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Background. In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by
silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly
produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute
family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the
reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic
cells. Principal Findings. Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are
silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and
destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the
oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic
cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of
being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is
controlled by the heterochromatic COM locus. Conclusion. Our data shed further light on the silencing mechanism that acts to
target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA
silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former
tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic
COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon
mobilization.

Citation: Desset S, Buchon N, Meignin C, Coiffet M, Vaury C (2008) In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two
Retrotransposons through both Piwi-Dependent and -Independent Pathways. PLoS ONE 3(2): e1526. doi:10.1371/journal.pone.0001526

INTRODUCTION
Genome sequencing projects have revealed that eukaryotic

genomes contain large numbers of repetitive sequences and

mobile genetic elements. Retrotransposons, which are mobile

genetic elements that move through an RNA intermediate in a

process termed retrotransposition, are highly abundant and

comprise nearly half of the human and a third of the Drosophila

genome. It is thus essential that eukaryotic cells retain tight control

over these potential invaders in order to protect their genomes

from the mutational threat that they pose. This control is

especially critical in the germline, where retroelement activity

can create a mutational burden that is then transmitted to

subsequent generations. As numerous metazoan elements display

expression that is restricted to the reproductive apparatus,

including the germ line and in surrounding somatic tissues,

genomes have evolved specific mechanisms to protect these tissues

by further restricting the expression of these elements.

It has become clear in the last few years that RNA interference

(RNAi) plays a major role in ensuring this type of protection [1–3].

Three main RNA silencing pathways, acting at the post-

transcriptional level and involving three distinct populations of

small RNAs–siRNAs, miRNAs and piRNAs–have been reported

to date. siRNAs (small interfering RNAs) are derived from

processed double-stranded RNAs (dsRNAs) into siRNAs of 20-

24 nucleotides (nt) in length. These siRNAs are loaded onto an

RNA-induced silencing complex (RISC) as single-stranded siRNA

molecules which then bind and cleave the target RNA [4–6].

miRNAs (microRNAs) of 22 nts in length are endonucleolytically

processed from endogenous non-coding transcripts. After their

production, they bind the miRISC to mediate RNA silencing.

miRNAs are developmentally regulated and play an important

role in gene silencing throughout development [7,8]. Whereas

siRNAs and miRNAs are derived from both the sense and

antisense strands of their double-stranded precursors, piRNAs (for

PIWI-interacting RNAs) are mainly derived from antisense strands

and are produced from discrete genomic loci [9,10]. piRNAs are

from 26–30 nts in length and have been reported in germline cells

of drosophila, mice, rats and humans [11,12]. In mice and human,

they are required for male fertility. In Drosophila, a subset of
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piRNAs, called rasiRNA for repeat associated small interfering

RNAs, has been directly implicated in the protection of the fly

germ line against selfish genetic elements such as retrotransposons

and repetitive sequences [13–15].

ZAM and Idefix are two LTR retrotransposons that are generally

silent in the genome of Drosophila melanogaster [16]. In the vast

majority of lines, these elements do not start their replication cycle

and no mobilisation is observed. These lines are denoted S (stable)

lines. However, in certain lines, called unstable (U) lines, this

control has been perturbed and both elements are highly

expressed in the ovaries. As a result of this expression, multiple

copies of ZAM or Idefix become integrated into the germ line and

are transmitted through successive generations [17,18]. Charac-

terisation of the U line has shown that an active transposon-

silencing process that targets ZAM and Idefix has been mutated in

this line. The mutated locus has been identified and shown to be a

heterochromatic locus called COM, which is located at position

20A2-3 on the X-chromosome [16]. Analysis of the replication

cycles of ZAM and Idefix in U and S lines has indicated that ZAM

transcripts are only present in the posterior follicular cells of the

ovaries of U lines, and not in the ovaries of S lines. Similarly, Idefix

transcripts are detected in the germarium of U line ovaries, but not

in S lines. Overall, our previous work indicated that both elements

are subjected to two types of control in Drosophila: first, a

regulatory pathway silences the elements and prevents them from

initiating their replication cycles. Second, if this silencing is lost,

another control mechanism that relies on specific cis-regulatory

sequences present in the elements themselves restricts their

expression to specific somatic cells of the ovaries [19].

In this study, we have carried out an in-depth analysis of the

intrinsic regulatory properties of ZAM and Idefix, examining the

pathways that promote their silencing in the S lines. We show that

the control of ZAM and Idefix is mediated by a homology-

dependent trans-silencing pathway that displays characteristics of

the rasiRNA pathway. At the same time, it displays three unique

features: i) in addition to the reproductive apparatus, the silencing

is exerted in most if not all of the somatic tissues of flies; ii) Piwi is

required in cells of the reproductive apparatus, but it does not play

a role in other tissues; iii) The function of COM is ubiquitous.

