GC tumor and normal
tissue [5–7] and the other one not appropriately account for
multiple hypothesis testing [8]. In addition, although OS is
the most clinically relevant endpoint with the least equivocal
definition, solely using OS as the prognostic endpoint may
not be sufficient to mirror all perspectives of tumor progno-
sis, as patient deaths may be due to GC or other causes [9].
Disease-specific survival (DSS) therefore would possess
greater relevance to GC-specific biology and therapeutic im-
pact. In addition, given the relatively short follow-up period
of GC (median follow-up time = 14months) in TCGA, the
number of deaths at the end of follow-up may be insufficient
to reveal a difference in deaths among comparison groups
[10, 11]. Progression-free interval (PFI) and disease-free inter-
val (DFI) have therefore been considered as better choices of
surrogate clinical endpoints. To our best knowledge, few
studies have identified DNA methylation-based biomarkers
associated with prognostic outcomes other than OS of GC
patients.
In the present epigenome-wide association study, we

comprehensively examined the association between DNA
methylation and four prognostic outcomes of GC, includ-
ing OS, DSS, PFI, and DFI of GC patients in TCGA.

Materials and methods
Data sources and preprocessing
DNA methylation profile (IDAT files) from 395 GC pa-
tients were obtained using R/Bioconductor package

TCGAbiolinks [12]. In TCGA, DNA methylation of can-
cer tissue from all patients were assayed using the Infi-
nium HumanMethylation450 BeadChip arrays. A TCGA
online tool was used to estimate batch effect (https://
bioinformatics.mdanderson.org/BatchEffectsViewer/),
which would be presented if the dispersion separability
criterion (DSC) value was greater than 0.5 and the DSC
P-value was less than 0.05. Data importation, annotation,
and quality control were conducted in the R/Bioconduc-
tor package minfi [13]. We used R/Bioconductor pack-
age SeSAMe to perform background correction and dye-
bias correction [14, 15]. In brief, normal-exponential
using out-of-band probes (NOOB) background correc-
tion was utilized to account for additive error to the
measure of signal intensities due to background fluores-
cence. Non-linear dye-bias correction was performed to
control for the different average intensities in the red
and green channels of Type II probes. In addition, P-
value with out-of-band (OOB) array hybridization
(POOBAH) method was applied to address artifacts
which reflected failed hybridization to target DNA re-
spectively. For probe filtering, we excluded probes for
which the detection P-value was bigger than 0.05 for
more than 10% of the remaining samples, those on the
sex chromosomes, those mapped to multiple regions in
the genome, and those harboring known single-
nucleotide polymorphisms with a minor allele frequency
greater than 5% [16]. After data preprocessing, a total of
411,408 CpG sites were kept in our analysis, including
163,453 in promoter, 139,213 in gene body, 14,896 in
3’UTR, and 93,846 in intergenic regions.
Demographical and clinical characteristics of GC pa-

tients, including age at initial pathologic diagnosis, gen-
der, ethnicity, histological grade, anatomic region, family
history of GC, Helicobacter pylori infection, radiation
therapy, and the tumor, lymph nodes, and metastasis
(TNM) stage were obtained using R/Bioconductor pack-
age TCGAbiolinks [12]. We further imputed missing
ethnicities using R/Bioconductor package SeSAMe [15].
Four prognostic outcomes, including OS, DSS, PFI, and
DFI of GC, were derived from those defined in a previ-
ous study [11]. In short, using the date of diagnosis of
primary GC as the beginning date, OS was defined as
the period until the date of death from any cause; DSS
was defined as the period until the date of GC-specific
death; PFI was defined as the period until the date of the
first occurrence of a new GC; DFI was defined as the
period until the date of the first new GC progression
event subsequent to the ascertainment of a patient’s
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disease-free status after their initial GC diagnosis and
treatment. The GC-free status of patients must be con-
firmed in order for them to be qualified for calculating
DFI.

