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Abstract

Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many
regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to
memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories
may respond differently to current conditions. These ‘‘memory’’ effects may be more than incidental to the regulatory
mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and
confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent
behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an
information-theory based conceptual framework for measuring both the persistence of memory in microbes and the
amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological
measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework
to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis
and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application
of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell
history, and that this memory is distributed differently among the observables. While this study does not examine the
mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting
point for studying new questions about cellular regulation and evolutionary strategy.

Citation: Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, et al (2008) Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium. PLoS
ONE 3(2): e1700. doi:10.1371/journal.pone.0001700

Editor: Pamela A. Silver, Harvard Medical School, United States of America

Received November 15, 2007; Accepted January 28, 2008; Published February 27, 2008

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: The authors would like to acknowledge the National Institutes of Health (R01 GM073010-01), the Department of Energy and the Howard Hughes
Medical Institute for support during the period of this project.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dmwolf@lbl.gov (DW); aparkin@lbl.gov (AA)

. These authors contributed equally to this work.

Introduction

Your average bacterium is unlikely to recite p to 15 places or

compose a symphony. Yet evidence is mounting that these ‘simple’

cells contain complex control circuitry capable of generating

multi-stable behaviors and other complex dynamics that have

been conceptually linked to memory in other systems. And though

few would call this phenomenon memory in the ‘human’ sense, it

has long been known that bacterial cells that have experienced

different environmental histories may respond differently to

current conditions [1–3]. Though some of these history-dependent

behavioral differences may be physically necessary consequences

of the prior history, and thus some might argue insignificant, other

behavioral differences may be controllable and therefore selectable

and even fitness enhancing manifestations of memory.

In this paper we take the potentially controversial view that

history-dependent behavior, whether short or long term, con-

trolled or incidental, reflects a form of memory [4–6]. Because

bacterial dynamics at every level of resolution operate within the

limitations and potentials of nonlinear physical and biochemical

dynamical systems, they must exhibit at least very short-term

transient memory, and potentially longer term memory. The type

of memory (and its significance) depends on which features of cell

history are ‘remembered’, and at what resolution; whether or not

the system eventually ‘forgets’ its past, and if so, how long this

forgetting takes; the mechanisms in the cell responsible for

memory storage, encoding, and retrieval; and whether or not this

memory provides a fitness advantage in a natural environment. In

cellular systems, environmental memory has been noted to be

inherent in everything from the selective history of mutation,

epigenetic inheritance via chromatin modification in neurons and

DNA methylation in chemotaxing bacteria [7], genetic and

epigenetic phase variation mechanisms controlling surface features

of pathogenic bacteria [8,9], cellular proliferation and survival in

the immune system, and in switch-like feedback systems in

regulatory networks spanning signal transduction, metabolism

and gene expression [10–21]. There is also a growing body of

work focusing on synthetically designing and constructing network

motifs and systems that are capable of showing some types of

dynamic memory [22,23]. These and many other studies in

synthetic and natural systems suggest that even the simplest first-

order chemical reactions have at least transient memory of initial

PLoS ONE | www.plosone.org 1 February 2008 | Volume 3 | Issue 2 | e1700



conditions, and more complex mechanisms involving history-

dependent changes in the concentrations, states and localization of

proteins and other regulatory network elements can encode a wide

range of input information and store it for amounts of time

ranging from minutes to days or longer [4,16,24,25]. The state

dynamics of such systems contain the memory of past controlling

inputs, and even of past environmental conditions if one is to

interpret more broadly [5,26].

In metazoans, the ability of somatic cells to remember their fates

is key to development and thus to organismal fitness. The same

can be said for other types of metazoan cells like those found in the

immune system that use a memory of past states to modify future

behavior. In principle at least, memory, whether short- or long-

term, can feasibly confer an evolutionary advantage in microbes as

well. For instance, Hoffer et. al. suggest that in E. coli a form of

‘memory’ of past phosphate limitation leads to a faster response to

successive periods of phosphate limitation, and that this faster

response may be survival enhancing [5]. It has also been suggested

that pathogenic bacteria use cross-talk encoded memory to

balance the demands of immune avoidance with a sequential,

compartment to compartment infection lifecycle [8,9]. More

abstractly, the dynamic implementation of cellular behaviors can

be viewed as a selected, ‘winning’ (or at least stable) strategy in an

evolutionary game [12,27]. In game theory, information creates

advantage [28–30], and information about the past as well as the

present creates even greater advantage. Thus if bacterial cells are

able to store information about past experience in some type of

memory, and use this memory to modulate their behavior, this

opens up the possibility of playing game strategies with memory, a

provably superior family of strategies compared to those without

memory [31–35]. Even if the memory capacity of the system is

short term, but on the order of environmental fluctuations, it could

conceivably impact fitness and therefore play a role in an evolved

adaptive behaviour [28].

Given the potential ubiquity and significance of bacterial memory,

we propose that quantifying history dependent behavior in microbes

could be an important piece of the puzzle of bacterial regulation,

survival strategy, and evolution. To this end, we developed an

information-theory based conceptual framework for thinking about

and measuring both the persistence of memory in microbes and the

amount of information about the past encoded in these dynamics.

This method produces a phenomenological measure of cellular

memory without regard to the specific cellular mechanisms encoding

it. We then applied this framework to the bacterium B. subtilis. B.

subtilis presents an excellent model organism for this study because of

its exquisite sensitivity to environmental conditions, its known

mechanisms of bistability and other hysteretic switch-like regulatory

stress response mechanisms and architectures, and its developmental

decision to sporulate that strongly resembles eukaryotic memory-

associated processes determining developmental cell fate ([10,36–

40], Fig. 1). Also, certain aspects of B. subtilis behavior, such as spore

coat composition, have already been associated with environmental

memory [41–43], and though much suggests that there should be

memory, how these response dynamics depend on past conditions

prior to application of a stress has not been systematically examined.

In our experiments, we quantified the ability of three B. subtilis

stress response systems–sporulation, degradative enzyme synthesis,

and growth-to ‘remember’ 10 distinct cell histories prior to

application of a common stressor. We chose to observe

commitment to sporulation (via reporter fusion to PSPOIIE) because

the sporulation decision is bistable, and bistability is associated

with memory [9,11,16,44]. We added the reporter for degradative

enzyme synthesis (measured by a fluorescent reporter fused to the

AprE promoter) because though it shares many common

Figure 1. The B. subtilis stress response meta-network, where each oval represents both a stress response and the regulatory
network of 100 or so interacting molecular species that regulates it. Among the many ingenious genetic and biochemical programs
employed by B. subtilis to cope with environmentally adverse conditions are its ability to take up extracellular DNA, competence [40,76]; differentiate
into an inert heat-, chemical, and UV-resistant spore [37]; secrete degradative enzymes to identify and digest new food sources [77]; become motile
and chemotax toward possibly better surroundings [78]; synthesize antibiotics to eliminate competitors in the same ecosystem [79,80]; turn on
alternative metabolic pathways, and form biofilms ([81], not shown), just to name a few [38]. The cross-repressive feedback between sporulation and
competence, and the many positive feedback loops within each large ‘individual’ stress response pathway [10,36–40,82], are suggestive of switches
and other elements that could potentially encode memory. The two stress response pathways monitored in our experiments, sporulation and
synthesis of the degradative enzyme subtilisin, are denoted by bold-faced ovals. The fluorescent reporters (GFP and DsRed) fused to the respective
promoters PspoIIE and PaprE are indicated (see Materials and Methods).
doi:10.1371/journal.pone.0001700.g001
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controllers with sporulation, its expression pattern is quite different