RESULTS

The U5 region of the ZAM LTR is sufficient for the

differential regulation between S and U lines
We have previously reported that the transgene denoted pZ499,

which contains the full-length LTR of ZAM and the first 26 bp of

its 59UTR (499 bp) fused to a LacZ reporter gene, responds to the

two types of control over ZAM expression: i) repression, which

depends on the fly genotype (U or S); and ii) tissue-specific

activation, which drives expression in a very specific group of cells

located at the posterior pole of the follicle [19]. The LTR is

composed of a U3 region spanning nucleotides 1 to 325, a central

R region from nucleotides 326 to 347, and a U5 region from

nucleotides 348 to 473. The transcription initiation site defines the

boundary between the U3 and R regions, and the polyadenylation

site corresponds to the boundary between the R and U5 regions.

To investigate the specificity of ZAM transcription in the different

lines and to localise the sequences involved in its regulation, we

analysed the expression of two additional transgenes placed in an S

or U genetic background. These transgenes, pZ310 and pZ475,

contain ZAM fragments extending from nucleotides 1 to 310 or 1

to 475, respectively, fused to the LacZ reporter gene. We found

that pZ475 responds to both the strain- and tissue-specific controls

that have been previously described for the full-length LTR [19]:

its expression is restricted to the follicle cells of the U line and is

absent in the S line (Fig. 1). By contrast, pZ310 which is expressed

from a minimal heat shock promoter responds to the tissue-specific

control that restricts its expression to the posterior follicle cells, but

is insensitive to the line-specific control, since it is expressed in

both the U and S genetic backgrounds (Fig. 1).

Therefore, we concluded based on this analysis of the pZ310,

pZ475, and pZ499 lines that the line-specific expression of ZAM is

Figure 1. The U5, but not U3, region of the ZAM LTR is required for repression. The genomic structure of the ZAM retrotransposon is depicted at
the top. Structures of the lacZ reporter trangenes used in this study are shown below on the left, and their expression in follicle cells from the S or U
background are indicated at right. Transcripts initiated from the endogenous transcription initiation site of ZAM (black arrow) in transgenes pZ499
and pZ475 are homologous to ZAM over 173 and 149 bp, respectively. These transgenes are sensitive to the S or U status of the line as illustrated by
the histochemical detection of b-galactosidase activity in the ovarioles. pZ310 contains the U3 sequence of the element and is expressed from a
minimal heat shock promoter (white arrow) so that no sequence homologous to ZAM is present within the p310 transcript. Its expression is not under
the control of the S or U status of the lines and is thus observed in the ovarioles from both the S and U backgrounds, as illustrated on the right.
doi:10.1371/journal.pone.0001526.g001
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controlled by sequences present in the R and/or U5 regions of

its LTR.

ZAM and Idefix are regulated by a homology-

dependent gene-silencing mechanism
Transgenes pZ475 and pZ499 both initiate transcription from the

ZAM promoter at nucleotide 326. When these transgenes are

transcribed, 149 and 173 nucleotides, respectively, of ZAM are

present at the 59 end of the transcripts (Fig. 1, table). By contrast,

the ZAM promoter is absent in pZ310, and no ZAM sequence is

transcribed. To determine whether the ZAM promoter or the

presence of a ZAM fragment within a chimeric transcript is

responsible for the differential expression of ZAM in the S and U

lines, we designed constructs in which a GFP reporter gene,

driven by the UASt promoter, is fused downstream of its coding

sequence and upstream of the polyadenylation site to diverse

fragments of ZAM (Fig 2 A). Transgenic lines were established and

tested for GFP expression in the ovaries. A 720 bp fragment from

within the third ORF of ZAM was tested. This fragment

corresponds to the region encoding the Env protein, spanning

nucleotides 6385 to 7105 of the ZAM sequence. This ZAM

fragment was inserted in an orientation such that transcription of

the transgene would give rise to mRNA corresponding to the

sense-strand fragment of ZAM. Furthermore, the env fragment was

flanked by FRT elements, which are targets for flp recombinase.

Transgenic lines were established and denoted pGFP-Zenv. The

expression of the UASt transgenes was induced by crossing with

flies containing a ubiquitous somatic actin-Gal4 driver in the S

genetic background. Data obtained are presented in Fig. 2 A, B

and C.

We examined the expression of pGFP-Zenv in the ovaries of

three independent transgenic lines. The genotype of these lines

was [S/S; actin-Gal4/CyO; pGFP-Zenv/pGFP-Zenv]. No fluo-

rescence was detected in either of the lines (Fig. 2A). A number of

these flies were subjected to flp recombinase action; to do this, they

were crossed with flies expressing the flp recombinase under the

control of a heat-shock promoter. Embryos laid by these females

were then exposed to two heat-shocks at 38uC for 1 hr [20]. In

these conditions, the efficiency of recombination between the two

FRTs and the consequent deletion of the intervening env fragment

is near 100%. The resulting flies were denoted pGFP-ZDenv

(Fig. 2B). Analysis of the expression of the pGFP-Zenv and pGFP-

ZDenv transgenes, activated by the actin-Gal4 driver in the

ovaries, showed that whereas GFP is never expressed in the follicle

cells when the pGFP-Zenv transgene is present in an S genetic

background (Fig. 2A), fluorescence was clearly present in the same

S background when the ZAM fragment was flipped out (pGFP-

ZDenv transgene Fig. 2B).

