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Abstract: As an important application of wireless sensor networks (WSNs), deployment of mobile
sensors to periodically monitor (sweep cover) a set of points of interest (PoIs) arises in various
applications, such as environmental monitoring and data collection. For a set of PoIs in an Eulerian
graph, the point sweep coverage problem of deploying the fewest sensors to periodically cover a set
of PoIs is known to be Non-deterministic Polynomial Hard (NP-hard), even if all sensors have the
same velocity. In this paper, we consider the problem of finding the set of PoIs on a line periodically
covered by a given set of mobile sensors that has the maximum sum of weight. The problem is first
proven NP-hard when sensors are with different velocities in this paper. Optimal and approximate
solutions are also presented for sensors with the same and different velocities, respectively. For M
sensors and N PoIs, the optimal algorithm for the case when sensors are with the same velocity
runs in O(MN) time; our polynomial-time approximation algorithm for the case when sensors have
a constant number of velocities achieves approximation ratio 1

2 ; for the general case of arbitrary
velocities, 1

2α and 1
2 (1− 1/e) approximation algorithms are presented, respectively, where integer

α ≥ 2 is the tradeoff factor between time complexity and approximation ratio.

Keywords: WSN; mobile sensors; sweep coverage; approximation algorithm; combinatorial mathe-
matics

1. Introduction

Coverage is one of the most important applications of wireless sensor networks (WSN),
where sensors are placed on an area of interest to monitor the environment and detect
extraordinary activities. There have been many studies on this topic across different subject
areas including discrete points [1,2], 2-dimensional surfaces [3], 3-dimensional surfaces [4],
3-dimensional spaces, fences [5,6], and so on. Based on sensors’ characteristic, special
factors should be considered, such as energy efficiency, maintaining connectivity, and so
on [7–10].

However, most of the existing works have mainly focused on continuous coverage,
where sensors stay still after begin placed on their objective locations. Only recently has
sweep coverage been brought up for the periodical coverage situation, which arises in
many applications. For example, guards need to patrol a barrier periodically according to
the time needed for intruders to cross it; Information collectors should collect information
from the objective sensors periodically to avoid their memory overflow. In those situations,
the objects do not need to be covered continuously. So, mobile sensors can move around to
cover more objects than in the continuous coverage situation to reduce monitoring cost.
For its cost effectiveness, sweep coverage has attracted increasing attention [11–15].

Point sweep coverage was first brought up in Reference [11], in which the authors
introduced the problem of deploying the minimum number of mobile sensors to cover a
given set of points of interest (PoIs) in the Euclidean space. The problem was shown Non-
deterministic Polynomial Hard (NP-hard), and could not be approximated within the factor
of 2, even for the case that all sensors are with the same velocity. In practice, with the limited
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energy, the velocity of a mobile sensor decreases as energy consumption increases. It is
more realistic to consider the general case that mobile sensors are with arbitrary velocities.
However, in Reference [16], the authors proved that no polynomial-time constant-factor
approximation algorithm exists to solve this problem for mobile sensors with different
velocities unless P = NP. In this paper, we study a variant of this problem, named Max-
weighted Point Sweep Coverage, to find the set of PoIs that have the maximum sum of
weight, periodically covered by a given set of sensors with different velocities. We show
that it is NP-hard even when the PoIs are distributed on a line. In applications, since
resources are always limited, it is desirable to use a given set of sensors to cover as many
PoIs as possible. The Max-weighted Point Sweep Coverage problem aims at maximizing
the utilization of the given mobile sensors for addressing these application requirements.
In addition, PoIs located on a line is a common scenario in many applications. For example,
as illustrated in Figure 1, for ocean information stored in static sensors placed at key
locations along a line, we need to deploy a set of mobile sensors to collect the data from
the static sensors periodically to avoid static sensors memory overflow. Other applications
can be found in security, forest conservation, resource exploration, and so forth. Therefore,
we focus on the Max-weighed Point Sweep Coverage on the line (MPSCL) problem and
discuss the proper polynomial-time algorithms in different cases.

Figure 1. Mobile sensors sweep coverage around island to collect the data from the static sensors.

In this paper, we define the MPSCL problem, prove that it is NP-hard by showing
that a special case of its decision version is NP-complete (NPC), and present optimal and
approximation algorithms for the cases of mobile sensors with the same and different
velocities, respectively.

The main contributions of this paper are summarized as follows:

• We define the MPSCL problem and prove it is NP-hard through a reduction from the
3-Partition problem.

• For the special cases of the MPSCL problem when sensors have the same velocity, we
present an optimal algorithm applying dynamic programming.

• For the special cases of the MPSCL problem when sensors have a constant number of
velocities, we present a 1

2 -approximation algorithm by extending the solution for the
same-velocity case.

• For the general cases of the MPSCL problem when sensors have arbitrary velocities,
we propose three approximation algorithms. One achieves approximation ratio 1

2α by
velocity rounding, where integer α ≥ 2 is the tradeoff factor between time complexity
and approximation ratio. The second and third one are, respectively, a random and
a deterministic 1

2 (1− 1/e) approximation algorithm by randomized rounding and
derandomized technique.

The rest of this paper is organized as follows: Section 2 describes some related work.
In Section 3, the definition and NP-hardness proof of the MPSCL problem are given.
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In Section 4, we present our optimal and approximation algorithms for different cases
of the MPSCL problem. Section 5 presents the simulation results and investigates the
performance of the algorithms. Section 6 concludes the paper.

2. Related Work

The point sweep coverage was firstly brought up in Reference [11]. The authors
presented the Min-Sensor Sweep Coverage problem (MSSC) to find the minimum num-
ber of sensors to sweep cover PoIs in Eulerian graph, which was proven NP-hard by
transforming the Traveling Salesman Problem (TSP) to it when the mobile sensors were
with the same velocity. The problem could not be approximated within ratio 2 and local
algorithms could not work. In Reference [17], the authors distinguished sensors’ strategies,
proposed MinExpand algorithm for un-cooperated sensors and Osweep algorithm for
cooperated sensors, respectively. A mistake of approximation analysis of prior papers
was rectified by Gorain et al. [16], in which a 3-approximation algorithm for the MSSC
problem was proposed and it was still the best approximation algorithm for MSSC till
now. Non-existence of polynomial-time constant-factor approximation algorithms for
MSSC when sensors were with different velocities was also proven. Some variants of
MSSC were presented. When PoIs had different sweep periods, an O(logρ)-approximation
algorithm was proposed, where ρ was the ratio of the maximum and minimum sweep
periods among PoIs. The area sweep coverage problem and line sweep coverage problem
were proposed and shown NP-hard, and approximation algorithms of ratio (