and not believed to be bistable or probabilistic. We wondered

whether any history-dependence in sporulation control would be

mirrored in AprE control. Finally, we chose to observe growth (as

measured by OD600) because it is perhaps the most accessible

measure of cellular health and fitness and is an integrator of many

other aspects of cell function, thus it may show interesting differences

depending on cell history. One can imagine that there might be a

strong fitness incentive toward memory in B. subtilis. If cells could use

a memory of past conditions to ‘predict’ future conditions, and delay

sporulation, an expensive process, if the environment is likely to

improve or accelerate sporulation if the starvation period is likely to

be long, they might improve their odds for long-term survival.

Results

Information Theoretic Memory Framework
‘Adaptive’ memory experiment. A complete quantification

of biologically relevant memory would involve first perturbing the

cell with all possible sequences of complex environmental inputs it

might experience in the wild in each of its growth modes, then

measuring all cellular responses to these perturbations, and, finally,

quantifying the degree and distribution of history-dependence in

these responses.

Here we assume a simple approximation of this scenario, in

which each sample of a biological system is subjected to one of

many conditions prior to time t0, and then observed in a common

condition after t0 (see Fig. 2 and Definition (1) in Appendix S1 in

Supplementary Information). We call this an ‘adaptive’ memory

experiment because it roughly simulates a temporal shift in the

environment requiring adaptation or acclimation, and to differ-

entiate it from the more classical memory experiments in physics,

engineering and cell biology designed to identify hysteretic loops

[45–47]. While we do not identify such loops here, multistability is

suggested by the appearance of long term memory in our

experiments. More complex environmental history trajectories

could feasibly unravel more memory effects.

We are interested in whether past conditions can be inferred

from observations of behavior in current conditions. The assumption

here is that history-dependent behavior is a manifestation of memory, and that

the better the possible inference about prior conditions from current

measurements, the more memory there is within the system.

Adapting communication metrics to memory. To

quantify this intuitive concept of history-dependence as memory,

we use concepts from information theory [48] in the tradition of

Landauer’s use of informational entropy to estimate human

memory capacity [49], and the extensive body of work

characterizing memory in individual neurons [50–53].

By interpreting the random variable Y as behavior in current

conditions, and the random variable M as past cellular history

prior to time t0, the mutual information I(M;Y) = H(M)2H(M|Y)

of M relative to Y provides a measure of memory in informational

entropy bits (see [48], Fig. 3, and Definition (2) in Appendix S1 for

details, including the definition of informational entropy H).

Roughly speaking, from this perspective I(M;Y) captures how

much uncertainty about past conditions can be reduced by

observations of behavior in current conditions. Worded differently,

I(M;Y) captures how much information about past conditions can

be inferred from observations of behavior in current conditions.

The better the possible inference about prior conditions (and thus the higher the

bit count of I(M;Y)), the more memory there is within the system.

Short term vs. long term memory. Memory, or history-

dependent behavior, can manifest across multiple time scales.

Short term, or transient, memory is stored by the system for some

time, and then ‘forgotten’ (see Fig. 4a,d). Systems may also have

Figure 2. An ‘adaptive’ memory experiment. In an adaptive memory experiment, each (identical) sample of a biological system is subjected to
one of several conditions prior to time t0, and then observed in a common condition after t0. If different past histories lead to different short-term
behaviors in current conditions, the system can be said to exhibit short-term memory. If different past histories lead to different long-term behaviors,
the system can be said to exhibit long-term memory.
doi:10.1371/journal.pone.0001700.g002
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either ‘effective’ long term memory if the transient dynamics are

long compared to environmental fluctuations, or ‘true’ asymptotic

memory if the stationary state of the system depends on initial

conditions, as occurs in nonlinear systems with multiple attractors

(see Figs. 4b,c,and e). For an example of the latter, the state of a

bistable switch encodes an asymptotic memory of the last

switching event.

Because in many systems the significance, mechanistic origin,

and function of memory likely depends on how long it lasts, and in

particular whether it can be classified as short-term or long-term,

we distinguish between the two types of memory and quantify

them separately. From an information perspective, we say that an

external observer of an adaptive memory experiment with a priori

knowledge of the probability distribution over cell histories detects

short-term memory in this system if observing measurements of

some fraction of the short-term behaviour of the system after time

t0 leads to a reduction in uncertainty about the history of the

system prior to time t0. In this case, we say that the cells exhibit

Itrans(M;Y; ttrans);I(M;Y(t = t0:t0+ttrans)) bits of short term memory in the

observable Y over the period from t0 to t0+trans, where ttrans is a

time before the signal approaches its steady state (Definition (4) in

Appendix S1). Likewise, long-term memory is detected if

observing measurements of the system behavior near an apparent

steady state after time t0 leads to a reduction in uncertainty about

the history of the system. Here we say the cells exhibit

Iasym(M;Y);I(M;Y(t = t0+tasym:‘)) bits of long term memory in the

observable response Y during the experiment, where tasym is the

time it takes for the signal to settle (Definition (3) in Appendix S1).

Memory quantification normalized. The above metrics

for short term and long term memory are absolute measures, in

that they give a bit count for an answer. Though these absolute

numbers can be useful, it is also useful to measure memory in

relative terms, compared to the total amount of memory that could

be observed in a perfectly retentive system given the limitations of

the experiments. To address this issue, we define short-term memory

fidelity to be Ptrans(M; Y; ttrans);I(M;Y(t = t0:t0+ttrans))/H(M) and long-

term memory fidelity to be Pasym(M;Y);I(M;Y(t = t0+tasym :‘))/H(M),

where H(M) is the entropy over all the past conditions that were

applied in the experiment. These normalized mutual information

metrics, measures between 0 and 1 of the fraction of uncertainty

about the past conditions tested that is reduced by knowledge of

future cellular response, have also been called the coefficients of

constraint [54] (see Definition (5) in Appendix S1).

Quantifying memory in higher dimensions. In addition

to analyzing each observable individually, we are interested in

calculating the short and long term memory exhibited by the

combined behavior of multiple observables. To do so, the above

definitions are easily extended to the case of multiple observables

by letting Y be a vector Ȳ = (Y1,...,Yn) and calculating

Iasym(M;(Y1,...,Yn)) and Itrans(M;(Y1,...,Yn); ttrans) and the memory

fidelity of each. This combined-memory estimation is interesting

because it allows one to address the question of whether

combining information from multiple read-outs leads to extra

memory beyond what is present in any of the individual read-outs,

and if so, how much. This issue is related to the size of the

memory, and the dimension it occupies within a cell’s state space.