In a second series of tests, we compared GFP expression from

the pGFP-Zenv construct in the S and U genetic backgrounds. We

found that GFP is only expressed in U line flies, as shown in Fig 2C

for a follicle with genotype [U/U; actin-Gal4/CyO; pGFP-Zenv/

pGFP-Zenv]. It should be noted that because of the non-

functionality of the UASt promoter in germinal cells, the absence

of a signal in the nurse cells or the oocyte is not informative in

these experiments.

When GFP expression was compared between the different

transgenic lines using the same settings on the confocal microscope,

we found that the GFP signals were always lower in the transgenic U

lines bearing the pGFP-ZAM sensor transgene than they were with

the flipped-out transgenes. This suggests that full expression of GFP

might not be recovered in U lines, which may only partially release

ZAM silencing. Alternatively, the pGFP-Zenv transcripts might be

less stable than the shorter pGFP-ZDenv transcripts. Although this

latter hypothesis cannot be excluded, results obtained when

analyzing expression of these transgenes through northern blot

experiments favour the former one (see below).

In additional assays, 1 kb of the 59 UTR of ZAM was placed

downstream of the GFP gene, in the 59 to 39 orientation with

respect to ZAM transcription. Similar tests as those performed with

the pGFP-Zenv transgenic lines were performed. The regulation

of the GFP gene in the so-called pGFP-ZU transgenic lines gave

the same results as for pGFP-Zenv (data not shown).

We conclude that the silencing of the pGFP-Zenv and pGFP-

ZU transgenes is under the control of a transposon silencing

pathway that targets endogenous ZAM retrotransposons and that

is absent in the U line.

As Idefix is also repressed in S lines and is active in U lines, we

used P-element transformation to introduce additional constructs

containing UASt repeats located upstream of the GFP reporter

gene and different fragments of Idefix into the genome of S line

flies. We tested two different fragments. One corresponded to a

non-coding region from the 59 UTR of the gene, and the second to

a coding region taken from its gag gene. Similarly to the pGFPZU

and pGFPZenv transgenes, the Idefix fragments were inserted in an

orientation such that transcription of the transgenes would give

rise to mRNA corresponding to the sense-strand fragment of Idefix.

These constructs were respectively denoted pGFP-IdU and pGFP-

Idgag. Expression of the GFP reporter gene under the control of

the actin-Gal4 driver was assayed in the ovaries of flies that were

homozygous for both the X chromosome of the stable S line and

the pGFP-Id transgene. Results obtained when the gag gene from

nucleotides 1003 to 1422 was placed downstream of GFP are

presented in Figure 2 D, E, and F. Similar results were obtained with

the pGFP-IdU lines (data not shown). No fluorescence was detected

in the ovaries of this S line (Fig. 2D). This absence of fluorescence

depends upon the S status of the line, because fluorescence was

clearly observed when the stable X chromosome was replaced by an

X chromosome from a U line (Fig. 2F). A flp recombinase assay was

conducted on the transgenic S/S line, as depicted for pGFP-Zenv.

When the gag fragment of Idefix was flipped out with the flp

recombinase, giving rise to flies denoted pGFP-IdDgag, fluorescence

was clearly recovered in the ovaries of S line flies (Fig 2E). These

assays were performed on four independent transgenic lines for each

construct, giving the same results.

Thus, it appears that both ZAM and Idefix are controlled by a

common silencing mechanism that has several definable proper-

ties. First, it is active in the follicle cells of S lines. Second, it does

not function through a specific sequence present within both

elements, but can rather target regions all along their lengths, from

their 59 to the 39 ends. Finally, this silencing mechanism is

disrupted in the U lines.

Sense-strand transcripts of ZAM and Idefix are

specifically targeted by the silencing machinery
A next set of experiments was performed with similar sensor GFP

transgenes, but in which the fragments of ZAM and Idefix were

inserted in the opposite orientation. Specifically, the 720 bp

fragment within the third ORF of ZAM and the 456 bp fragment

corresponding to the 59 UTR of Idefix were tested in these

experiments. These transgenes were denoted pGFP-ZenvAS and

pGFP-IdUAS, respectively (Fig. 3). When transcribed, the

resulting transgenes gave rise to transcripts which were antisense

with respect to the endogenous ZAM or Idefix genomic RNAs. The

ability of GFP to be expressed in the different lines was then

assayed by introducing the actin-Gal4 transcription driver by

Retroelement Somatic Silencing
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crossing. While no fluorescence was observed when the expression

of the (sense-strand) pGFP-Zenv or pGFPIdU transgenes was

assayed, strong GFP fluorescence was detected in ovarian somatic

tissues of the three independent (antisense) transgenic lines

established with either pGFP-ZenvAS or pGFP-IdUAS (Fig 3 A

and B). The intensity of the fluorescence was very similar to that

observed with pGFP transgenes containing no ZAM or Idefix

sequences, indicating that no silencing was exerted on these sensor

transgenes.

Therefore, these transgenes are not sensitive to the repression

exerted by the S genetic background. Further, this result suggests

that the silencing mechanism that targets ZAM and Idefix is only

directed against mRNAs containing sequences homologous to

their sense-strand transcripts.