√
2 + 2−

√
2

mn )
and 2 were proposed, respectively [18,19]. In Reference [20], a variation of the MSSC
problem called the DistanceSensitive-Route-Scheduling problem was studied, where the
impact of sensing range was taken into account. The impact of sensing range in the sweep
coverage problems shortened the trajectory length of mobile sensors to reduce needed
sensors. In Reference [21], the authors assumed the consumption of energy was different
between mobile sensors and static sensors, and proposed two variations of the MSSC
problem. One was the energy efficient sweep coverage problem to minimize the total
energy consumption in every unit of time, which could not be approximated within a
factor of 2, and an 8-approximation algorithm for that was proposed. Another was the
energy restricted min-sensor sweep coverage problem, for which a (5 + 2

α )-approximation
algorithm was proposed. Gorain et al. took barrier sweep coverage into account [22].
They presented a energy restricted barrier sweep coverage problem and proposed 13

3
approximation algorithm.

The concept of sweep coverage appeared in the contexts of robotics concerned sweep
covering continuous lines, and the problem was called boundary patrolling or fence pa-
trolling. In these contexts, the mobile sensors might be with different velocities and the aim
was to find the minimum idleness, i.e., the longest time interval during which there was at
least one point on the boundary uncovered by any mobile sensors. In Reference [23], the au-
thors firstly studied boundary patrolling problem and proposed two intuitive algorithms
for open and close fence patrolling. The optimality of these algorithms was disproved
in Reference [24–26], in which the examples were proposed to illustrate that the idleness
could be reduced to 41/42, 24/25, and even 3/4 by special design, assuming the idleness
of proportional solution presented in Reference [23] was 1. Even though the optimality of
algorithms presented by Czyzowicz et al. was disproved, the optimal solution had not
been brought up yet. In Reference [27], the authors extended the scenes of the min-idleness
sweep coverage problem to chains, trees, and cyclic roadmaps when the mobile sensors
were identical. Within tolerance ε, they could get an optimal idleness when PoIs were on
a chain in time complexity O(nlog(ε−1)). And an 8-approximation algorithm was pro-
posed to find min-idleness when PoIs were on cyclic roadmap for which the problem was
NP-hard. In Reference [28], the authors described a fragmented boundary environment
and found the optimal patrolling for min-idleness in that environment when the sensors
were with the same velocity. Min idleness problem was also called as min-period problem.
Gao et al. studied Min-peroid Sweep Coverage (MPSC) problem when the sensors did
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not cooperate with each other [29], in which, they proposed a nearly 5-appr algorithm for
MPSC when the sensors with the same velocity covered target points on 2-D plane and
a 5α-appr algorithm when the sensors have different velocities, where α was the ratio of
the maximum velocity to the minimum one. They also had extended it to the scene where
a graph needed to be covered. In Reference [30], Gao et al. studied Cooperative Sweep
Coverage (CSC) problem, when the sensors with the same velocity, and proposed a 4-appr
algorithm for general case and an optimal solution for the special case when PoIs were
on a line. They also considered the situation in which each track cycle must cover at least
one sink.

3. Preliminary and Problem Statement

In this section, we will study the Max-weighted Point Sweep Coverage on Lines
(MPSCL) problem. We first give its definition and then prove it is NP-hard.

Definition 1. (Max-weighted Point Sweep Coverage on Lines) Given a set of M mobile sensors
S = {s1, s2, .., sM} with velocities V = {v1, v2, . . . , vM} and a set of PoIs P = {p1, p2, .., pN}
distributed on a line, where each pi needs to be monitored every time period T, i.e., T-sweep
covered, find a set of PoIs of maximum summed weight that is T-sweep covered by the given set of
mobile sensors.

Note that static sensors are regarded as special mobile sensors with velocity 0. For sim-
plicity, we sometimes say “cover” or “sweep cover” to replace “T-sweep cover”.

In the existing work, two kinds of strategies are proposed, separation strategy [28]
and cooperation strategy [27], respectively. Their definitions are below:

Definition 2. (separation strategy) Mobile sensors move back and forth on the line segment to
sweep cover PoIs without cooperating with others, where each PoI would meet the same sensor
within time period T.

Definition 3. (cooperation strategy) Sensors cooperate with others to cover the same line segment,
i.e., the PoIs on the line segment would meet another sensor within T time after covered by one
sensor last time.

Under separation strategy, every sensor si ∈ S has its own coverage ri = viT/2.
So, a separation strategy can be expressed by the first PoI’s location of every sensor’s
coverage. Wthout loss of generality, we assume that the set of PoIs are located on the x-axis
at coordinates X = {x1 = 0, x2, . . . , xN}(x1 < x2 < · · · < xN), and the coordinate of PoI l
is xl . The deployment of sensor si can be described as [xl , xl + viT/2], l ∈ [1, N].

For cooperation strategy, the path of each sensor is a periodical folded line, which is
more complicated to be expressed than the separation strategy. Separation strategy may not
result in an optimal solution. Some examples show that separation strategy may be slightly
worse than cooperation strategy in some special cases, i.e., the covering range covered by
a set of mobile sensors under separation strategy is slightly shorter [24,25]. For example,
in Reference [25], six sensors with velocities {1, 1, 1, 1, 7/3, 1/2} can 1-sweep cover PoIs
on a line segment of length 7/2 under a cooperation strategy, which is longer than that of
separation strategy, (1 + 1 + 1 + 1 + 7/3 + 1/2)/2 = 41/12. However, compared to the
complication of coorperation strategy, separation strategy is easier to be analyzed.

The notations are summarized in Table 1.
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Table 1. Notations.

Symbol Definition

N the number of the PoIs
M the number of the sensors
P the set of PoIs {p1, p2, .., pN}
S the set of mobile sensors {s1, s2, .., sM}
X the locations of PoIs {x1, x2, . . . , xN} (x1 < x2 < · · · < xN)
T the sweep period of PoIs
V velocities of the sensors {v1, v2, . . . , vM}
W the weight of the PoIs {ω1, ω2, . . . , ωN}
Pij the set of PoIs located on coordinate interval [xj, xj + Tvi/2]
nij the number of PoIs in Pij
ωij the summed weight of PoIs in Pij
W a random variable of the summed weight of the PoIs covered
Yij random variables denote that sensor i covers the set Pij

vmax the largest velocity in V
vmin the smallest non-zero velocity in V

3.1. Problem Hardness

In this section, we present the definition of a special case of the MPSCL problem when
PoIs’ weight is the same as Definition 4. By proving that it is NP-complete, we show the
MPSCL problem is NP-hard.