Identification of key CpG sites associated with four
clinical endpoints
For all 411,408 CpG sites, we first examined the associ-
ation between DNA methylation of each individual CpG
site and OS of GC. GC patients with information on OS
were randomly divided into training and validation sets
(50:50). For CpG sites significantly associated with OS in
the training set (false discovery rate (FDR) < 0.05 consid-
ering multiple comparisons) [17], we sought to replicate
the associations in the validation sets (P < 0.05). For
those replicated CpG loci, associations with DSS and PFI
of GC were then examined. GC patients with informa-
tion on DSS or PFI were randomly divided into training
and validation sets (50:50) for the assessment of each
specific outcome. We then selected key CpG sites sig-
nificantly associated with OS, DSS, and PFI in the re-
spective training and validation sets, which were further
assessed for the association with DFI. Due to the diffi-
culty of ascertaining GC-free status of patients after their
initial diagnosis and treatment, a large body of patients,
especially for those in stage IV, were excluded in DFI
analysis. We therefore did not seek to divide it into
training and validation sets for statistical power consid-
eration. Cox proportional hazard analyses were per-
formed to calculate hazard ratios (HRs) and 95%
confidence intervals (CIs) for the association between
each individual CpG site and clinical endpoint, adjusting
for age at initial pathologic diagnosis (continuous) and
gender. For those CpG sites significantly associated with
clinical endpoints, sensitivity analyses were conducted to
test the robustness of the associations by additionally
adjusting for other potential confounders, including eth-
nicity (Asian, Black or African American, or White),
TNM stage (T1–2, T3–4, or unknown; N0–1, N2–3, or
unknown; M0, M1, or unknown), histological grade
(G1–2, G3, or unknown), anatomic neoplasm region
(antrum/distal, cardia/proximal, fundus/body, gastro-
esophageal junction, or unknown), radiation therapy
(yes, no, or unknown), H. pylori infection (yes, no, or un-
known), and family history of GC (yes, no, or unknown).
We did not find violations of proportional hazard as-
sumptions for all Cox proportional hazard models.

Gene set enrichment analysis
Gene set enrichment analyses (GSEA) were conducted
to explore the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
which simultaneously enriched for multiple GC prog-
nostic outcomes using DNA methylation data [18, 19].

The analyses were conducted utilizing functional class
scoring approach, which overcomes the drawbacks of
over-representation analysis, another commonly used
method for GSEA [20]. As most of the CpG sites signifi-
cantly associated with GC prognosis in our study were
in gene body, we focused on CpG sites located in gene
body region only for GSEA. All preprocessed CpG sites
in gene body region were ranked based on their Cox re-
gression P-values with GC prognosis. Gene set level P-
values were computed through permutation using R/
Bioconductor package methylGSA [21]. The number of
CpG sites located in one gene was adjusted in the logis-
tic model to avoid length bias. Gene sets were defined as
those containing at least 10 genes and at most 500
genes. FDR less than 0.05 was set as the criteria defining
significantly enriched GO or KEGG terms.

Identification of methylation correlated blocks (MCBs)
based on key CpGs
In addition to individual CpG loci-level analyses, we also
examined the association for a cluster of CpG sites located
in the same genomic region based on the concept of gen-
etic linkage disequilibrium. To investigate whether key
CpG sites had co-methylation patterns with their adjacent
CpG sites and whether these patterns were associated with
GC prognosis, Pearson correlation analyses were con-
ducted between DNA methylation level of key CpG sites
and their adjacent loci positioned within their flanking
areas of one kilobase up- or downstream. Pearson correl-
ation coefficients less than 0.5 indicated boundaries of un-
correlated methylation [22]. For adjacent loci that were
not separated by boundaries, we continued examining the
correlation between DNA methylation level of these loci
and their neighboring loci located within their flanking
areas. All CpG sites not separated by the boundary were
combined into methylation correlated blocks (MCBs) [22].
The mean β values of all CpG sites within one MCB was
defined as the methylation value of that MCB. The R/Bio-
conductor co-MET package was utilized to visualize the
co-methylation patterns of identified MCBs [23]. We then
examined the association between those identified MCBs
and four clinical endpoints using Cox regression analyses
adjusting for age at initial pathologic diagnosis (continu-
ous) and gender. For significant MCBs, sensitivity analyses
were also performed, similar to those conducted for indi-
vidual CpG sites.