Figure 2. Transgenes with a GFP reporter gene fused to a ZAM sequence act as sensors of the repression. The genomic structures of the
transgenes pGFP-Zenv and pGFP-Idgag used in this study are presented at the tops of both panels: The grey boxes correspond to the UASt promoter,
the dotted boxes to the GFP gene, and the white box to the env fragment of ZAM or the gag fragment of Idefix. Triangles indicate the FRT sites. Focal
plane of the follicles dissected from a line in which the pGFP-Zenv transgene is driven by the ubiquitous Actin-Gal4 driver. Expression of the pGFP-
Zenv transgene in an S genetic background before (A) or after (B) flp-recombinase action, or in a U genetic background before the flp treatment (C).
GFP expression in the ovarioles of a transgenic line bearing the pGFP-Idgag transgene driven by the ubiquitous Actin-Gal4 driver. Expression of the
pGFP-Idgag transgene in an S genetic background before (D) or after (E) flp-recombinase action, or in a U genetic background before the flp
treatment (F). No GFP is detected in ovaries of the S lines. Its expression is recovered after the flp treatment or when the COM locus is mutated, as in
the U genetic background.
doi:10.1371/journal.pone.0001526.g002
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Silencing of ZAM and Idefix occurs at the RNA level

and involves small RNAs with characteristics of

rasiRNAs
The trans-silencing phenomenon described above was analysed

through GFP expression of the transgenes. To determine whether

this silencing acted at the translational level or at the RNA level, we

looked for GFP RNA encoded by the transgenic lines. Total RNA

was extracted from ovaries of transgenic lines in either the S or U

genetic backgrounds, and northern blots were performed. The

nylon filters were probed first with a riboprobe corresponding to

the GFP gene and second to one corresponding to the actin gene as

a loading control. Typical results are presented in Figure 4. GFP

transcripts synthesized from the pGFP-ZU transgene were not

detected in S lines, or only at a very low level, whereas they were

abundant in U lines (Figure 4A). Similar results were obtained

when transgenes bearing Idefix sequences were analysed (Fig. 4B).

The quantitative analysis of the transcripts as observed on northern

blots is also presented in Fig. 4B. Further, while no GFP RNA was

detected in S lines in which the transgene encoded a transcript

containing a sense-strand sequence of Idefix, GFP RNA was clearly

detected in S lines in which the transgene included an antisense

sequence of Idefix (Fig. 4B). In this context, the amount of GFP

RNA was appreciably higher than that detected from transgenes

with Idefix in the sense orientation in U flies.

These results indicate that the S line control does not act at the

translational level but rather at the RNA level. As observed in the

analysis of the sensor transgenes, the silencing is strictly directed

against transcripts with sense-strand RNAs of ZAM or Idefix, and

not against their antisense strands. Further, the silencing is

released, although only partially, in the U genetic background.

The characteristics of this silencing were reminiscent of silencing

involving rasiRNAs [13,15,21]. Therefore, we searched for

putative small RNAs that are homologous to ZAM and Idefix. As

northern blot experiments failed to identify any such small RNAs,

we employed the more sensitive RNase protection assay. Even

with this more sensitive assay, we could only barely detect small

RNAs, indicating that they are very low in number. However, in

Figure 3. Transgenes bearing ZAM or Idefix sequences placed in an
antisense orientation are not targeted by the repression. Expression
of sensor transgenes carrying ZAM or Idefix fragments inserted in a
sense and an antisense orientation. The genomic structure of the so-
called pGFP-Zenv, pGFP-ZenvAS, pGFP-IdU, pGFP-IdUAS transgenes are
depicted on the left. The orientation of the fragment is indicated by an
arrow. The repression mechanism is able to discriminate between sense
and antisense targeted sequences. In an S/S genetic background, only
transgenes with ZAM and Idefix in an antisense orientation are correctly
expressed. Clear fluorescence due to GFP expression is detected in the
ovarian follicles of pGFP-ZenvAS and pGFP-IdUAS transgenes, as
illustrated on the right.
doi:10.1371/journal.pone.0001526.g003

Figure 4. The repression machinery controlling ZAM and Idefix acts
post-transcriptionally, before translation. A: Transcripts from the
pGFP-ZU transgene were examined in northern blot experiments. A
typical result is shown in A. GFP transcripts revealed by a riboprobe
complementary to GFP mRNAs are detected in the U line and not in the
S line. Actin is used as a loading control. B: Northern blots and
quantification based on three northern blot experiments performed on
flies containing pGFP-IdU and pGFP-IdUAS transgenes. Their structures
are presented above the graph. No GFP transcripts synthesized from
the pGFP-IdU transgene are detected by the GFP riboprobe in an S
background, whereas their amount is high in a U background. An even
higher amount of GFP transcripts is observed in an S or U background
when the Idefix fragment is inserted in the opposite orientation (pGFP-
IdUAS transgenes). C and D- RNase protection assays reveal the
presence of small RNAs (20 to 30 nt long) that are homologous to ZAM
and Idefix. These RNAs are detected in S lines and, at a much lower level,
in the U line. Small RNAs homologous to the antisense strand of the
59UTR of ZAM are presented in C. 20 to 30 nt long antisense strand
RNAs (2) homologous to the 59UTR or the gag gene of Idefix are
detected. Sense strands (+) are absent or present in very small amounts.
A typical experiment is presented in D. Signs (+) and (2) indicate
respectively sense-strand and anti-sense strand RNAs of ZAM or Idefix
revealed by the riboprobes.
doi:10.1371/journal.pone.0001526.g004
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view of the consistency of the results–obtained in at least three