Definition 4. (Point Sweep Coverage on Lines) Given a set P of PoIs on lines, a set S of mobile
sensors, and a positive integer K ≤ |P|, is there a strategy for sensors S such that no less than K
PoIs are sweep covered?

Our NP-completeness proof is based on a reduction of the following 3-Partition problem,
which is well-known NP-complete to the Point Sweep Coverage on Line (PSCL) problem.

Definition 5. (3-Partition) [31]. INSTANCE: Set A of 3m elements, a bound B ∈ Z+, and a
size s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2 and such that ∑a∈A s(a) = mB.
QUESTION: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for 1 ≤ k ≤ m,
∑a∈Ak

s(a) = B (note that each Ai must therefore contain exactly three elements from A) ?

Theorem 1. Point Sweep Coverage on Lines problem is NP-complete.

Proof. Given a 3-Partition instance, like Definition 5, we construct a MPSCL instance. Given a
set of N PoIs with their positions {x1, x2, . . . , xN}(x1 < x2 < · · · < xN), N = (2B + 2)×m.
The positions of PoIs satisfy the equation below, where di = xi+1 − xi(1 ≤ i < N) means
the distance between the (i + 1)th PoI and ith PoI.

x1 = 0 (1)

di = B,

(i = k× (2B + 2); 1 ≤ k ≤ m− 1) (2)

di = B/(2B + 1),

((k− 1)× (2B + 2) + 1 ≤ i < k× (2B + 2); 1 ≤ k ≤ m). (3)

Given a set S of M = 3m mobile sensors, the velocity of mobile sensor sj is vj =
2× s(aj)/T for aj ∈ A (1 ≤ j ≤ M). As mentioned before, if under separation strategy,
each mobile sensor has its own covering range rj = vjT/2 = s(aj), 1 ≤ j ≤ M. Then,
B/4 < rj < B/2, ∑1≤j≤M rj = mB.

The object of the PSCL instance is to cover at least K = N PoIs.
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Let Bk denote the line segment from x(k−1)×(2B+2)+1 to xk×(2B+2) for 1 ≤ k ≤ m.
Because of Equation (3), we get |Bk| = B. If the 3-Partition instance is satisfied, we get
∑a∈Ak

s(a) = B, where each Ak contains exactly three elements from A. It means, if we can
obtain proper 3 mobile sensors to sweep cover each Bk for 1 ≤ k ≤ m, then we get a proper
deployment for the PSCL problem.

Conversely, for the other side, if we have an unique solution for the PSCL prob-
lem, because of Equation (2), mobile sensors sj (1 ≤ j ≤ M) must cover some part of
line segment Bk (1 ≤ k ≤ m) since the gap between Bk and Bk′ (k 6= k′) is too big. Be-
cause B/4 < rj < B/2 and rj ∈ Z+ for 1 ≤ j ≤ M, more than 2 sensors are needed to
cover each segment Bk (1 ≤ k ≤ m). Considering there are 3m sensors for m line segments
Bk(1 ≤ k ≤ m), we get exactly 3 mobile sensors to cover each segment Bk (1 ≤ k ≤ m).
The separation strategy is optimal for three mobile sensors [25]. Thus, for arbitrary Bk
(1 ≤ k ≤ m), assuming covering ranges of the 3 mobile sensors are rj1, rj2, rj3, respectively,
the best total covering range of the 3 mobile sensors is

rj1 + rj2 + rj3 ≥ B− 2B/(2B + 1).

Otherwise, the three sensors are not enough to cover all the PoIs on Bk. And because
rj1, rj2, rj3 ∈ Z+, we get rj1 + rj2 + rj3 ≥ B. If rj1 + rj2 + rj3 > B, there must exist rj′1 + rj′2 +
rj′3 < B(j′ 6= j), making a contradiction. So, rj1 + rj2 + rj3 = B, satisfying the solution to
the 3-Partition problem.

Note that the 3-Partition problem is strongly an NPC problem, which means it is also
NPC even if B is bounded by polynomial in m. So, when B is bounded by polynomial
in m, the instance of PSCL can be constructed from an arbitrary 3-Partition instance in
polynomial time. Now, we have shown the reduction from the 3-Partition problem to the
PSCL problem. An example is illustrated in Figure 2.

B1

r13
r11

r12

B2 B3

Figure 2. The instance of Point Sweep Coverage on Line (PSCL) when m = 3, B = 7, K = 48.
It contains 48 points of interest (PoIs) and 9 sensors. The PoIs are distributed on subsegment Bj

(1 ≤ j ≤ 3). When the covering range of sensor si is 7
4 ≤ ri ≤ 7

2 (1 ≤ i ≤ 9), the proper deployment
is to deploy 3 sensors to each Bj.

Given the strategies of sensors, it is easy to check if or not there are K PoIs are in
the coverage of the sensors in polynominal time. Thus, the decision version of the PSCL
problem is in NPC.

The theorem is proven.

Hence, we have:

Corollary 1. The Max-weighted Point Sweep Coverage Problem is NP-hard.

4. Algorithms

In this section, we present an optimal solution for the special case of sensors with same
velocity and approximation solutions for sensors with different velocities, respectively.
We assume that the number of PoIs is greater than that of mobile sensors, i.e., N > M;
otherwise, the problem has a trivial solution.
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4.1. Optimal Solution for Sensors with Same Velocity

In this subsection, we show that there is a polynomial-time optimal solution for
MPSCL when sensors have the same velocity.

Reference [27] showed that separation strategy can yield an optimal solution when PoIs
on the line are sweep covered by mobile sensors with the same velocity as Theorem 2 be-
cause, when two sensors in opposite directions meet each other, they can “exchange” roles.

Theorem 2. Separation strategy yields an optimal solution for the Max-weight Sweep Coverage
on Lines problem if the given set of mobile sensors have the same velocity.

In our algorithm, we first apply a dynamic programming algorithm to find the optimal
separation strategy of MPSCL. According to Theorem 2, it is also an optimal solution for
MPSCL. In the separation strategy, sensors have the same size of coverage with the same
velocity v. So, in our algorithm, we can first judge whether the given set of mobile sensors
can sweep cover all the PoIs by examining the coverage from the 1st to the Nth PoI without
overlapping. If “yes”, the given set of mobile sensors can sweep cover all the PoIs and the
maximum weight is the summed weight of all the PoIs. Otherwise, we apply dynamic
programming to obtain the optimal solution as follows.