Figure 3. Information-based conceptual schema for measuring memory in microbes. In communication theory (top), the informational
entropy of the signal space H(X) captures the number of different messages X that can be communicated and their probabilistic dispersal; the mutual
information I(X,Y) between transmitted and received signals quantifies the amount of information actually communicated. A memory experiment, in
contrast, involves subjecting cells to distinct treatments M prior to time t0, followed by an identical treatment S after time t0, with cell behavior from
t0 on monitored through temporal sampling of one or more observable variables Y. As applied to bacterial memory (bottom), the informational
entropy of the cell history space H(M) captures the number of different cell histories prior to time t0 tested by the experimental compendium and
their probabilistic dispersal; the mutual information Itrans(M;Y;ttrans) between the transient response of the observable variable Y after time t0 and the
cell history prior to time t0 captures the short-term memory of cell history exhibited by Y over the cell history space in response to treatment S.
Likewise, the mutual information Iasym(M,Y) between the long-term response of Y and cell history prior to t0 captures the long-term memory of cell
history exhibited by Y.
doi:10.1371/journal.pone.0001700.g003
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An inequality governing the informational entropy of a vector

pair of variables (X,Y) is as follows: max(H(X),H(Y))#H(X,Y)#

H(X)+H(Y) [54]. Thus, we know that the memory exhibited by any

pair of observables must be greater or equal to the bit count of the

most retentive pathway of the pair, and less than or equal to the

sum of the bit counts of the two pathways. If two pathways are

controlled independently, their combined behavior could produce

the upper limit on memory in the higher-dimensional space,

whereas if the pathways are controlled by a common signal or if

one pathway hierarchically controls the other, the lower limit

might be realized. To quantify this concept, we define memory

orthogonality between two pathway readouts Y1 and Y2 to be:

Memorth(M;(Y1,Y2)) ; (I(M;(Y1,Y2))-max(I(M;Y1),I(M;Y2)))/min(I(-

M;Y1),I(M;Y2)), where M is cell history and I is mutual

information. Memorth equals 1 if the two variables combined as a

vector yield the upper bound of memory, and 0 if the two variables

in combination yield the lower bound (see Definition (6) in

Appendix S1).

Implementation. For the calculations above, listed more

formally in Appendix S1 in Supplemental Information, we need to

estimate probability distributions over the past cell histories being

tested and the responses of the cells to each history. For past

conditions/histories, we enforce a uniform probability of observation

of each condition by running each experiment (condition i =

. response i) a fixed number of times. For responses, we cluster

trajectories from the different conditions and the probability of a

response is simply the histogram of trajectories over clusters. The

probability of prior environment given cluster membership is

enumerated in a similar way. Details of the entire analysis

algorithm can be found in Materials and Methods.

Caveats. The above information-based metrics and simple

associated analysis algorithm (see Materials and Methods) are

useful in that they transform the ‘lay’ questions–‘‘Do cells

‘remember’ past experiences and use these memories to modify

future stress response dynamics?’’ and ‘‘If so, is this ‘memory’ short

term or long term, and how much is there?’’–into well-defined

queries about information and uncertainty yielding quantitative

estimates of microbial memory in informational entropy bits.

However, any attempt to quantify or qualify memory is

fundamentally limited by the possibility of unobservable states

(see Fig. 4c), uncontrolled and unobservable inputs, poor choice of

input combinations and sequences, and measurement errors and

distortions. Here we assume most such limitations, discussed in

more detail in Supplementary Information (Section S1), are

inherent in the estimation of memory processes and most likely to

result in information loss and thus underestimates of the ability of the

system to ‘remember’ the cell histories tested by the experimental

compendium. Therefore we interpret quantifications of memory

within our B. subtilis compendium as lower bound estimates.

Experiment and Overview of Analysis
Memory experiment on B. subtilis: To test for history dependent

behavior–‘memory’-in B. subtilis, we engineered a fluorescently

labeled strain of Bacillus subtilis to report on commitment to

sporulation and degradative enzyme synthesis: the KEE strain

(PspoIIE-gfp, PaprE-dsred cmp, see Materials and Methods for details

Figure 4. Different types of history-dependent behavior one might observe. a) Short-term deterministic memory. State trajectories
‘remember’ their initial condition for some time, and then converge to a common asymptotic behavior. b) Long-term deterministic memory. State
trajectories of multi-stable systems ‘remember’ which basin of attraction their initial condition started in indefinitely (the basin containing X01 vs. the
basin containing X02 and X03), but retain a memory of the exact initial condition within a basin of attraction only transiently (X02 vs. X03). c) Short-
term and Long-term memory in a system with unobservable states. The state space of the cell is two dimensional (X,Y), but only one of the two
dimensions, X, is observed. Though all four initial conditions are distinct in the larger space, the unobserved Y component renders them identical to
the observer. Thus the trajectories appear to diverge from a common starting point and approach one of two asymptotic states. This gives the
observer the impression of first an increase in information and memory and then a decrease as the trajectories approach their long-term values. d,e) If
measurements are made on single cells rather than on averaged populations (as we did in this paper), history-dependent distributions may be
observed. d) Short-term stochastic memory. State trajectories are probabilistic in individual cells, with a distribution over the population that initially
retains a ‘memory’ of the initial condition of the population. In the long-term, this memory degrades as the distribution approaches a global attractor.
e) Long-term stochastic memory. The distribution over the population retains a ‘memory’ of the initial condition indefinitely, or at least over the time-
horizon of the experiment.
doi:10.1371/journal.pone.0001700.g004
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on strain construction). The spoIIE promoter (PspoIIE), our

sporulation reporter, controls expression of spoIIE, a gene

encoding a serine phosphatase specifically expressed upon

commitment to sporulation and therefore considered a good

sporulation commitment signal [55,56]. The aprE promoter

(PaprE), our degradative enzyme synthesis reporter, controls

expression of the extracellular protease subtilisin naturally

produced by B. subtilis cells at the end of exponential growth [57].

With the KEE reporter strain, we used our framework to

estimate, in informational entropy bits, the capacity of these stress

response pathways and of the cell growth dynamics to ‘remember’

10 distinct cell histories prior to application of a common stressor.

Specifically, we first grew three replicate cultures in one of two

media, Luria Broth medium (LB) or growth medium (GM) [58], to

one of five different densities (all still in exponential growth,

ranging from OD600 = [0.1:1], see Table 1, where OD600 is the

optical density of the culture at 600nM), for a total of ten cell

histories. Thus in the first stage of the experiment, a clonal

population of cells was divided into 30 groups, each of which

experienced one of the 10 cell histories consisting of growth in one

of two media to one of five cell densities over a fixed period of time

(see Materials and Methods for details).