independent experiments performed with each sense and antisense

probe from the 59UTR, gag, pol, and env genes from both elements–

certain general observations concerning the small RNA popula-

tions detected can be made as illustrated fig 4 C and D. First, short

RNAs of 20 to 30 nt and homologous to ZAM and Idefix were

detected, but no clear populations of any specific length can be

defined at this stage of our detection assays (Fig. 4C and D).

Second, these small RNAs were found in S lines as well as,

although at lower levels, in U lines (Fig. 4C). Third, the abundance

of short antisense RNAs was always higher than the almost

undetectable short sense RNAs, suggesting that most of the

detected small RNAs are antisense to ZAM and Idefix and single-

stranded (Fig. 4D). Finally, small antisense RNAs were detected

regardless of the probe used. Typical results obtained with the

59UTR of ZAM (Fig. 4C) and with the 59UTR or the gag gene of

Idefix (Fig 4D) are presented.

These results show that the silencing machinery acting against

ZAM and Idefix is associated with the presence of a small

population of 20–30 nt RNAs, most of them being complementary

to ZAM and Idefix mRNA.

The silencing mechanism targeting ZAM and Idefix

involves the PIWI Argonaute protein in the

reproductive apparatus
The Piwi protein has been shown to be involved in the rasiRNA

pathway to maintain transposon silencing in the germline [1]. To

test whether Piwi is also necessary for the repression of ZAM and

Idefix, we first investigated the effect of the piwi3 mutation on the

expression of endogenous ZAM and Idefix elements in the ovaries

of S-line flies (Fig. 5). Because the morphology of homozygous

piwi3 ovaries is severely affected in adult flies, it was impossible to

investigate ZAM and Idefix expression in adult ovaries. We thus

performed experiments in the gonads of third instar larvae. By in

situ RNA analysis using strand-specific riboprobes for ZAM and

Idefix, we found that both of the elements are expressed in female

gonads of third instar larvae from the U line, as shown in a

homozygous [U/U; piwi+/+] genetic background (Figure 5,

middle). No staining corresponding to ZAM or Idefix RNA was

ever detected in the gonads of larvae having the corresponding

genotypes in the S line [S/S; piwi+/3] (not shown) or [S/S; piwi+/+]

(Figure 5, left). By contrast, clear expression of ZAM and Idefix was

observed in the homozygous genetic background [S/S; piwi3/3],

displaying a pattern of expression similar to that detected in the U

line (Fig. 5, right).

These findings provide evidence that Piwi is a component of the

pathway that silences ZAM and Idefix in the ovarian somatic tissue.

The silencing mechanism controlling ZAM and Idefix

is active in somatic tissues throughout fly

development
We next investigated whether the silencing mechanism involved in

the repression of ZAM and Idefix is strictly restricted to follicular cells,

where proper ZAM and Idefix enhancers are active, or if it is more

widely present and active in other tissues. To address this question,

the expression of the pGFP-ZAM and pGFP-Idefix transgenes was

examined throughout fly development, in embryos, larvae, and adult

flies. Two Gal4 drivers were used in these experiments: the

ubiquitous actin-Gal4 driver, as described above, and the 24B-

Gal4 driver, which is specifically expressed in mesodermal cells [22].

In the S/S genetic background, no fluorescence was detected with

any of the transgenes (pGFP-ZU, pGFP-Zenv, pGFP-IdU or pGFP-

IdGag), regardless of the driver used (actin-Gal4 or 24B-Gal4). It

should be noted that, if the microscope settings are optimized, a very

faint level of fluorescence can be detected at each stage of

development. This transgene silencing was observed in all the cells

examined and throughout fly development, including in embryos,

larvae, and adult flies. As an example, results obtained with pGFP-

IdU driven by 24B-Gal4 are presented Fig. 6, column A. In contrast,

when the X-chromosome in S-transgenic lines was replaced by one

from a U line, clear fluorescence resulting from the expression of the

GFP reporter gene driven by 24B-Gal4 was detected in embryos,

larvae, and adult flies (Fig. 6 column B).

To determine whether the silencing mechanism that is active in

these somatic tissues specifically targets sense-strand RNAs of ZAM

and Idefix, similar experiments were conducted using the pGFP-

ZenvAS and pGFP-IdUAS transgenes described in Fig. 3. We

found that no silencing occurred on these transgenes, with both

giving rise to clear ubiquitous GFP expression in all the examined

stages. Results obtained with pGFP-IdUAS are shown in Fig. 6,

line C.