Let OPT(i, j) denote the maximum summed weight of the PoIs covered by i sensors
from the jth to PoI N. nj denotes the number of PoIs covered by one sensor from the jth
PoI, i.e., the number of PoIs located in coordinate interval [xj, xj + vT/2], and ωj is the
summed weight of the nj PoIs. The recursive formulation of OPT(i, j) is given below:

OPT(i, j) = max
{

OPT(i, j + 1),
OPT(i− 1, j + nj) + ωj

}
, 1 ≤ i ≤ M, 1 ≤ j < N − 1,

with boundary conditions{
OPT(0, j) = 0 0 ≤ j ≤ N
OPT(i, N) = 1 1 ≤ i ≤ M

.

The first step of our algorithm, deciding whether all the PoIs can be covered, takes
O(N) time. The time complexity of the dynamic programming is O(MN). Thus, the time
complexity of the optimal algorithm for MPSCL with the same velocity is O(MN). The al-
gorithm is straightforward; hence, its description is omitted.

4.2. 1
2 -Approximation Solution for Sensors with a Constant Nunber of Velocities

Now, we discuss the MPSCL problem when sensors have K different velocities, called
K-velocity MPSCL, where K is a constant. In fact, it is not hard to see that the uniform
velocity case of the MPSCL problem is a special case of K-velocity MPSCL that K = 1.
The only difference is that separation strategy is not an optimal strategy any more when
K ≥ 2 and M ≥ 4 [25]. However, it is easy to find the set of PoIs covered with the maximum
summed weight under separation strategy since it has the nature of optimal substructure.
So, we use the dynamic programming method to find an optimal separation strategy and
prove it is a 1

2 -approximation algorithm for the K-velocity MPSCL problem considering the
difference between the separation strategy and cooperation strategy.

Let mi be the number of sensors with velocity vi, then M = ∑K
i=1 mi. OPTS(i1, i2, . . . , iK, j)

denotes the maximum summed weight of the covered PoIs when there are ∑K
h=1 ih sensors

to cover the line segment from the PoI j to PoI N under separation strategy, where ih is the
number of sensors with velocity vh (1 ≤ h ≤ K). Denote the number of PoIs covered by
a sensor with velocity vi from the PoI j by nij, i.e., the number of PoIs located in coordi-
nate interval [xj, xj + viT/2], and the summed weight of the nij PoIs by ωij. Below is the
recursive formulation of the solution:
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OPTS(i1, i2, . . . , iK, j) = max


OPTS(i1, i2, . . . , iK, j + 1),

OPTS(i1 − 1, i2, . . . , iK, j + n1j) + ω1j,
OPTS(i1, i2 − 1, . . . , iK, j + n2j) + ω2j,

. . . ,
OPTS(i1, i2, . . . , iK − 1, j + nKj) + ωkj

,
1 ≤ ih ≤ mh &
1 ≤ h ≤ K &

1 ≤ j ≤ (N − 1)
.

The boundary conditions are{
OPTS(0, 0, . . . , 0, j) = 0 0 ≤ j ≤ N
OPTS(i1, i2, . . . , iK, N) = 1 0 ≤ ih ≤ mh, 1 ≤ h ≤ K, ∑K

h=1 ih ≥ 1
.

In Algorithm 1, we maintain a (K + 1)-dimensional table Tb to record the optimal
value OPTS(i1, i2, . . . , iK, j) for ih ∈ [0, mh] and 1 ≤ h ≤ K, 1 ≤ j ≤ N. By tracing back
the information of table Tb, we can obtain the optimal separation strategy, in which every
sensor’s location is recored in an array entry Lc(h) for h = 1, . . . , K. Each entry Lc(h) is a
list of mh locations for the mh sensors with velocity vh. We say the location of a sensor is
the location of the first PoI in the its coverage. In separation strategy, given the velocity vi
and its location, the deployment of sensor si is set.

In Algorithm 1, it takes O(N ×∏i(mi + 1)) time to construct table Tb, and takes
O(N × K) time to trace back to get the optimal solution. N ×∏i(mi + 1) ≤ N × (M/K +
1)K, so the time complexity of Algorithm 1 is O(N × (M/K + 1)K). Because K is a constant
integer, the algorithm is polynomial time algorithm. Now, we show that Algorithm 1 is an
1
2 -approximation algorithm for the K-velocity MPSCL problem. Before that, we give a more
general theorem, showing that the β-approximation algorithm for the optimal separation
strategy of MPSCL can yield a β

2 -approximation algorithm for MPSCL.

Theorem 3. A β-approximation algorithm for the optimal separation strategy of MPSCL can be
turned to be a β

2 -approximation algorithm for MPSCL, where β ≤ 1.

Proof. Denote by A the β-approximation algorithm for the optimal separation strategy of
MPSCL, and by Ao the optimal algorithm for MPSCL. W.l.o.g., assume Ao covers two sets
of line segments L1 and L2 by the separation strategy and cooperation strategy, respectively.

For L1, clearly the sum of weight of the covered PoIs by Ao, OPT1, cannot exceed that
covered by the optimal separation strategy, OPTS

1 , and hence 1/β of that by A, APPROXS
1 ,

using the same set of sensors : OPT1 ≤ OPTS
1 = 1

β × APPROXS
1 =⇒ APPROXS

1 ≥
β×OPT1.

For L2, because the coverage r(S′) of any set of sensors S ′ ⊆ S by the cooperation

strategy is bounded by ∑
|S′ |
i=1 viT, which is twice of the coverage by the separation strategy,

the sum of weight of the covered PoIs by Ao, OPT2, cannot exceed twice of the optimal
separation strategy, OPTS

2 , and hence 2/β of that by A,APPROXS
2 , using the same set of

sensors : OPT2 ≤ 2 ∗OPTS
2 = 2

β × APPROXS
2 =⇒ APPROXS

2 ≥
β
2 ×OPT2.

Summing up the above immediately yields the β
2 approximation ratio of algorithm A

to the optimal algorithm for MPSCL.

Theorem 4. Algorithm 1 is a 1
2 -approximation algorithm for the K-velocity MPSCL problem.

Proof. Algorithm 1 is for the optimal separation strategy of the K-velocity MPSCL. Ac-
cording to Theorem 3, Algorithm 1 is a 1

2 -approximation algorithm for the K-velocity
MPSCL problem.
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Algorithm 1 MPSCL-K-Velocities

Input: A set of sensors S with velocities V = {v1, v2, . . . , vM}, A set of PoI P with lo-
cations X = {x1, x2, . . . , xN} and weight W = {ω1, ω2, . . . , ωN}, sweep period T,
locations ∗Lc.