We chose to combine different media with growth to different

densities as our set of cell histories because growth media can

impact cell state, as can growth of cultures to different densities

over a fixed period of time. Cells deplete nutrients and respond to

the environment and its dynamics with changes in metabolic

fluxes, post-translational modifications, gene expression, quorum

signaling and synthesis of storage compounds. GM medium (also

called CH medium) is a rich medium with casein hydrolysate as

the sole carbon source [58]. LB medium is a much richer and

more complex medium than GM and therefore sustains more

rapid growth. We assumed that any resulting history-dependent

differences in cell state at time t0 might lead to different history-

dependent behaviors in the common medium after t0.

After experiencing one of the 10 different cell histories, cells

were then pelleted and resuspended at an intermediate density

(OD600 = 0.5) in a common stress medium, in this case, sporulation

salts starvation medium (SM) [58]. The resuspension time is

denoted t0. Thus, regardless of past experiences, all cells observed

after t0 were subjected to starvation conditions starting at t0 in a

fixed-density, fixed-size population.

Our three observables Y after t0 consisted of two fluorescent

reporters, one for sporulation initiation and another for degrada-

tive enzyme synthesis (strain KEE (PspoIIE-gfp, PaprE-dsred cmp)),

and optical density of the culture as a proxy for cell growth

(OD600), measured at the bulk population level every 15 minutes

for 24 hours starting at time t0 (see Fig. 5 for time series, and

Materials and Methods for details on strain construction and

experiments). Thus, with 30 cultures–three for each of the 10 cell

histories– and three observables per culture measured every

15 minutes for 24 hours in the common stress medium starting at

t0, the memory data compendium for this set of experiments

consists of 3063696 = 8,640 measurements arranged in a 90 by

96 matrix.

Data analysis overview: The resulting memory data compen-

dium was then analyzed for short- and long-term memory in each

output signal individually and in all possible combinations of the

three signals by applying the memory quantification algorithm

described in detail in Materials and Methods and illustrated in the

flow chart in Supplementary Information Section S2.

To briefly summarize, in order to estimate how much short-

term and long-term memory was manifested in the behavior of the

reporters, we sought to calculate the mutual information between

the behavior of the cells after t0 and the history of the cells before

Table 1. Cell history table.

n Cell history Cell History Description

1 LB: D Grown in LB (rich medium) to density D (OD600 = 1)

2 LB: 21 Grown in LB to density 21 (OD600<0.65)

3 LB: 22 Grown in LB to density 22 (OD600<0.4)

4 LB: 23 Grown in LB to density 23 (OD600<0.2)

5 LB: 24 Grown in LB to density 24 (OD600<0.1)

6 GM: D Grown in GM (less rich medium) to density D

7 GM: 21 Grown in GM to density 21

8 GM: 22 Grown in GM to density 22

9 GM: 23 Grown in GM to density 23

10 GM: 24 Grown in GM to density 24

The cell history space M consists of 10 cell histories M = (Medium1,Density1):
growth in either rich Luria Broth medium (LB) or a less rich growth medium
(GM) [58] to one of five cell densities, D, 21, 22, 23, 24.
doi:10.1371/journal.pone.0001700.t001

Figure 5. B. subtilis memory data compendium. These plots show the dynamics of the sporulation initiation reporter PspoIIE-gfp expression (a), the
degradative enzyme synthesis reporter PaprE-dsred expression (b), and cell growth (c) of B. subtilis KEE after the onset of starvation (resuspension in SM) as
a function of cell history prior to starvation, as measured by fluorescence (GFP, and DsRed) and OD600 time series measurements taken every 15 minutes
for 24 hours, respectively. The 10 cell histories tested consisted of growth in either rich LB medium or poorer GM medium to one of five densities D, 21,
22, 23, 24, (see experimental overview section and Materials and Methods for details). Fluorescent intensities in (a–b) were divided by OD600 (c) and
then normalized to a [0 1] scale by dividing by the maximum. The error bars show standard deviation over replicates at each time point.
doi:10.1371/journal.pone.0001700.g005
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t0. This calculation required that we estimate the joint probability

density between cellular behavior after t0 and cell history prior to

t0. Given constraints on the amount of data and other

considerations described in detail in Section S3 of Supplementary

Information, we took a clustering approach to this problem. That

is, we first clustered the response of the pathway reporter as a way

of dividing the trajectories into groups with common, distinct

behaviors. The resulting assignment of each trajectory to a cluster

was then used to calculate the frequency of co-occurrence of each

behavioral class and each possible cell history. From this histogram

we estimated the requisite joint probability distribution, which was

then used to calculate the mutual information between cell history

and the behavior of the observable, and thus arrive at an estimate

for memory.

We performed this procedure on the 30 trajectories (3 replicates

for each of the 10 cell histories tested) of each of the three

observables, using both the short term (first 11 hours of

measurements, during which the signal was still dynamically

varying-see Materials and Methods for more details on our choice

of analysis intervals) and long-term response (last three hours of

measurements, from 21 to 24 hours, by which time the signals

have remained flat for several hours) in order to estimate short-

term and long-term memories manifested in each individual

signal. To calculate the short-term and long-term memory in the

combined activities of multiple signals, we took the same

approach, with the one difference being that the clustering step

captured the combined behavior of multiple readouts (Step 3 in

the algorithm in Materials and Methods). All bit counts were then

normalized to calculate memory fidelities and orthogonalities, as

defined in Appendix S1, in order to estimate in relative terms how

much of the total possible memory each system ‘remembers’, and

how much ‘extra’ memory is embedded in the higher-dimensional

spaces formed by multiple pathways.

Since the 30 populations were subjected to 10 different (within

error) past conditions M = (Medium1, Density1) in equal proportions,

the informational entropy of the cell history space M is

H(M) = 2log2(1/10) = 3.3219 bits. Thus, without prior knowledge

there are 3.3219 bits of information about cell history at most that

can be recovered from observation of these three outputs, either

individually or in combination and on any time scale.

Experimental Results
A qualitative overview of history-dependence. The B.

subtilis stress responses measured by the three observables (Figure 5)

appear neither memoryless nor in possession of a perfect memory

of the cell histories tested. They do not appear to be memoryless

because not all signals from a given observable follow a common

trajectory (within noise bounds) irrespective of past history of the

cells. Nor does the memory of any observable appear to be perfect,

because though there are ten distinct cell histories prior to time t0,

there appear to be fewer than ten distinct dynamics per observable

in response to the starvation stressor administered at time t0. By

eye, there appear to be more distinct behaviors in the short term

than in the long term. Also, different cell histories group together

for different observables. This means that we expect a higher bit

count estimate of short term memory than long term memory, and

different amounts of memory and of different aspects of cell history

in the three pathway observables.