Establishment of two risk score models
Incorporating key CpG sites associated with GC progno-
sis, risk score models to predict the risk of specific prog-
nostic outcomes were constructed, which were defined
as the sum of auto-scaled DNA methylation level of each
CpG weighted by the regression coefficients obtained
from the Cox regression model in the whole dataset:
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Risk score ¼ β1 X1 þ β2X2 þ β3 X3 þ……þ βn Xn;

GC patients were categorized into low-, median-, and
high- risk score groups based on the tertile of their risk
scores. Kaplan-Meier survival curves were drawn and
log-rank tests were performed to compare the survival
probabilities among different risk score groups.

Correlation between DNA methylation and mRNA
expression
To explore the potential regulating effect of DNA methy-
lation on host gene expression, Spearman correlation ana-
lyses were performed between DNA methylation of those
key CpG sites and their host gene mRNA expression. Nor-
malized encoding genes’ mRNA expression data (legacy
data) based on RNA-Seq (Illumina RNA-Seq HiSeq
platform) was downloaded and preprocessed using R/Bio-
conductor package TCGAbiolinks [12]. Both mRNA
expression level and DNA methylation level (β value) were
auto-scaled before down-stream analysis. P-value < 0.05
was set as the criteria for the significant correlation. For
those genes whose DNA methylation was correlated with
their mRNA expression, the association of their mRNA
expression with four clinical endpoints of GC were then
examined using Cox regression analysis.
All analyses were performed and visualized using R

version 4.0.2.

Results
Major characteristics of GC patients in TCGA
In the present study, we included GC patients having
both DNA methylation profiles and intact follow-up in-
formation of OS (n = 381), DSS (n = 372), PFI (n = 383),
and DFI (n = 247). During the follow-up, 149, 99, 137,
and 46 GC patients developed corresponding clinical
endpoints of OS (death from any cause), DSS (GC-spe-
cific death), PFI (the first occurrence of a new GC
event), and DFI (the first new GC progression event), re-
spectively. Major characteristics of included GC patients
were shown in Table 1.

Identification of key CpG sites associated with four
clinical endpoints
According to TCGA Batch Effect Viewer, no significant
batch effect was observed (DSC = 0.307, DSC P-value = 5
× 10−4). After data preprocessing, 411,408 CpG sites were
kept in our analysis. By performing the Cox regression
analyses for all preprocessed CpGs, we identified a total of
488 CpG sites significantly associated with OS (FDR < 0.05
in the training set and P-value < 0.05 in the validation set).
Among them, seven key CpG sites were simultaneously
associated with DSS and PFI in both training (FDR < 0.05)
and validation sets (P-value < 0.05), including cg10399824
(G protein-coupled receptor kinase 5, GRK5), cg05275153

(regulator of G protein signaling 12, RGS12), cg24406668
(matrix metallopeptidase 9, MMP9), cg14719951 (desmo-
collin 3, DSC3), and cg25117092 (mediator complex sub-
unit 12 L, MED12L/MED12) and two CpG loci
(cg11348188 and cg11671115) located within intergenic
regions. Of them, DNA hypermethylation of three CpG
sites, including cg11348188 and cg11671115 in intergenic
regions, and cg25117092 in gene body was significantly as-
sociated with unfavorable OS, DSS, and PFI of GC,
whereas DNA hypermethylation of cg05275153,
cg14719951, cg10399824, and cg24406668 in gene body
was significantly associated with favorable OS, DSS, and
PFI of GC. These CpG loci were further assessed for DFI
of GC. Except for cg10399824 and cg24406668, DNA
methylation level of the other five CpG sites was also sig-
nificantly associated with DFI. The directions of associa-
tions between seven key CpG sites and all four clinical
endpoints remained consistent (Table 2).

GSEA based on CpGs within gene body
Since five key CpG sites that had their host gene informa-
tion were all located in gene body, GSEA was conducted
exclusively based on all CpG sites located in gene body to
elucidate the biological mechanisms of gene body DNA
methylation on GC prognosis. A total of five GO terms
were enriched in all four clinical endpoints according to
their original P-values, but none remained simultaneously
significant for all four endpoints after multiple comparison
adjustment. Four KEGG pathways were simultaneously
enriched in OS, DSS, and PFI, with one pathway involving
neuroactive ligand-receptor interaction remaining consist-
ently significant even after multiple comparison adjustment
(Table 3, Supplementary Table S1).