Output: The sweep covered set PS of PoIs.
1: //initialization
2: group the velocities V into K different velocities {v̄1, v̄2, . . . , v̄K}
3: let mi is the number of sensors with velocity v̄i
4: for i← 1 to K do
5: for j← N to 1 do
6: count the number nij of PoIs covered by a sensor with velocity Vi and location xj
7: let ωij be the sum of weight of the nij PoIs;
8: end for
9: end for

10: //dynamic programming to obtain the maximum summed weight
11: initial table Tb according to boundary conditions
12: for j← N to 1 do
13: for i1 ← 1 to m1 do
14: for i2 ← 1 to m2 do
15: for . . . do
16: for iK ← 1 to mK do
17: call the recursive formulation to calculate OPTS(i1, i2, . . . , iK, j), recorded in

Tb
18: end for
19: end for
20: end for
21: end for
22: end for
23: // tracing back to obtain the optimal solution
24: set i1 = m1, i2 = m2, . . . , iK = mK
25: initial array entry Lc
26: for j← 1 to N − 1 do
27: if OPTS(i1, i2, . . . , iK, j)! = OPTS(i1, i2, . . . , iK, j + 1) then
28: for h← 1 to K do
29: if ih > 0 && OPTS(i1, i2, . . . , ih, . . . , iK, j) == O(i1, i2, . . . , ih − 1, . . . , iK, j +

nih j) + ωih j then
30: add xj to Lc(h); j+ = nih j
31: ih −−
32: end if
33: end for
34: end if
35: end for
36: if exist any sensor with velocity v̄i unoccupied then
37: add xN to Lc(i)
38: end if
39: place sensors to their corresponding locations in Lc, the union set of covered PoIs is PS
40: return PS

4.3. Approximation Solutions for the General Case of Arbitratry-Velocity Sensors

In this subsection, we discuss MPSCL for the general case, i.e., when sensors have ar-
bitrary velocities and propose three methods. The first method uses rounding and dynamic
programming technique and yields a 1

2α -approximation scheme solution, where integer
α ≥ 2. The second uses linear programming relaxation and randomization technique
to yield a randomized 1

2 (1− 1/e)-approximation algorithm. Applying the conditional
expectations method, we can get the third one, a deterministic 1

2 (1− 1/e)-approximation
algorithm by derandomization.
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4.3.1. Dynamic-Programming Solution with Velocity Rounding

In the previous subsection, we know Algorithm 1 is the optimal algorithm for the
separation strategy of the K-velocity MPSCL problem and takes O(N × (M/K + 1)K)
time. In the general case, M sensors would have M different velocities, i.e., K = M.
Thus, Algorithm 1 would find the optimal separation strategy within the time complexity
O(N ∗ 2M), which is too high. So, we use the rounding method to reduce the number of
velocities in order to reduce the time complexity.

In Algorithm 2, for a given set of sensor S with velocities V = {v1, v2, . . . , vM}, we
first round the velocities V to V ′ = {v′1, v′2, . . . , v′M} by applying the formula (4), which
contains K � M different velocities. Then, we run Algorithm 1 on a set of M sensors S
with rounded velocities V ′ to obtain their locations. Finally, we shift the locations of sensors
to avoid their coverage overlapping. That is, since vi ≥ v′i for 1 ≤ i ≤ M, there may be
overlap between two sensors’ coverage. If so, move the right sensor a minimum distance
toward right so that it covers from the next PoI. The shift would increase the number of
PoIs covered and the summed weight without changing the approximation ratio .

Algorithm 2 MPSCL-Velocity-Rounding

Input: A set of sensors S with velocities V = {v1, v2, . . . , vM}, A set of PoI P with locations
X = {x1, x2, . . . , xN} and weightW = {ω1, ω2, . . . , ωN}, sweep period T.

Output: The sweep covered set PS of PoIs.
1: set d(α)min = xα+1 − x1;
2: for i← 2 to N − α do
3: d(α)min = min{d(α)min, xi+α − xi};
4: end for

5: set vd = max{vmin, d(α)min
2T };

6: for i← 1 to M do
7: if vi ≥ vd then
8: // For the sensors with velocities no less than vd
9: set v′i = αblogα(vi/vd)c × vd;

10: else
11: //For the sensors with velocities less than vd
12: v′i = 0
13: end if
14: end for
15: set V ′ = {v′i|1 ≤ i ≤ M}
16: set K = blogα(vmax/vd)c+ 2
17: initial an entry array Lc(j) for 1 ≤ j ≤ K
18: Run Algorithm 1 on sensors S with velocities V ′ and get their locations Lc
19: adjust the coverage of sensors S to avoid overlapping, the union set of PoI covered

is PS
20: return PS

In the rounding step, we round vi ∈ V to v′i ∈ V ′ as follows. Let vmax and vmin be

the largest and smallest non-zero velocities in V , vd = max
{

d(α)min
2T , vmin

}
, where integer

α ≥ 2 and d(α)min is the minimum distance among every segment of α + 1 PoIs, i.e., d(α)min =
min1≤j≤N−α{xj+α − xj}; namely, there are no more than α PoIs on a segment with length

less than d(α)min. We round a group of velocities vi ∈ V in some interval to the same velocity
v′i by applying the following mapping:{

v′i = 0 for vi < vd,
v′i = αjvd for αjvd ≤ vi < αj+1vd, j = 0, 1, 2, . . . , blogα(vmax/vd)c.

(4)
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Clearly, the above mapping rounds all vi ∈ [αjvd, αj+1vd) to v′i = αjvd for 0 ≤ j ≤
blogα(vmax/vd)c, and all vi ∈ [0, vd) to v′i = 0. This effectively reduces the number of
velocities from M to K = blog α(vmax/vd)c+ 2� M. By setting the rounding parameter
α, we can achieve any desired value of K accordingly so as to obtain the algorithm with
desired approximation ratio and time complexity.

Now, we prove the performance guarantee of Algorithm 2.

Theorem 5. Algorithm 2 is a 1
2α -approximation algorithm for MPSCL, where integer α ≥ 2.