All observables exhibit short-term memory of cell

history, with sporulation exhibiting the most and growth

dynamics the least. The transient behavior (first 11 hours) of

the SpoIIE (sporulation) reporter clusters into five distinct classes

of behavior (different onset times and sigmoidal vs. more pulsatile

expression), whereas the transient behavior of the AprE

(degradative enzyme synthesis) reporter clusters into three classes

(different onset times and different expression levels) and the

growth reporter into just two classes (some vs. almost no growth)

(see left panels of Fig. 6a,b,c). The mutual information between the

resulting clustering vectors and the cell history vector captures how

well the different behavioral classes of each observable correspond

to different cell histories. Performing this calculation, we estimate

Itrans(spo) = 1.96 bits of short-term memory in the sporulation

Figure 6. The map from cell history to B. subtilis stress response clusters. The transient dynamics and long-term levels of the sporulation
initiation (PspoIIE-gfp expression), AprE synthesis (PaprE-dsred expression), and growth (OD600) signals were clustered using the automatic method in
Materials and Methods. This figure shows the heat maps for each signal in Figure 5 (dark red indicates maximum, and dark blue minimum), the
number of behavioral classes for each signal, and which subset of the ten cell histories in our test set corresponds to each cluster. For example, the
asymptotic sporulation initiation signal from PspoIIE-gfp fusion clustered into two classes, one (top, 1) corresponding to a history of growth in rich LB
medium to the three highest densities, D, 21, and 22, and the other class (bottom, 2) corresponding to all other cell histories.
doi:10.1371/journal.pone.0001700.g006
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reporter; Itrans(AprE) = 1.4855 bits of short-term memory in the

degradative enzyme synthesis reporter, and Itrans(OD) = 1 bit of

short-term memory in the growth dynamics reporter OD600.

Thus, all three observables exhibit short-term memory of the cell

histories tested, with the sporulation reporter exhibiting the most

memory and growth dynamics the least.

Dividing these absolute bit counts by the entropy of the cell

history space, we estimate the short-term memory fidelities of

sporulation initiation, degradative enzyme synthesis, and growth

dynamics to be Ptrans(spo) = Itrans(spo)/H(M) = 1.96/3.3219 = 0.59,

Ptrans(AprE) = Itrans(AprE)/H(M) = 1.48/3.3219 = 0.45, and Ptrans(OD)

= Itrans(OD)/H(M) = 1/3.32<0.3, respectively. This means that if

one were to observe all 30 short-term responses of one of the three

reporters after t0 but not told which history corresponds to which

trajectory, 59% of the uncertainty about cell history prior to time

t0 could be reduced by observation of the transient sporulation

reporter dynamics after time t0, 45% of this uncertainty about the

past could be reduced by observation of the degradative enzyme

synthesis reporter dynamics after t0, and only 30% of this

uncertainty could be reduced by observation of the growth

dynamics after t0. More intuitively, one could say that 59%, 45%

and 30% of the cell histories tested are ‘remembered’ by the

short-term dynamics of the sporulation, degradative enzyme

synthesis, and growth reporters, respectively (see Fig. 7 and

Table S1).

All observables exhibit long-term memory of cell history,

though at a lower bit count than short-term memory.

Though short term memory can be important—because even

short term behavioral differences may have fitness consequences

[59], especially if they are on the order of environmental fluctuations

[28,60]—long term memory is generally the first thing that comes to

mind when memory is discussed [61–64]. One might expect long

term memory in B. subtilis stress responses-sporulation control

especially-because of the feedback topologies in their regulatory

circuitry and reportedly bistable behaviors [10,36–39].

To estimate the long term memory in each individual pathway

we first clustered the final segment of the 30 time series of each

reporter (from 21 to 24 hours after t0) to estimate the number of

distinct long-term behaviors for each of the three pathway

reporters (results = 2 unequal-sized clusters for each reporter, as

shown in Fig. 6, though the cluster sizes and associated cell

histories differ across reporters). We then calculated the mutual

information between the clustering results and the cell history

vector to arrive at lower bound estimates of Iasym(spo) = 0.8813 bits,

Iasym(AprE) = 0.72 bits, and Iasym(OD) = 0.97 bits of long-term

memory in the networks controlling sporulation initiation, AprE

synthesis and growth dynamics, respectively. Thus, like a switch,

there appear to be two, stable, long term behaviors for each

pathway reporter, though the probability of converging to each is

not equal or the same across reporters, as is reflected by distinct bit

Figure 7. Estimates of cell-history memory and mutual information in B. subtilis. The upper left bar plot shows our estimate of long-term
(blue bars) and short-term (first 11 hours, red bars) memory fidelity (% of the maximum recoverable information about cell history) exhibited in
starvation medium SM by sporulation initiation (PspoIIE-gfp expression), degradative enzyme synthesis (PaprE-dsred expression), and growth
dynamics (OD600), and over all vector pairs of observable read-outs and the vector triple, with respect to the cell history space tested by our
compendium. The lower right bar plot shows our estimate of the number of bits of mutual information shared by all pairs of short-term (red bars) and
long-term (blue bars) observable signals in our memory data compendium. The surrounding flow diagram circuit illustrates the experimental and
analytical scenario.
doi:10.1371/journal.pone.0001700.g007
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counts of less than 1 (if half the past histories lead to one attractor

and the other half of the histories lead to the other, there would be

1 bit of asymptotic memory).

Dividing these absolute numbers by the entropy of the cell

history space, we estimate the long-term memory fidelities of

sporulation initiation, degradative enzyme synthesis, and

growth to be Pasym(spo) = Iasym(spo)/H(M) = 0.8813/3.3219 = 0.265,

Pasym(AprE) = 0.22, and Pasym(OD) = 0.29, respectively. Thus, ap-

proximately 25% of the uncertainty about cell history prior to the

onset of starvation is reduced by knowledge of any one of the three

long-term reporter dynamics in the starvation environment. To

summarize, all three observables exhibit around 1 bit of long-term

memory of the histories tested, though of different aspects of cell

history as will be shown below. One bit is a significant amount but

much less than the nearly 2 bits of memory seen in the most

retentive short-term response.

Different observables remember different aspects of cell

history to different degrees. The above memory estimates

are in a sense high-level, because each of the 10 distinct cell

histories is treated identically. By drilling down a level of resolution

to the component parts of the cell histories–initial nutrient

composition of the media and cell density reached in that media

(which can also feasibly affect both the nutritional composition of

the medium and cell state while in log phase)–we can investigate

which aspects of cell history are remembered by the observables

and for how long.

In the short term, all three observables have a perfect memory

of whether they were grown in LB or GM, and only a partial

memory of their density in this medium. Put more formally, if we

consider growth medium in isolation and calculate the mutual

information between growth medium prior to time t0 and

transient response of the three reporters to starvation after time

t0, we see that a history of growth in LB can be distinguished from

a history of growth in GM with 100% memory fidelity

(Ptrans(Spo)(Medium1;Y;ttrans = 11 hrs) = Ptrans(AprE)(Medium1;Y;ttrans =

11 hrs) = Ptrans(OD)(Medium1;Y; ttrans = 11 hrs) = 1, where Medium1

is a random variable representing growth medium prior to time t0,

and can take on the values GM or LB). In contrast, the ability of the

pathways to remember the population density reached prior to t0

(and any changes in cell state these differences in cell density create) is

less simple. With a history of growth in GM, the cell density prior to

the onset of starvation at t0 is not ‘remembered’ by the short-term B.

subtilis sporulation, degradative enzyme synthesis, or growth

dynamics responses, even transiently (0% memory fidelity), as all

responses are indistinguishable within noise (Itrans(Density1/

Medium1 = GM;Y; ttrans = 11hrs) = 0). However, when grown in LB,

the cell density prior to t0 is remembered with 80% memory fidelity

by the transient sporulation dynamics and with 60% memory fidelity

by the transient AprE dynamics (Ptrans(Spo)(Density1/Medium1 = LB;Y;

ttrans = 11 hrs) = 0.8; Ptrans(AprE)(Density1/Medium1 = LB;Y; ttrans = 11

hrs) = 0.6).