Identification of MCBs associated with GC prognosis
Investigating the potential co-methylation patterns fo-
cusing on seven key CpG sites, we identified three
MCBs, including one consisting of cg11671115 and
cg19989498 in the intergenic region, another contain-
ing cg14719951 and 12 adjacent CpG sites in DSC3
gene body, and the third one including cg24406668
and seven adjacent CpG sites in MMP9 gene body.
Consistent with individual CpG-level association,
DNA methylation of these three MCBs was signifi-
cantly associated with multiple prognostic outcomes
of GC (Fig. 1).

Establishment of two risk score models
Based on DNA methylation of the seven key CpG sites
associated with OS, DSS, and PFI of GC, a risk score
models was established:
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Table 1 Major Characteristics of GC patients with multiple clinical prognostic endpoints in TCGA

OS DSS PFI DFI

Training Validation Training Validation Training Validation

Total number, No 191 190 186 186 192 191 247

Ethnicity, No. (%)a

Asian 42 (22.0) 41 (21.6) 38 (20.4) 42 (22.6) 46 (24.0) 37 (19.4) 62 (25.1)

Black or African American 9 (4.7) 5 (2.6) 6 (3.2) 8 (4.3) 10 (5.2) 5 (2.6) 7 (2.8)

White 140 (73.3) 144 (75.8) 142 (76.3) 136 (73.1) 136 (70.8) 149 (78.0) 178 (72.1)

Age, mean (SD) 28.9 (10.7) 29.2 (10.3) 29.1 (10.9) 28.7 (10.1) 29.1 (10.5) 29.0 (10.5) 29. 3 (10.6)

Gender, No. (%)

Male 125 (65.4) 126 (66.3) 123 (66.1) 121 (65.1) 133 (69.3) 120 (62.8) 152 (61.5)

Female 66 (34.6) 64 (33.7) 63 (33.9) 65 (34.9) 59 (30.7) 64 (37.2) 95 (38.5)

Clinical stage, No. (%)

Stage I 21 (11.0) 27 (14.2) 27 (14.5) 20 (10.8) 29 (15.1) 20 (10.5) 40 (16.2)

Stage II 65 (34.0) 56 (29.5) 60 (32.3) 58 (31.2) 61 (31.8) 60 (31.4) 97 (39.3)

Stage III 85 (44.5) 85 (44.7) 77 (41.4) 88 (47.3) 80 (41.7) 91 (47.6) 106 (42.9)

Stage IV 16 (8.4) 15 (7.9) 14 (7.5) 17 (9.1) 18 (9.4) 13 (6.8) –

Unknown 4 (2.1) 7 (3.7) 8 (4.3) 3 (1.6) 4 (2.1) 7 (3.7) 4 (1.6)

Histologic grade, No. (%)

G1–2 67 (35.1) 75 (39.5) 76 (40.9) 63 (33.9) 73 (38.0) 70 (36.6) 91 (36.8)

G3 120 (62.8) 110 (57.9) 106 (57.0) 118 (63.4) 113 (58.9) 118 (61.8) 151 (61.1)

Unknown 4 (2.1) 5 (2.6) 4 (2.2) 5 (2.7) 6 (3.1) 3 (1.6) 5 (2.0)

Radiation therapy, No. (%)

Yes 29 (15.2) 21 (11.1) 19 (10.2) 31 (16.7) 30 (15.6) 22 (11.5) 40 (16.2)

No 127 (66.5) 123 (64.7) 129 (69.4) 120 (64.5) 119 (62.0) 131 (68.6) 187 (75.7)

Unknown 35 (18.3) 46 (24.2) 38 (20.4) 35 (18.8) 43 (22.4) 38 (19.9) 20 (8.1)

H. pylori infection, No. (%)

Yes 11 (5.8) 9 (4.7) 9 (4.8) 11 (5.9) 7 (3.6) 13 (6.8) 15 (6.1)

No 84 (44.0) 80 (42.1) 79 (42.5) 80 (43.0) 90 (46.9) 75 (39.3) 93 (37.7)

Unknown 96 (50.3) 101 (53.2) 98 (52.7) 95 (51.1) 95 (49.5) 103 (53.9) 139 (56.3)

Family history of GC, No. (%)