Proof. We show that the summed weight of the output of Algorithm 2, A2(S), is 1
α of

that of Algorithm 1, A1(S), which is the optimal separation strategy for sensors S . Then,
according to Theorem 3, that Algorithm 2 is a 1

2α -approximation algorithm for MPSCL.
For two sets of sensors, S with velocities V = {v1, v2, . . . , vM} and S ′ with velocities

V ′ = {v′1, v′2, . . . , v′M} following the mapping according to Equation (4). We need to show
that A1(S) can be covered by α copies of sensors S ′; hence, one copy of sensor S ′ can sweep
cover PoIs with weight more than A1(S)/α, i.e., A1(S′) ≥ 1

α A1(S).
For sensor si ∈ S in velocity range αjvd ≤ vi < αj+1vd is mapped to sensor s′i ∈ S ′

with velocity v′i = αjvd according to Equation (4). vi ∈ [v′i, αv′i); thus, the coverage of si,
R(si) can be covered by deploying α copies of sensors s′i with velocities v′i. For sensor
si ∈ S with velocity vi < vd is mapped to sensor s′i ∈ S ′ with velocity v′i = 0. Note

that vd = max
{

1
2T d(α)min, vmin

}
, the coverage R(si) includes no more than α PoIs; thus, it

can be covered by α copies of the sensor with velocity 0. According to the Pigeonhole
principle, at least one section of R(si) with summed weight not less than w(si)/α is covered
by one sensor s′i, where ω(si) is the sum of weight of PoIs on range R(si). Assigning
this sensor s′i for R(si) yields the approximation ratio 1

α for Algorithm 1, and hence 1
2α -

approximation for MPSCL by Theorem 3. The shift to avoid overlapping in the last
past of Algorithm 2 would not reduce the performance guarantee. So, Algorithm 2 is
1

2α -approximation for MPSCL.

Since Algorithm 2 calls Algorithm 1, its time complexity is O(N ∗ (M/K + 1)K), where
K = blogα(vmax/vd)c+ 2 and integer α ≥ 2 is a tradeoff between time complexity and
performance ratio.

4.3.2. Linear-Programming Solution with Randomized Rounding

The above rounding technique gives a polynomial-time solution with approxima-
tion ratio capped by 1

4 (when α = 2). In this subsection, we apply linear programming
relaxation and randomized rounding technique to improve the approximation ratio to
1
2 (1− 1/e) ≈ 0.31606.

We use the following integer program (IP) to formulate the optimal separation strategy
of MPSCL and get its (1 − 1/e)-approximation algorithm, thus achieving 1

2 (1 − 1/e)-
approximation of the optimal solution to MPSCL according to Theorem 3. In the integer
program, variable zl indicates whether the PoI l is covered (1 or 0). ωl is the weight of
the PoI l. Pij indicates the set of PoIs covered by sensor si when it sweep covers the
coordinate interval [xj, xj + viT/2], where xj is the coordinate of PoI j. Variable yij indicates
whether the set Pij is covered; namely, yi j = 1 indicates that the sensor i is deployed to
the coordinate interval [xj, xj + viT/2]. Constraint (5) means that, for each PoI l covered
(zl = 1), at least one set Pij of PoIs containing the PoI l must be selected, and no set
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containing the PoI l is included otherwise (zl = 0). Constraint (6) means one sensor can be
used only once.

max ∑n
l=1 ωlzl

s.t. ∑(i,j):l∈Pij
yij ≥ zl ∀l ∈ [1, N], (5)

∑j yij ≤ 1 ∀i ∈ [1, M] (6)

yij ∈ {0, 1} ∀i ∈ [1, M], j ∈ [1, N]

zl ∈ {0, 1} ∀l ∈ [1, N].

Replacing the integer constraints yij ∈ {0, 1} and zl ∈ {0, 1} with 0 ≤ yij ≤ 1 and
zl ≤ 1 relaxes the above integer program (IP) to the following linear program (LP):

max ∑n
l=1 ωlzl

s.t. ∑(i,j):l∈Pij
yij ≥ zl ∀l ∈ [1, N]

∑j yij ≤ 1 ∀i ∈ [1, M]

0 ≤ yij ≤ 1 ∀i ∈ [1, M], j ∈ [1, N]

zl ≤ 1 ∀l ∈ [1, N].

Let (y∗, z∗) be the optimal solution to the linear program. We apply randomized
rounding to make sensor i to cover the set Pij with probability y∗ij independently, i.e.,
we set yij = 1 with probability y∗ij. That yields a randomized (1− 1/e)-approximation
algorithm for the optimal separation strategy of MPSCL, shown in Algorithm 3. We prove
its performance ratio in Theorem 6. Then, using the method of conditional expectations
to derandomize Algorithm 3, we can obtain a deterministic approximation algorithm,
Algorithm 4, with the same performance ratio. According to Theorem 3, Algorithm 3
and Algorithm 4 are the randomized 1

2 (1− 1/e)-approximation and the deterministic
1
2 (1− 1/e)-approximation algorithm for MPSCL.

Algorithm 3 MPSCL-Random

Input: A set of sensors S with velocities V = {v1, v2, . . . , vM}, A set of PoI P with locations
X = {x1, x2, . . . , xN} and weightW = {ω1, ω2, . . . , ωN}, sweep period T.

Output: The sweep covered set PS of PoIs.
1: for i← 1 to M do
2: for j← 1 to N do
3: Let Pij be the set of PoIs located in coordinate interval [xj, xj + viT/2];
4: end for
5: end for
6: compute an optimal solution (y∗, z∗) to the linear programming relaxation (LP);
7: for i← 1 to M do
8: Make sensor si cover from the PoI j independently with probability y∗ij, the set of

covered PoIs is Psi ;
9: end for

10: PS =
⋃M

i=1 Psi ;
11: return PS

Theorem 6. Algorithm 3 is a randomized 1
2 (1-1/e)-approximation algorithm for MPSCL.

Proof. The proof is similar to the proof of Theorem 5.10 in Reference [32]. In Algorithm 3,
the fractional value y∗ij is interpreted as the probability that Pij is chosen. Let random
variable Zl = 1 if the PoI l is covered (1 ≤ l ≤ N); Zl = 0 otherwise. Then, the probability
that the PoI l is not covered is the probability that all the sets including the PoI l are
not chosen:
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Pr[Zl = 0] = ∏
(i,j):l∈Pij

(1− y∗ij)

≤ [
1
nl

∑
(i,j):l∈Pij

(1− y∗ij)]
nl

= (1−
∑(i,j):l∈Pij

y∗ij
nl

)nl

≤ (1−
z∗l
nl
)nl ,

where nl indicates the number of sets in which the lth PoI is included, the second inequality
follows from Arithmetic-geometric mean inequality, and the last inequality follows from
Constraint (5).