It thus appears that the repression machinery targeting ZAM

and Idefix is not restricted to ovarian follicle cells of S lines but is

instead active in a broad range of cells (if not all) throughout fly

development. This machinery is able to discriminate between

sense- and anti-sense strand transcripts of ZAM and Idefix, and is

under the control of the COM locus.

The silencing mechanism active in somatic cells

does not involve the PIWI Argonaute protein
Since the control exerted by COM is active in the somatic cells

outside of the reproductive apparatus, the question arose then to

know whether Piwi is also a component of this somatic silencing

pathway. Indeed, in addition to its function in the reproductive

apparatus of flies, diverse functions have been attributed to Piwi in

somatic tissues at different stages of fly development [23–26].

Thus, GFP expression of the sensor transgenes pGFP-ZAM or

pGFP-Id, driven by 24B-Gal4, was analyzed in larvae, pupae, and

adult S flies mutated or not for the piwi gene. Piwi2/2, piwi3/3, and

transheterozygous piwi3/2 mutations were tested in these experi-

ments. The results obtained indicated that the silencing of the

sensor transgenes in the somatic tissues of the fly outside of the

Figure 5. ZAM and Idefix are regulated by a PIWI-dependent pathway
in the reproductive apparatus. In situ hybridization experiments reveal
ZAM and Idefix expression in female gonads from third instar larvae. ZAM
and Idefix transcripts are not detected in S flies with a wild-type piwi gene
(left). As shown by the black staining, ZAM and Idefix mRNAs are detected
in U flies with a wild-type piwi gene (middle). In S lines homozygous for
the piwi3 allele, ZAM or Idefix transcripts are no longer repressed, and their
transcription is visualised in gonads (right). Probes used in these
experiments are indicated on the left.
doi:10.1371/journal.pone.0001526.g005
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ovaries does not depend on the presence of the Piwi protein.

Indeed, in contrast to what was observed in the gonads, GFP

expression was not recovered in the somatic tissues of S lines when

the Piwi gene was mutated (see Figure 7 and data not shown).

These findings provide evidence that Piwi is not required for the

silencing pathway present in somatic tissues outside of the

reproductive apparatus.

DISCUSSION

The silencing machinery targeting ZAM and Idefix

involves the rasiRNA pathway
The rasiRNA pathway has been implicated in the silencing of

several repeated genetic elements in the drosophila genome, such

as roo, Ste, and the LTR retrotransposon gypsy [13,27]. In this

study, we have shown that the rasiRNA pathway, which is based

on the strict recognition of sense-strand RNAs, is likely to be

involved in the silencing of two additional LTR retrotransposons

from Drosophila melanogaster, ZAM and Idefix. rasiRNAs have been

reported to arise mainly from the antisense strand of retro-

transposons or repetitive sequences [15]. Consistent with this, a

profound strand bias for the silencing of the+strand of both ZAM

and Idefix was observed. Further, rasiRNAs have been reported to

consist of single-stranded RNAs of 25-30 bases in length, and in

our experiments we detected 20-30 nucleotide long small RNAs

corresponding to antisense strands of ZAM and Idefix. Most of

these RNAs also appear to be single stranded, since most of them

were only detected using a probe complementary to antisense

strand ZAM and Idefix RNAs. The 30-nucleotide antisense strand

RNAs might be effectors of a rasiRNA pathway that silences ZAM

and Idefix. At the same time, the detection of RNAs of 20 bases in

length is consistent with the possibility that an additional pathway

could contribute to the establishment of complete silencing.

The silencing of ZAM and Idefix is not only ensured in the

ovaries as already described for other transposable elements, but

our data further provide evidence that it is also ensured in somatic

tissues of the whole fly from embryos to adults

In Drosophila cells, a surveillance machinery is thus capable of

specifically detecting genomic mRNA from both of these retro-

transposons and interpreting their synthesis as an ongoing invasion

that has to be countered because it would be ultimately harmful.

Transposable elements are generally viewed as genomic forces

that are able to contribute to genomic diversity [28]. With this in

mind, it is interesting that the expression of genes which have been

subjected to integration of ZAM or Idefix in the antisense

orientation will not be affected by the silencing machinery. The

strand bias can thus preserve this source of genetic innovation

brought by these nucleic invaders.

Figure 6. The silencing mechanism targeting ZAM and Idefix is active in somatic tissues throughout fly development. A) In an S/S genetic
background, the pGFP-IdU sensor transgene driven by 24B-Gal4 is not expressed in embryos, larvae, or adults (top, middle and bottom panels,
respectively). Only a very faint level of fluorescence, corresponding to the background expression of GFP, is detected. B) In a U/U genetic background,
the GFP-IdU transgene silencing is released and GFP fluorescence is clearly observed in the three stages analyzed. The fluorescence pattern
recapitulates the expression of the HOW gene in muscle and tendon cells, as expected for the 24B-Gal4 driver [22]. C) In an S/S genetic background,
the pGFP-IdUAS sensor transgene carrying the 59UTR of Idefix in the opposite orientation is not subjected to the silencing exerted on the Idefix
sequences. pGFP-IdUAS is correctly expressed and GFP is detected in embryos, larvae, and adult flies.
doi:10.1371/journal.pone.0001526.g006
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The COM locus directs silencing through either a