Yes 11 (5.8) 6 (3.2) 8 (4.3) 9 (4.8) 8 (4.2) 10 (5.2) 11 (4.5)

No 158 (82.7) 157 (82.6) 155 (83.3) 154 (82.8) 162 (84.4) 153 (80.1) 203 (82.2)

Unknown 22 (11.5) 27 (14.2) 23 (12.4) 23 (12.4) 22 (11.5) 28 (14.7) 33 (13.4)

Anatomic subdivision (%)

Antrum/Distal 77 (40.3) 64 (33.7) 65 (34.9) 71 (38.2) 71 (37.0) 70 (36.6) 92 (37.2)

Cardia/Proximal 24 (12.6) 28 (14.7) 34 (18.3) 18 (9.7) 27 (14.1) 25 (13.1) 28 (11.3)

Fundus/Body 66 (34.6) 72 (37.9) 59 (31.7) 76 (40.9) 70 (36.5) 68 (35.6) 99 (40.1)

Gastroesophageal Junction 19 (9.9) 22 (11.6) 21 (11.3) 19 (10.2) 19 (9.9) 23 (12.0) 23 (9.3)

Unknown 5 (2.6) 4 (2.1) 7 (3.8) 2 (1.1) 5 (2.6) 5 (2.6) 5 (2.0)

Pathologic T, No. (%)

T1–2 44 (23.0) 48 (25.3) 52 (28.0) 38 (20.4) 49 (25.5) 44 (23.0) 63 (25.5)

T3–4 147 (77.0) 142 (74.7) 134 (72.0) 148 (79.6) 143 (74.5) 147 (77.0) 184 (74.5)

Pathologic N, No. (%)

N0–1 114 (59.7) 103 (54.2) 111 (59.7) 99 (53.2) 109 (56.8) 109 (57.1) 164 (66.4)

N2–3 74 (38.7) 82 (43.2) 70 (37.6) 84 (45.2) 81 (42.2) 76 (39.8) 78 (31.6)
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Model 1 ¼ −0:301ð Þcg05275153
þ −0:436ð Þ cg10399824
þ 0:375ð Þcg11348188
þ 0:348ð Þcg11671115
þ −0:335ð Þcg14719951
þ −0:363ð Þcg24406668
þ 0:353ð Þcg25117092

We also established a risk score model based on the
five CpG sites associated with DFI:

Model 2 ¼ −0:301ð Þcg05275153
þ 0:375ð Þcg11348188
þ 0:348ð Þcg11671115
þ −0:335ð Þ cg14719951
þ 0:353ð Þcg25117092

For both models, higher scores indicated worse
prognosis potential. After adjusting for all available,
potential confounders, both risk scores were inde-
pendently associated with corresponding clinical end-
points, with a HR (95% CI) per one score increase of
1.41 (1.24–1.60) for OS, 1.70 (1.44–1.99) for DSS,
1.49 (1.31–1.70) for PFI, and 1.76 (1.30–2.38) for DFI.
Kaplan-Meier survival curves showed that two models
performed well on predicting OS (log-rank P = 3
×10−7), DSS (P = 3 ×10−8), PFI (P = 3 ×10−8), and DFI
(P = 5 ×10−4) (Fig. 2). Integrating with all clinicopath-
ologic features, our risk score models achieved the
Harrell’s concordance index (C-index) of a mean
(standard deviation (SD)) of 0.770 (0.019) for OS,
0.794 (0.021) for DSS, 0.743 (0.023) for PFI, and
0.784 (0.030) for DFI, which outperformed in predic-
tion compared with models solely utilizing either clin-
icopathologic features or DNA methylation signatures.

Correlation analysis between DNA methylation and mRNA
expression
For the above highlighted key CpG sites in the gene
body, we examined the associations of their DNA

methylation level with host gene mRNA expression.
Gene body DNA hyper-methylation of cg14719951 (cor-
relation coefficient = − 0.42, P-value < 2.2 ×10−16) and
cg10399824 (correlation coefficient = − 0.40, P-value <
2.2 ×10−16) was inversely associated with mRNA expres-
sion of DSC3 and GRK5, respectively. On the contrary,
Gene body DNA hyper-methylation of cg25117092 (cor-
relation coefficient = 0.46, P-value < 2.2 ×10−16) was sig-
nificantly associated with increased mRNA expression of
MED12L. We did not find significant associations be-
tween the mRNA expression of these three genes and
four clinical prognostic outcomes of GC (Fig. 3).