When k ≥ 1, the function fk(x) = 1− (1− x
k )

k (0 ≤ x ≤ 1) is concave. So, the proba-
bility that the PoI l is covered is

Pr[Zl = 1] ≥ 1− (1−
z∗l
nl
)nl

≥ ( fnl (1)− fnl (0))× z∗l + fnl (0)

= [1− (1− 1
nl
)nl ]z∗l .

Let W be a random variable of the summed weight of the covered PoIs, and let OPTLP
and OPTIP be the optimal value of the linear program (LP) and the integer program (IP),
respectively. The expected value of the summed weight is:

E[W] =
n

∑
l=1

ωlE[Zl ]

=
n

∑
l=1

ωl Pr(Zl = 1)

≥
n

∑
l=1

ωlz∗l [1− (1− 1
nl
)nl ]

≥ mink≥1[1− (1− 1
k
)k]

n

∑
l=1

ωlz∗l

≥ (1− 1
e
)OPTLP

≥ (1− 1
e
)OPTIP.

In Algorithm 3, there is only one linear program needed to solve, so it is a polynomial-
time algorithm. Now, we have proven that Algorithm 3 is a randomized (1 − 1/e)-
approximation algorithm for the optimal separation strategy of MPSCL. According to The-
orem 3, Algorithm 3 is a randomized 1

2 (1− 1/e)-approximation algorithm for MPSCL.

Now, we show how to use the method of conditional expectations to derandomize
Algorithm 3 to obtain Algorithm 4. In Algorithm 4, let random variable Yij = 1 denote that
sensor i covers the set Pij, i.e., for sensor si, yij = 1, yi j̄ = 0, where j̄ = {j′ ∈ [1, N], j′ 6= j}
and yi j̄ = 0 denote that yij′ = 0, ∀j′ ∈ j̄. Then, Pr[Yij = 1] = y∗ij. In hth interation,
Yh−1 = {yij|i ∈ [1, h− 1], j ∈ [1, N]} is fixed. Set yhjh = 1 to let the current conditional
expectation maximized, i.e., jh = argmaxj∈[1,N]E[W|Yhj = 1;Yh−1]. After M iterations, all
yij for i ∈ [1, M], j ∈ [1, N] are set. We can get a deterministic solution with the same
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approximation ratio to that of Algorithm 3. The output in Algorithm 4 is the union of the
sets Piji for 1 ≤ i ≤ M.

Algorithm 4 MPSCL-Derandomized

Input: A set of sensors S with velocities V = {v1, v2, . . . , vM}, A set of PoI P with locations
X = {x1, x2, . . . , xN} and weightW = {ω1, ω2, . . . , ωN}, sweep period T.

Output: The sweep covered set PS of PoIs.
1: for i← 1 to M do
2: for j← 1 to N do
3: Let Pij be the set of PoIs located in coordinate interval [xj, xj + viT/2];
4: end for
5: end for
6: compute an optimal solution (y∗, z∗) to the linear programming relaxation (LP).
7: for i← 1 to M do
8: set ji = argmaxj∈[1,N]E(W|Yij = 1;Yi−1);
9: make sensor si to cover the set Piji of PoIs;

10: end for
11: PS =

⋃M
i=1 Piji ;

12: return PS

Theorem 7. Algorithm 4 is a deterministic 1
2 (1− 1/e)-approximation algorithm.

Proof. As the explanation above, we prove the theorem by induction. Without loss of gener-
ality, we assuming all the sensors will be occupied, i.e., ∑j∈[1,N] Pr[Yij = 1] = ∑j∈[1,N] yij =
1 for i ∈ [1, M].

In the first step, we choose j1 = argmaxj{E[W|Y1j = 1]|1 ≤ j ≤ N} and set y1j1 = 1,
y1 j̄1 = 0. By the definition of conditional expectations,

E[W] =
N

∑
j=1

E[W|Y1j = 1]Pr[Y1j = 1]

and ∑N
j=1 Pr[Y1j = 1] = ∑N

j=1 y1j = 1, then

E[W|Y1j1 = 1] = maxj{E[W|Y1j = 1]} ≥ E[W].

We assume that E[W|Yh] ≥ E[W]. In the (h + 1)th step (1 ≤ h < M), we choose
jh+1 = argmaxj{E[W|Yh+1,j = 1;Yh]} and set yh+1,jh+1

= 1, yh+1, ¯jh+1
= 0. By the definition

of conditional expectations ,

E[W|Yh] =
N

∑
j=1

E[W|Yh+1,j = 1;Yh]× Pr[Yh+1,j = 1]

and ∑N
j=1 Pr[Yh+1,j = 1] = ∑N

j=1 yh+1,j = 1, then

E[W|Yh+1,jh+1
= 1;Yh]

= maxj{E[W|Yh+1,j = 1;Yh]}
≥ E[W|Yh]

≥ E[W].

After M iterations, all {yij | i ∈ [1, M], j ∈ [1, N]} are set. We get a deterministic
solution Wd satisfying

Wd ≥ E[W] ≥ (1− 1/e)OPTIP.
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Since it takes polynomial time to solve the linear programming formulation, and
there are M× N linear programming formulations need to be solved, Algorithm 4 runs in
polynomial time.

According to Theorem 3, Algorithm 4 is a deterministic 1
2 (1− 1/e)-approximation al-

gorithm.

5. Simulation Experiments

In this section, simulation experiments are conducted by using MATLAB to com-
pare the algorithms including MPSCL-Velocity-Rounding, MPSCL-Random, and MPSCL-
Derandomized. Since all the studies so far have not given the optimal cooperation strategy,
we discuss the approximation ratios of the above algorithms to the optimal separation
strategy, which are proven in the above theorems. Theorems 5–7 have shown that the ap-
proximation ratios of the three algorithms to the optimal separation strategy are separately
1
α , 1− 1/e, and 1− 1/e. The optimal separation strategy can be obtained by solving IP with
the toolbox “Yalmip” of MATLAB, which is a free optimization solution tool developed
by Lofberg.