In the long term, all three observables have only a partial

memory of which medium they were grown in, and to what

density. Like in the transient memory case, past growth medium is

remembered better than past cell density, but unlike in the

transient memory case, there is no perfectly clean dividing line

separating out the long-term responses to the two growth media

histories. For example, given observations of the long-term

behavior of the sporulation reporter, a history of growth in LB

can be distinguished from a history of growth in GM with only

39% memory fidelity (Iasym(spo)(Medium1;Y)/H(Medium1) = 0.39),

whereas cell densities (grouped into five classes, (D,-1,-2,-3 and

-4)) prior to t0 are remembered even less well, with only 12.1%

memory fidelity (Iasym(spo)(Density1;Y)/H(Density1) = 0.121). A simi-

lar pattern can be seen in the long-term memories of the other two

reporters. Interestingly, though each reporter exhibits two possible

long-term behaviors, the clusters are different sizes and the

histories that correspond to each behavioral cluster are different

for different pathways. As will be shown in the next section, these

differences lead to the possibility of an increased memory capacity

in the higher dimensional space defined by the combined activities

of multiple pathways.

There is more long-term memory in the combined activity

of the observables than is present in any individual

observable. Interestingly, analysis of the transient memory of the

pairs of pathway readouts (Spo, AprE), (Spo, OD600), and (AprE,

OD600)) shows no increase in memory in the higher dimensional space than is

found in the most retentive pathway in the dyad (see Figure 7). For

example, we estimate the transient memory found in the pair (AprE,

OD600) to be 1.4855 bits, which is the same bit count found in AprE

alone (Memorth(trans)(M;(AprE, OD600)) = (1.4855-1.4855)/(1.4855) = 0).

Likewise, the three-dimensional readout (Spo, AprE, OD600) shows

no more transient memory than is found in the sporulation pathway

(1.96 bits), its most retentive member.

However, the same conclusion does not follow for asymptotic

memory. Every pair of pathway readouts contains more asymptotic memory

than either constituent signal, and the triple pathway readout contains more

asymptotic memory (at 1.57 bits) than any of the constituent pairs (see

Figure 7). This implies that the long term behavior of our three

observables occupies a relatively high dimensional space, with

each subsystem responding differently to aspects of past conditions.

For example, though the AprE pathway is estimated to have only

0.7219 bits of asymptotic memory and the growth measure OD600

has only 0.971 bits of asymptotic memory, the pair (AprE, OD600)

has 1.371 bits of asymptotic memory (Memorth(asym)(M;(AprE,

OD600)) = (1.371-0.971)/(0.7219) = 0.554, or 55.4% of the maxi-

mum). Put more concretely, the asymptotic behavior of the AprE

signal alone ‘remembers’ two classes of cell history: the first a

history of growth in rich medium to higher densities and the

second all other histories in the compendium. Whereas observa-

tions of the asymptotic behavior of the growth signal allow

distinction between two different classes of cell history; the first

growth in rich medium to all densities greater than the lowest

tested (-4), and the second all other histories in the compendium.

Viewed together as a combined vector in a higher dimensional

space, the asymptotes of the pair (AprE, OD600) permit distinction

between three classes of cell history: growth in rich medium to

higher cell densities, growth in rich medium to low (but not lowest)

and intermediate cell densities, and, finally, growth in rich medium

to the lowest density or growth in poorer medium to any density.

Adding the sporulation signal increases the information storage yet

again, by adding another discernable class, leading to a total long-

term combinatorial storage of 1.57 bits. Thus, because the different

cellular systems in B. subtilis remember different aspects of prior

history, the combined activity of multiple pathways is able to

combinatorially store more information about the past than can any

individual pathway. However, the total asymptotic memory is still

somewhat less than the total transient memory (1.57 vs. 1.96 bits).

(For a complete accounting of cell history memory over all signal

combinations, and for the mutual information between all pairs of

signals, including the transient and asymptotic responses of each

signal, see Figure 7 and Table S1.)

Discussion

Though evidence that bacterial cells are able to remember their

histories and use these memories to alter their behavior in a fitness

enhancing manner would not raise expectations that bacteria
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could recite p or write music, it would enrich the motifs-modules-

games view of bacterial regulation [12] by adding game strategies

with memory to the repertoire of microbes. This exploratory paper

does not provide evidence that B. subtilis, or any other microbe, is

intelligent or is playing an evolved, fitness-enhancing memory

strategy. Rather, in this work we propose that the familiar

phenomenon of history-dependent behavior in microbes reflects a

form of memory worth studying systematically and quantifying,

and that doing so sets the foundation for understanding both the

mechanisms and function of memory in cell behavior and fitness.

To this end we formulated a conceptual information-theory based

framework for measuring microbial memory, thereby introducing

tools that begin to observe and quantify the relationship between

past cell history and future cell behavior from a new angle. This

method produces a phenomenological measure of cellular memory

without regard to the specific cellular mechanisms encoding it.

We then applied these tools to a simple set of medium-shift

experiments on B. subtilis, in the process demonstrating that B.

subtilis does ‘remember’, both in the short and long term, aspects of

its cell history, and that this memory is distributed differently

among the observables. More short term than long term memory

was evident, with short-term sporulation dynamics exhibiting the

most memory and long-term degradative enzyme AprE synthesis

dynamics the least. As expected, some but not all of the history-

dependence between the sporulation and AprE reporters is shared

(AprE has 75% of the short-term and 80% of the long-term

memory estimated for sporulation). We also illustrated how to

quantify memory in multiple combined variables, in the process

showing that because the different cellular systems in B. subtilis

remember different aspects of prior history to different degrees, the

combined activity of multiple pathways is able to combinatorially

store more information about the past than can any individual

pathway. Of the two components of cell history varied in our

compendium–past growth medium and the cell density reached in

this medium, which can alter cell state even in log phase–growth

medium appeared to be better remembered by B. subtilis, with past

density remembered best when originally grown in the medium

richest with nutrients, LB. Admittedly we do not yet know whether

the memory we have observed is fitness enhancing and evolved or

just incidental, or what molecular mechanisms or artifacts are

responsible for the observed pattern of memory storage. Rather,

these simple experiments and the surrounding analysis and

framework demonstrate what could be the beginning of a larger

memory program, and indicate that memory in cellular behaviors

may be a rich area for further exploration.