Discussion
We comprehensively examined DNA methylation bio-
markers associated with multiple prognostic outcomes of
GC in an epigenome-wide association analysis based on
TCGA. Altered DNA methylation of seven newly reported
CpGs was significantly associated with OS, DSS and PFI of
GC, including cg10399824 (GRK5), cg05275153 (RGS12),
cg24406668 (MMP9), cg14719951(DSC3), and cg25117092
(MED12L), and two in intergenic regions (cg11348188 and
cg11671115). Except for cg10399824 and cg24406668, five of
them were also significantly associated with DFI of GC.
Combining the significant CpG sites, two risk score models
performed well in predicting GC prognosis. Consistent with
individual CpG-level associations, DNA methylation of three
MCBs involving cg11671115, cg14719951 and cg24406668
was significantly associated with multiple prognostic out-
comes of GC.
Genomic location of DNA methylation sites is cru-

cial for determining their potential biological func-
tions [4, 24]. It is well known that aberrant promoter
DNA hypermethylation could suppress gene expres-
sion [3]. The biological mechanisms of aberrant DNA
methylation in intergenic regions or gene body, how-
ever, remained overall unclear [4, 25]. In the current
study, cg11348188 and cg11671115 were located in
intergenic regions and the other five highlighted CpG

Table 1 Major Characteristics of GC patients with multiple clinical prognostic endpoints in TCGA (Continued)

OS DSS PFI DFI

Training Validation Training Validation Training Validation

Unknown 3 (1.6) 5 (2.6) 5 (2.7) 3 (1.6) 2 (1.0) 6 (3.1) 5 (2.0)

Pathologic M, No. (%)

M0 173 (90.6) 169 (88.9) 166 (89.2) 169 (90.9) 171 (89.1) 172 (90.1) 238 (96.4)

M1 9 (4.7) 13 (6.8) 12 (6.5) 10 (5.4) 11 (5.7) 11 (5.8) –

Unknown 9 (4.7) 8 (4.2) 8 (4.3) 7 (3.8) 10 (5.2) 8 (4.2) 9 (3.6)

Prognostic endpoints, No. (%)

Event 77 (40.3) 72 (37.9) 55 (29.6) 44 (23.7) 77 (40.1) 60 (31.4) 46 (18.6)

Censored 114 (59.7) 118 (62.1) 131 (70.4) 142 (76.3) 115 (59.9) 131 (68.6) 201 (81.4)

Abbreviations: GC gastric cancer, OS overall survival, DSS disease-specific survival, DFI disease-free interval, PFI progression-free interval
aMissing values of ethnicity were imputed using R package SeSAMe
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sites were located in gene body. Of them, DNA
hypermethylation of MED12L was associated with in-
creased mRNA expression, while hypermethylation of
DSC3 and GRK5 were associated with decreased
mRNA expression. Indeed, previous studies have also
reported the complex associations between gene body
hypermethylation and increased [4, 26] or decreased
gene expression [25, 27]. The reason for the opposite
directions of findings is unclear. Gene body DNA
methylation might increase transcription through
blocking the initiation of alternative promoters within
gene body or regulating the activities of repetitive
DNAs within the transcribed unit [24, 27]. In
addition, splicing or elongation of the ordered struc-
ture within the transcriptional unit, which was in-
duced by gene body DNA methylation, might also
increase transcriptional activity [26]. However, intra-
genic regions also contain many functional elements,
such as enhancers, transcription factor binding cites,
and repetitive elements, activation of which induced
by aberrant gene body DNA methylation could affect
host gene expression. In our study, DNA

hypermethylation of RGS12 and MMP9 were not cor-
related with host gene expression. Interestingly, previ-
ous studies on melanoma have reported gene body
DNA hypermethylation and increased mRNA expres-
sion of MMP9, suggesting possible cell-type specificity
of DNA methylation pattern [28, 29].
As aberrant promoter DNA hypermethylation could

suppress gene expression, it would be essential to exam-
ine the location of five key CpGs in gene body region
relative to their closest TSS, so that the effect of altered
methylation on gene expression and GC prognosis can
be interpreted reasonably. Except for cg1471995, the
other four CpGs are located more than 1500 bp to the
corresponding closest TSS, indicating that the gene body
methylation of these four CpGs may be less likely to
affect host gene expression as promoter. For cg1471995,
as it was located on the intron 1 of DSC3 with a distance
of 308 bp to the closest TSS, it might act as the pro-
moter regarding its effect on gene expression, which was
consistent with our findings that high methylation level
of cg14719951 was inversely associated with increased
mRNA expression of DSC3.