Piwi-dependent or -independent silencing pathway

in different tissues
To ensure the silencing of endogenous genetic elements in the

germline or in surrounding somatic cell lineages, rasiRNAs

function through Piwi, a protein of the Drosophila Argonaute

family [1,3,13–15]. Consistent with data reporting the tissue-

specific expression of Piwi in ovaries [14,29], our data indicate that

Piwi is required for the silencing of ZAM and Idefix in ovarian

tissues. However, several data have reported that Piwi is also active

outside of the reproductive apparatus. It has been implicated in

the regulation of transgenes expressed in tissues where the Adh

gene is expressed [24], in the salivary glands [30] or recently in the

eyes [26]. Furthermore, Piwi has been found to colocalize with

PcG bodies, and its was suggested that it could regulate the nuclear

organization of PcG chromatin targets [23]. Despite these somatic

functions of Piwi, our data indicate that the somatic silencing of

ZAM and Idefix which is also based on the strict recognition of their

sense-strand RNAs, is Piwi-independent.

Our results further demonstrate that in the whole fly, the

silencing of ZAM and Idefix is under the control of the COM locus

[16,31]. This discrete genomic locus, COM, is located at the

heterochromatic 20A locus of the Drosophila X-chromosome and

suppresses the activities of ZAM and Idefix [16,31]. It displays

several specific characteristics. It is located in the same region as

the flamenco gene which controls the mobilisation of the retro-

transposon Gypsy [31]. Further, it is mainly composed of defective

transposon copies (BDGP release 5). Recently, it has been shown

to be a piRNA cluster, and piRNAs homologous to defective

copies of ZAM, Idefix, and Gypsy emitted by this locus have been

reported [9]. Brennecke et al further reported that a link exists

between flamenco-derived piRNAs and gypsy suppression. Based on

their results, they proposed an amplification loop, the ‘‘ping-pong’’

model, to account for piRNA biogenesis. According to this model,

sense transcripts from transposons are cleaved by Piwi or Aub

RISC loaded with a piRNA guide. The cleaved transcript is not

merely degraded but is also used to program Ago3 RISC. This

complex, in turn, cleaves the antisense transcripts that originate

from master loci such as the 20A locus. Again, the cleaved RNA

serves to program Piwi or Aub RISC. Thus sense and antisense

transcripts fuel an amplification cycle. This scenario is consistent

with most of the characteristics of the silencing mechanism that

targets ZAM and Idefix in the ovaries. However, if a link exists

between the COM-derived small RNA and the silencing of ZAM

and Idefix, it should implicate another protein than Piwi in the

soma. Furthermore, an important piece of data originating in our

study remains obscure. Although our genetic analysis points to

COM as a master regulator of ZAM and Idefix silencing, some

sequences from endogenous ZAM are absent from the COM locus

(release 5 and Hadi Quesneville personal communication). For

example, none of them is complementary to the 59UTR fragment

of ZAM, whose sequence has been directly implicated in the

silencing of the pGFP-ZU transgene. A direct interaction between

rasiRNAs derived from the 20A locus and these targeted

transgenes seems thus to be excluded. In the ping-pong model,

the need for mutual complementarity keeps the production

confined to one pair of complementary piRNAs, preventing

piRNA generation from spreading along a primary transcript as

allowed by RNA-dependent RNA polymerase (RdRP)-mediated

amplification. If piRNA emitted from the COM locus cannot

spread along primary ZAM or Idefix transcripts, then an additional

step in the piRNA mechanism should exist to ultimately direct

destruction of transcripts bearing any fragment of ZAM or Idefix.

More data are then necessary to understand how such piRNA are

generated and what their exact role is in the control. Our present

data, however, already implicate the ubiquitous activity of COM

coupled to different factors in various tissues.

MATERIALS AND METHODS

Drosophila strains
The S line w1118 and the U line Rev were from the collection of

the Institut National de la Santé et de la Recherche médicale

UMR384. The ubiquitous actin-GAL4 and the mesodermic 24B-

Gal4 drivers used are both located on chromosome 3. The 24B-

Gal4 driver was a gift from K. Jagla.

All transgenic lines were obtained by injection of indicated

transformation vectors into w1118. All stocks were maintained at

20uC. Expression of transgenes in a genetic context allowing ZAM

Figure 7. ZAM and Idefix are regulated by a PIWI-independent pathway outside of the reproductive apparatus. The pGFP-ZU sensor transgene
driven by 24B-Gal4 is not expressed in larvae, pupae, or adult stages in a [S/S; piwi+/+] genetic background (right panel). Only a very faint level of
fluorescence, corresponding to the background, is detected. A clear GFP expression is observed in these stages of development in a [U/U; piwi+/+]
line (middle panel). In piwi mutant backgrounds, in homozygous [S/S; piwi3/3] lines, the silencing of the sensor transgene is not released. A very faint
fluorescence level similar to that observed in homozygous [S/S; piwi+/+] lines is observed (left panel).
doi:10.1371/journal.pone.0001526.g007
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and Idefix mobilisation was obtained in the progeny of crosses

performed with transgenic lines (S genotype) and the U line

described in [32]. Flies used for analysis of expression were raised

and kept at 25uC.