Ideas for a more complete memory-in-microbes research
program

A more complete program for investigating memory in bacteria

would encompass at least three lines of inquiry, essentially the

‘what’, ‘how’, and ‘why’ of bacterial memory. The first line of

inquiry (what), for which this study is an example, is the

quantification of environmental memory in a microbe. This study

could be extended by resolving the population-averaged behavior

analyzed in this paper into single-cell measurements and memory

classification and quantification. Given that sporulation is thought

to be a stochastically triggered bistable developmental process

[10,36–39], one might expect the population-averaged measure-

ments (Figure 5.b) to resolve into bimodal distributions of high and

low GFP-expressing cells. And since AprE synthesis control is

believed to be more deterministic and analog, one might expect

more monomodal distributions. Preliminary data from flow

cytometry analysis support this expectation, at least for some

histories and time points (see Figure S1 in Supplemental

Information), but further work is needed to determine for what

conditions and pathways memory at the single-cell level can be

classified as stochastic, and the form and quantification of this

stochasticity. An exploration of the memory characteristics of

other cellular players active in these and interacting networks, and

the space of their environmental sensitivity, with the goal of

estimating the ‘true’ memory capacity of the system, are other

possible extensions of this work.

A second line of inquiry (how) would build upon the first by

elucidating the causal basis for any observed environmental

memory. Though many genetic and epigenetic bacterial switching

mechanisms have been elucidated [8,10,16], still unclear is exactly

how different types of environmental and intercellular signals

might be encoded and remembered within cellular circuitry for

varying lengths of time, a question addressable through mutant

studies and modeling. On the ‘meta’ level one could ask whether

memory is stored within single cells, population distributions, or in

the larger state space defined by the cell-environment interaction

through distributions of nutrients, waste products, enzymes,

signaling molecules, biofilm generating conditions, and so on. A

third line of inquiry could focus on the ‘why’s’ of environmental

memory. Is environmental memory, if it exists, controlled or

incidental: evolutionarily advantageous, deleterious, or neutral? Is

there evidence that memory-modulation of phenotype expression

control does not provide a fitness advantage in the present but

rather in a future implicitly anticipated from past experiences, thus

implying an internal model of environmental dynamics (in analogy

to the internal model principle in control [65])? We suspect that

answers to these ‘why’ questions could be key to whether the

others are worth deeply pursuing.

What do the B. subtilis memory observations in this case
study mean?

Though we do not yet know whether the memory we have

observed is fitness enhancing and evolved, or merely incidental, we

can speculate. Looking qualitatively at the three behavioral

observables together, we notice that when cells are grown to low

density in the less rich GM medium prior to the onset of starvation

conditions, they on average grow very fast after resuspension in

starvation media, and after a brief lag start turning on their

degradative enzyme synthesis and their probabilistic sporulation

machinery, even as the population continues to grow. Whereas

when cells are grown in richer, nutrient filled LB medium to the

same low density prior to the onset of starvation conditions, they

take a quite different approach. In this case, cells seem to adopt a

wait-and-see strategy, forgoing growth and delaying sporulation

and AprE synthesis for many hours.

A game strategy with memory?: The most tempting speculation

is that B. subtilis is playing a memory strategy in an evolutionary

game. From a game perspective, one could take these observations

as a sign that after transitioning from a less rich medium to

starvation, B. subtilis uses its memory of past nutrient-limited

growth in the context of an implicit internal model of

environmental dynamics to ‘predict’ how long starvation condi-

tions will last. If the cells expect starvation to last a long time, a

rational course of action might be to create as many spores as

possible, as fast as possible, to maximize the spore count that will

lie dormant until the next period of nutritional plenty. On the

other hand, if growth in a rich environment prior to starvation in

the context of this internal model produces a prediction of a short

period of starvation, the rational action might be to delay

sporulation, thereby decreasing the chances of having committed

irreversibly to an unnecessary, costly 8 hour developmental

program during which conditions could improve and the cells
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could be growing. Viewed in this way, B. subtilis’s cell-history

dependent behavior might constitute an evolved probabilistic

memory strategy in its game of survival. Such a strategy would

trump diversification strategies without memory [28–30,35,66,67],

and be analogous to adaptive model-based bet hedging over a

diversified portfolio in the stock market [28].

If the above scenario is true, one would expect sporulation

initiation delay to be a likely feature of the sporulation regulation

strategy of B. subtilis to exhibit memory. Within our experimental

compendium, the delay in turning on the sporulation machinery, as

estimated by the amount of time it takes for GFP to start being

noticeably expressed from the SpoIIE promoter by a population

(normalized GFP intensity .0.035, after which GFP rapidly

increases), ranges from a relatively short 1.5 hours to a much longer

nearly 8 or more hours after the onset of starvation (Figs. 5b and S2

in Supplemental Information). Calculating the mutual information

between GFP expression delays and cell history, we see that most

(86%) of the short-term memory in the sporulation reporter can be

recapitulated by reducing the trajectories to this single number (I(M;

Initiation Delay)/Itrans(M;Y;ttrans = 11hrs) = 1.685/1.96 < 0.86). This

calculation does not prove that the history-dependence we have

observed is an evolved and fitness enhancing memory strategy in a

game, but it is suggestive.

...or an artifact of metabolism?: Then again, the explanation could

have little to do with evolutionary games. It could be that differences

in metabolic stores, housekeeping apparatus, or metabolic state

induced by the different media and different biomass of the culture

simply represent initial conditions from which entry into sporulation

and other stress responses is more or less easy [1]. For example there

might be more ribosomes after growth in LB than there are after

growth in GM, forcing cells coming from the latter to stop growth

and initiate sporulation sooner. Or it could be that growth in GM, a

medium that while not nutrient-limited is lacking the excess of simple

carbon and nitrogen sources and readily available amino acids found

in LB, activates metabolic pathways that can facilitate growth and

spore formation in stress conditions. Then, when transferred to

starvation conditions, cells might be able to use this metabolic

machinery (and perhaps some form of intracellular nutrient storage)

to scavenge whatever scarce nutrients are to be found in the new

medium in order to grow and turn on their sporulation and

degradative enzyme pathways nearly immediately. Whereas with a

history of growth in rich, complex LB medium, cells might enter

starvation conditions of SM without enzymatic or other reserves

necessary for a near-immediate response to severely limited

conditions, and thus require a delay while the cells construct the

necessary metabolic machinery to acclimate to their environment.

These possibilities are not mutually exclusive; history-dependent

behaviors could stem from some combination of evolved

diversification game strategy and artifactual adaptive metabolic

processes. Experiments comparing the fitness of wildtype bacteria

to mutants with disrupted memory mechanisms coupled to a game

theoretic analysis will be necessary to distinguish among the

possibilities, and would identify the mechanistic source of memory

behaviors in the process. In any case, we hope that this conceptual

framework and analytical approach to quantifying memory in

cellular behaviors will be a useful point of departure for studying a

new set of questions about cellular regulation and evolutionary

strategy in microbes.

Materials and Methods
Strains and culture media

Bacillus subtilis 168 trpC (Bacillus Genetic Stock center) was used

as the wild-type strain. Escherichia coli strain DH5a was used for all

plasmid amplifications and isolations. Escherichia coli was grown at

37uC in LB supplemented, when necessary, with ampicillin at a

final concentration of 100 mg/ml. B. subtilis was cultured at 37uC
in either LB, growth medium (GM) or sporulation medium (SM).