Table 3 Gene set enrichment analysis for gene body DNA methylation in relation to four clinical endpoints of GC patients in TCGA

ID Description Number of genes Number of unique genes OS DSS PFI DFI

P-
value

FDR P-
value

FDR P-
value

FDR P-
value

FDR

GOa

35267
NuA4 histone
acetyltransferase
complex

31 20 0.002 0.066 0.007 0.197 0.047 0.477 0.002 0.042

36019
Endolysosome 21 20 0.012 0.219 0.002 0.078 0.006 0.152 0.017 0.220

36020
Endolysosome
membrane

14 14 0.007 0.154 0.001 0.036 0.003 0.106 0.036 0.364

43189
H4/H2A histone
acetyltransferase
complex

31 20 0.002 0.066 0.007 0.197 0.047 0.477 0.002 0.042

44346
Fibroblast apoptotic
process

24 24 0.036 0.409 0.024 0.409 0.029 0.370 1.51 ×
10−4

0.008

KEGG

04080
Neuroactive ligand-
receptor interaction

272 272 1.24 ×
10−16

2.64 ×
10−14

2.32 ×
10−16

4.95 ×
10−14

3.44 ×
10−10

7.34 ×
10−8

1.000 1.000

04144
Endocytosis 201 201 0.005 0.324 0.026 0.923 0.027 0.645 0.194 0.858

04950
Maturity onset diabetes
of the young

25 25 0.037 0.901 0.010 0.634 0.008 0.329 1.000 1.000

05217
Basal cell carcinoma 55 55 0.017 0.712 0.011 0.634 0.035 0.749 1.000 1.000

Abbreviations: GC gastric cancer, OS overall survival, DSS disease-specific survival, DFI disease-free interval, PFI progression-free interval, HRs hazard ratios, CI
confidence interval, FDR false discovery rate
aEach GO annotation includes an evidence code to indicate how the annotation to a particular term is supported. If a gene is linked to a GO annotation by two
distinct evidence codes (e.g., Inferred from Direct Assay (IDA) and Inferred from Biological aspect of Ancestor (IBA)), it would be counted twice to the number of
genes enriched in that gene set
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We placed special interests on MED12L, DSC3, and
GRK5, the DNA methylation of which was significantly
associated with mRNA expression. Somatic mutations
and DNA methylation may commonly target the same
gene associated with cancer prognosis [30]. MED12L
somatic mutations have been identified in both familial
and sporadic GC as well as several other cancers [31,
32]. Promoter DNA hypermethylation of DSC3, which
suppressed host gene expression, has been associated
with poor OS of colorectal cancer and recurrence of
prostate cancer [33, 34]. The potential role of GRK5
DNA methylation in the progression/prognosis of cancer
has been rarely studied. Interestingly, MED12L, DSC3,
and GRK5 mRNA expression was not associated with
any GC prognostic outcome in our study. Therefore,
gene body DNA methylation might affect GC prognosis
not through regulating host gene expression, supporting
that the identification of associations between DNA
methylation and mRNA expression may not be prerequi-
sites of developing DNA methylation-based biomarkers
[4]. In fact, several commercially available DNA
methylation-based biomarkers, including DNA

methylation of APC (adenomatosis polyposis coli) and
RASSF1 (ras association domain family member 1) as
both diagnostic and prognostic biomarkers of prostate
cancer and DNA methylation of SEPT9 (septin 9) as pre-
dictive biomarker of colorectal cancer, were not corre-
lated with host gene expression [4].
Gene set enrichment analysis revealed that gene body

methylation could affect GC prognosis by regulating the
neuroactive ligand-receptor interaction pathway [35],
which has been also enriched for a number of long non-
coding RNAs associated with OS of GC in a prior study
[36]. Moreover, this pathway has also been enriched for
differentially methylated genes between tumor and nor-
mal tissue of GC [37], indicating a significant role in
both carcinogenesis and prognosis of GC. Future studies
are warranted to clarify how aberrant DNA methylation
affect the neuroactive ligand-receptor interaction
pathway.
Although DNA methylation of single CpG dinucleo-

tides could effectively regulate host gene expression
and are qualified as cancer prognostic biomarkers
[38], the pertinent alterations of DNA methylation are