Transgenic constructs
pZ499 is the pZAM construct described in [19]. It contains a ZAM

LTR upstream of the LacZ reporter gene. In pZ475 and pZ310,

the ZAM LTR is shortened at its 39 end, resulting in fragments

encompassing nucleotides 1 to 475 and 1 to 310, respectively, with

respect to the ZAM sequence. pZ310 contains a minimal hsp70

promoter between the ZAM fragment (corresponding to the U3

part) and the LacZ gene. The pUASt-GFP vector was used for

sensor transgene experiments. For pGFP-ZU and pGFP-IdU, the

ZAM UTR (from nucleotide 475 to 1841) and Idefix UTR (from

nucleotide 502 to 1024) were cloned downstream of GFP. pGFP-

Zenv includes 720 bp of the ZAM env coding region (6385–7105),

and pGFP-Idgag includes 1419 bp homologous to the Idefix gag

coding region (1003–1422). In these transgenic constructs, the

ZAM or Idefix fragments were cloned to be transcribed in the sense

orientation, i.e. in a 59 to 39 orientation, with respect to

endogenous ZAM and Idefix transcription. In pGFPZenvAS and

GFPIdUAS, the ZAM or Idefix fragments were cloned in the

opposite orientation.

Histochemical staining for b-galactosidase
Ovaries were dissected in 16 phosphate-buffered saline (PBS),

fixed in 0.5% glutaraldehyde in PBS for 5–10 min at 4uC, and

rinsed twice in 16 PBS and once in Fe/NaP buffer [0.003 M

Na2HPO4, 0.072 M NaH2PO4, 0.003 M K3Fe(CN)6, 0.003 M

K4Fe(CN)6 0.15 M NaCl, 0.001M MgCl2]. Staining was per-

formed in Fe/NaP buffer with X-Gal (0.2 mg/ml final concen-

tration) at 37uC. All samples were stained simultaneously and for

the same length of time (2 hrs). Stained tissues were washed four

times in 16 PBS, mounted in 1:1 PBS:glycerol, and examined

under an Axiophot microscope (Zeiss) using Nomarski optics.

Fluorescent microscopy
Light and fluorescence microscopy was performed with an

Olympus confocal microscope or an Olympus SZX12 binocular

and a CCD color view camera. Comparisons between stable and

unstable lines were carried out using the same acquisition settings.

Flip-out experiments
The hsFLP flies (w1118, hsp-FLP; cu kar2 Sb/TM6, Ubx e5), kindly

provided by Kent Golic, express flp recombinase under the heat

shock promoter hsp70. Virgin hsFLP females were crossed with

transgenic males for 24 hrs on cornmeal-glucose-yeast media at

20uC. Heat shocks of embryos ,24 hrs old were performed as

described by Ahmad and Golic (1996).

Northern blot experiments
Total RNA from adult flies was extracted by Trizol, and 40 mg of

total RNA was resolved on 1% denaturing agarose gels and

probed with radiolabelled transcribed probes homologous to GFP.

An actin 5C probe was used as a loading control. Experiments

were repeated three times. GFP signals were quantified with a

Biorad S125 phosphorimager.

RNase protection assays
Small RNAs from adult flies were extracted using the Ambion

mirVanaTM miRNA isolation kit. Aliquots of 5 mg of small RNAs

were used in RPA experiments. Radiolabelled RNA probes

homologous to the 59UTR regions of ZAM or Idefix, or to the gag

gene of Idefix, were 400 to 500 bases long (ZAM UTR from

nucleotide 1027 to 1515, Idefix UTR from nucleotide 567 to

1010, Idefix gag from nucleotide 1028 to 1422). 56104 cpm of

specific activity probe was used. As indicated for the Ambion

mirVanaTM miRNA detection kit, hybridization was performed

overnight at 42uC, and protected fragments were digested for

45 minutes at 37uC by RNase A/RNase T1. After RNase

inactivation, protected fragments were precipitated and separated

on a 15% acrylamide/polyacrylamide (19:1) gel running in

0.56TBE. Protected fragments were detected by autoradiography.

In situ hybridization
ZAM and Idefix mRNA expression was detected by in situ

hybridization using DIG-labelled RNA probes transcribed from

the pBS plasmids containing ZAM (3830 to 8040) or Idefix (4866–

7191) fragments, using the kit from Roche. Ovaries from third

instar larvae were dissected in phosphate buffer saline (PBS).

Dissected ovaries were fixed in 5% formaldehyde for 20 min.

Ovaries were rinsed with PBT (PBS, 0.1% Tween 20) prior to

proteinase K treatment. Hybridization was performed in hybrid-

ization solution (50% formamide, 56 SSC, 0.1% Tween 20,

50 mg/ml heparin, 100 mg/ml salmon sperm DNA, and 100 mg/

ml yeast tRNA) at 45uC overnight and was followed by washes in a

1:1 mixture of hybridization solution and PBT at 45uC for 30 min

each, and in PBT at room temperature (two washes of 20 min

each). The hybridized probe was detected using the DIG nucleic

acid detection kit (Roche).
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