In the experiments, there are N PoIs randomly distributed on a line of length 500,
in which sweep period is 1. The velocities of M sensors are uniformly, randomly generated
at range [vmin, vmax). Set the parameter α = 2. We let N vary from 200 to 1000, M vary
from 5 to 30, vmin vary from 5 to vmax, and vmax vary from 10 to 50. For each combination
of network parameters, we randomly generate ten instances to obtain the average perfor-
mance and the lower bound of the performance of each algorithm. In the experiment, none
of the parameters showed a significant effect on the approximation ratio. As shown in
Table 2, the performance lower bounds of the three algorithms all satisfy the theoretical
analysis. Algorithm MPSCL-Random is a randomized approximation algorithm. It only
needs to satisfy the algorithm performance at a high probability. Thus, it has a fluctuat-
ing performance, as shown in Table 2. However, it also shows better performance than
Algorithm MPSCL-Velocity-Rounding. Algorithm MPSCL-Derandomized derandomized
Algorithm MPSCL-Random, so it must have higher computational complexity and better
performance than MPSCL-Random, as shown in Table 2.

Table 2. The experimental performance of the algorithms.

Name of the Algorithm Lower Bound of the Performance Average Performance

MPSCL-Velocity-Rounding 0.66 0.81

MPSCL-Random 0.66 0.92

MPSCL-Derandomized 0.89 0.98

The influence of parameters on running time is shown below. Figure 3 shows the
influence of the minimum velocity vmin. In this experiment, the number of targets is
N = 1000, the number of sensors is M = 20, the maximum velocity is fixed, vmax = 50,
and the minimum velocity varies from 5 to 30. When the minimum velocity increases,
the running time of Algorithm MPSCL-Velocity-Rounding decreases. Remind that the
computational complexity of Algorithm MPSCL-Random is O(N × (M/K + 1)K), where
K = blogα(vmax/vd)c+ 2 and vd = max

{
1

2T d(α)min, vmin

}
. When α = 2, the value of K is

proportional to vmax/vmin. Therefore, when vmin increases, K decreases, which has a great
impact on the complexity of Algorithm MPSCL-Velocity-Rounding. Thus, the running time
becomes shorter. On the other hand, when the minimum velocity increases, the running
time of Algorithm MPSCL-Random and MPSCL-Derandomized increased slightly. That
is because, when vmin increases, so does the average velocity of the sensors, the coverage
range of a sensor becomes larger, i.e., |Pij| in formula LP becomes larger, which makes
the running time of Algorithm MPSCL-Random and MPSCL-Derandomized slightly in-
creased. This can be shown more clearly in Figure 4. In Figure 4a,b, K = 2 or K = 3 is
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fixed, respectively, where K is the number of velocity groups. Let N = 1000, M = 10,
vmin = 3:3:15. It is shown that the running time of Algorithm MPSCL-Velocity-Rounding
would not be affected too much, and that of Algorithm MPSCL-Random, Algorithm
MPSCL-Derandomzied would increase as vmin increases.

Figure 3. When the number of sensors remains the same, the influence of the minimum velocity of
the sensors on running time. (N = 1000, M = 20, vmax = 50.)

Figure 4. The influence of the velocities [vmin, vmax) on running time. (N = 1000, M = 10) (a). when K = log2(vmax/vmin) =

2. (b). when K = log2(vmax/vmin) = 3.

In Figure 5, set vmin = 10, vmax = 40, then the velocities of sensors can be divided
into K = 2 groups, [10, 20), [20, 40). Recall that the length of the line is 500. In Figure 5a,
N = 1000, the number of sensors M varies from 5 to 25. In Figure 5b, M = 20, the number
of targets N varies from 500 to 2500. Figure 5 shows that when K ≤ 2, i.e., vmax/vmin ≤ 4,
the running time of Algorithm MPSCL-Velocity-Rounding is the shortest. That is reasonable
because there is still no algorithm for solving linear programming with computational com-
plexity less than O(n2+ε) (https://en.wikipedia.org/wiki/Linear_programming (accessed
on 10 February 2021)).

Where n is the number of variables of linear programming, ε > 0 is a fraction.

https://en.wikipedia.org/wiki/Linear_programming
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Figure 5. When K = 2 (vmin = 10, vmax = 40). (a) The influence of the number of sensors M on running time. (b) The
influence of the number of targets N on running time.

In Figure 6, set vmin = 5, vmax = 40; similarly, the velocities are divided into K = 3
groups, [5, 10), [10, 20), [20, 40). In Figure 6a, N = 1000, the number of sensors M varies
from 5 to 25. In Figure 6b, M = 20, the number of targets N varies from 500 to 2500.
There is the same parameter configuration except vmin = 3 and vmax = 48 in Figure 7,
i.e., K = 4. As shown in Figures 6 and 7, when K ≥ 3, the running time of Algorithm
MPSCL-Random is shorter than Algorithm MPSCL-Velocity-Rounding. And as K or M
increases, the running time of Algorithm MPSCL-Velocity-Rounding increases rapidly.

Figure 6. When K = 3 (vmin = 5, vmax = 40). (a) The influence of the number of sensors M on running time. (b) The
influence of the number of targets N on running time.

Figure 7. When K = 4 (vmin = 3, vmax = 48). (a) The influence of the number of sensors M on running time. (b) The
influence of the number of targets N on running time.
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According to the experimental results, the performance and the computational com-
plexity of the three algorithms all satisfy the theoretical analysis. Algorithm MPSCL-
Random (Algorithm 3) shows excellent average performance. When vmax > 4vmin, it
would be a good choice if shortest running time is required. Or, if higher algorithm per-
formance is asked for, Algorithm MPSCL-Derandomized (Algorithm 4) is better. When
vmax ≤ 4vmin, if the algorithm performance is acceptable, Algorithm MPSCL-Velocity-
Rounding (Algorithm 2) can obtain faster results.

6. Conclusions

In this paper, we are the first to prove the PSCL problem is NPC by reducing 3-
Partition problem to it and provide optimal and approximation algorithms for the MPSCL
problem in different cases. For the special case when the velocities of the sensors are
the same, we propose an optimal algorithm with a computational complexity of O(MN).
For the case when the sensors have a constant number of different velocities, we use
the dynamic programming method to find the optimal separation strategy and prove
that it is a 1

2 approximation algorithm for MPSCL. For the general case when the sensors
have arbitrary velocities, we propose three approximation algorithms: one uses dynamic
programming after velocity rounding to get an approximation ratio 1

2α ; the second is a
random approximation algorithm with an expected approximation ratio 1

2 (1− 1/e); and
the third one derandomizes the random algorithm to get a deterministic algorithm with
the same approximation ratio to the second one. All theoretical analyses are verified in
experiments. Our future work is to study the Max-weighted Point Sweep Coverage problem
in other types of graphs, such as trees and Eulerian graphs, and reduce the approximation
ratio between the optimal value of MPSCL and that of the optimal separation strategy.
Min-Sensor Sweep Coverage problem on Lines is also an interesting topic.
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