Fig. 1 Methylation correlated blocks (MCBs). a MCBs based on cg11671115 and adjacent CpG sites in chromosome 10. b MCBs based on cg14719951
and adjacent CpG sites in chromosome 18. c MCBs based on cg24406668 and adjacent CpG sites in chromosome 20. d Forest plots indicating the
association between DNA methylation of three MCBs and four clinical endpoints. For (a), (b), and (c), the circles indicate P-values of the associations
between each CpG within the MCBs and OS. The red dotted lines represent the significant level (P = 0.05). The yellow bars represent locations of
genes and the green bars represent locations of CpG islands. The blue dots represent DNA methylation level of each CpG within the MCBs. The blue
lines connect mean DNA methylation level of each CpG within the MCBs
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often regional based, with interplays of a number of
adjacent CpG sites. Therefore, in addition to identify-
ing the optimal genomic location, defining the opti-
mal number of relevant CpG sites are of great
importance for developing DNA methylation-based
biomarker assays [4]. In our study, we also examined
DNA methylation patterns accounting for the cluster
of adjacent CpG loci. The association of DNA methy-
lation of three identified MCBs with GC prognosis
was in line with that based on single CpG locus,
which further strengthened our results.
Based on the publicly available dataset, our study

was the first to thoroughly study DNA-methylation
based biomarkers associated with multiple prognostic
endpoints of GC, including OS, DSS, DFI, and PFI.
The association between DNA methylation of seven
key CpG loci and GC prognosis was newly reported.
The genomic location and the optimal number of ad-
jacent relevant CpG sites were critically evaluated and
reported. Two DNA methylation-based risk score
models performed well in predicting four clinical out-
comes of GC patients. We were able to adjust for the
major clinicopathological characteristics in sensitivity
analyses, which did not change the results materially.

We acknowledged several limitations. First, DNA
methylation profiles in TCGA were measured by Infi-
nium 450 k microarrays, which might restrict us from
identifying other uncovered CpG dinucleotides with bio-
logical relevance to GC prognosis. Second, although we
tried to adjust for potential confounders, residual con-
founding might be present. Third, as an exploratory
study, both discovery and validation datasets were uti-
lized to identify prognostic CpG sites and were from the
same dataset (TCGA), the performance of our risk score
models might be inflated. External datasets with large
sample size are warranted to further validate our results
in the future. Fourth, our study was an association study
based on biostatistical and bioinformatics analyses. La-
boratory work is warranted to unravel the biological
consequence of these types of DNA methylation.
In conclusion, our study newly identified seven CpG

sites associated with OS, DSS, and PFI of GC, with
five of them also associated with DFI of GC. Two
DNA methylation-based risk score models were estab-
lished, which may have implications for clinical prac-
tices regarding GC patient stratification of prognosis.
Exploration in the experiment setting may contribute
to our understanding of the underlying molecular

Fig. 2 Kaplan-Meier (KM) survival curves of the DNA methylation-based risk score models in TCGA. a The seven-CpG based risk score model in OS
dataset. b The seven-CpG based risk score model in DSS dataset. c The seven-CpG based risk score model in PFI dataset. D The five-CpG based
risk score model in DFI dataset. In each dataset, GC patients were equally categorized into three groups based on the tertile of risk scores of all
patients. Blue curves represent low risk score groups; Yellow curves represent median risk score groups; Red curves represent high risk score
groups. Log-rank tests were used to compare survival curves among subgroups for each prognostic outcome of GC
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mechanism of gene body DNA methylation on GC
prognosis and may inspire the development of novel
individualized DNA-methylation based therapeutic
strategies.
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