GM and SM media are commonly used in the ‘induction of

sporulation by resuspension protocol’ described by Harwood and

Cutting [58] and were supplemented with 50 mg/ml and 20 mg/

ml L-tryptophan respectively. Antibiotics were added, with the

following final concentrations: chloramphenicol, 5 mg/ml; specti-

nomycin, 100 mg/ml.

DNA isolation and manipulation
Total genomic DNA from B. subtilis 168 was isolated with

DNeasy Blood & Tissue Kit (Qiagen) following manufacturer’s

protocol for Gram positive bacteria. Plasmid DNA was extracted

from E. coli with the QIAprep kit (Qiagen). DNA restriction and

cloning were performed according to standard procedures [68].

Restriction enzymes and T4 DNA ligase were obtained from New

England BioLabs and used according to the manufacturer’s

instructions. DNA fragments were purified from agarose gels with

the QIAquick gel purification kit (Qiagen). Vent DNA polymerase

(New England Biolabs) was used for PCRs.

B. subtilis reporter strain construction
Strains and plasmids are listed in Table S2 in Supplemental

Information. To integrate the fluorescent reporter fusions in the B.

subtilis genome the pLFKEE integration vector was constructed as

followed. The GFP variant GFPmut2 [69] was excised from

pMF19 [70] by digestion with BamHI/EcoRI enzymes and ligated

into pEA18 (a gift from Antje Hofmeister) digested with the same

enzymes, to give pLF22. The plasmid pEA18 (cmp, spc) is a vector

[71] allowing integration by double cross-over at the amyE locus,

with a chloramphenicol selection. The spoIIE promoter (PspoIIE)

was amplified by PCR from B. subtilis 168 genomic DNA using

primers PspoIIE-D/EcoRI (atcacggaattcaaatcggtttctcttgcagaagccg)

and PspoIIEM-R/HindIII (atacaaagcttttatattcgttgcctgtcattatagcg),

and digested with EcoRI and HindIII, then ligated 59 of gfpmut2 on

pLF22 that had been digested with the same enzymes to give

pLF25 (PspoIIE-gfp, cmp). The transcriptional profile of the spoIIE

gene was verified by total RNA dot blot before and after induction

of sporulation to confirm its early and specific expression induction

at the onset of sporulation (see Figure S3).

To obtain the PaprE-dsred fusion, the dsredexpress coding sequence

was amplified by PCR from pDsRed-Express (Clontech) using

primers DsRed-D/FseI (tacggccggcctaaggaggaactacaaatggcgagcagt-

gaggacatcatcaagg) and DsRed-X/EcoRV (agatatcgatcagatctacaggaa-

caggtggtggcg). The PCR fragment obtained was digested with FseI

and EcoRV. A modified version of the aprE promoter (PaprE)

(developed and tested in [72]) was amplified by PCR from pSG-

TTGACA [72] using primers PaprESG-D/AgeI (tgaaccggttgtcaaa-

catgagaattcagcg) and PaprE-R/FseI (caaggccggccaaattcagagtagact-

tacttaaaagac). The resulting PCR fragment was digested with AgeI

and FseI and ligated with FseI/EcoRV-digested dsredexpress into AgeI/

EcoRV-digested pLF25 in a three-point ligation to give pLFKEE

(PspoIIE-gfp, PaprE-dsred, cmp spc). Selection of plasmid constructions in

E. coli clones was done by adding ampicillin as described above and

correct fusions were verified by sequencing.

To construct B. subtilis KEE, pLFKEE was transformed into B.

subtilis 168 competent cells as previously described [58] and

selected on LB solid medium supplemented with chloramphenicol.

Integration clones were screened for their amyE phenotype on

LB+1% starch solid medium [58]. The inability of the clones

obtained to grow on spectinomycin was checked to eliminate

single cross-over plasmid integration events. Correct integration of

the fusion at the amyE locus was verified by PCR analysis.
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Medium-shift experimental protocol
Before each experiment, cells were streaked from 280uC

glycerol stocks on LB plates with chloramphenicol and grown

overnight. One colony was picked and inoculated in 5 ml liquid

LB medium with chloramphenicol in a series of dilution tubes and

grown overnight at 37uC. The culture the closest to OD600 of 1.0

was used to inoculate 60 ml of LB or GM in 250-ml flasks to a

final OD600 of 0.05 (flask D) after elimination of the culture

medium by centrifugation of the cells (6,0006g, 3 min). The

culture was split in two, and successive dilutions of 1:2 were

performed to a total of 5 flasks of 30 ml culture (flask D and

dilution flasks: -1, -2, -3, -4). Cells in all four flasks were grown

simultaneously at 37uC, 200 rpm, until the most concentrated

culture grew to an OD600 of 1.0 (Flask D). Then, 25 ml of each

culture were harvested by centrifugation (8,0006g, 5 min) and

resuspended in a pre-warmed SM medium volume calculated to

obtain a final OD of 0.5 (medium density). Three aliquots of 200

ml from each flask were transferred to a sterile Costar 96-well black

plate with flat clear bottom (Corning). Cells in the plate were

grown in a Tecan Safire microplate spectrophotometer at 37uC
medium linear shaking setting (395 rpm). Culture turbidity

(OD600) and fluorescence were measured at 15 minutes intervals

for a total time of 24 hours. GFPmut2 was read at wavelengths of

481 nm (excitation) and 507 nm (emission), and DsRedexpress

was read at 557 nm (excitation) and 579 nm (emission).

Memory and mutual information analysis
There are a number of ways to translate the memory

quantification definitions in Appendix S1 into an analysis

algorithm. We took a simple fixed-interval, clustering-based

approach executed as a five-step algorithm implemented the

MATLAB� (http://www.mathworks.com/) analysis environ-

ment, as follows (see Supplemental Information Section S2 for

schematic):

(step 0–select time intervals): The first step in analyzing the data

is to select time intervals to analyze. We parsed the time series data

(30 trajectories measured over 24 hours for each of three

observables) into a ‘short-term’ set taken well before steady-state

is reached (first 11 hours after t0, the onset of starvation–though

we could have taken any endpoint between 8 and 19 hours and

obtained the same result (see panel (b) in Section S3)) and an ‘long-

term’ set. For our purposes, we take as our ‘proxy’ for long-term,

asymptotic behavior the last three hours of our measurements,

from 21 to 24 hours after t0, because by then all signals have

remained flat for several hours. Experiments run for longer periods

of time indicate that these signals remain flat for as long as we have

measured them (36 hours, data not shown). However, we view this

long-term data set as only a proxy for asymptotic behavior because

though these signals remain constant for at least 36 hours, cells are

forming spores and might be physiologically changing in other

respects during this period and beyond.

(step 1–cluster data): We used the Matlab script in S2.2 to

hierarchically cluster the 30 short-term and 30 long-term

trajectories of each observable (10 cell histories63 replicates) and

to select ‘optimal’ clustering partitions for each. The assumption

here is that the behavior of the observable (e.g., GFP intensity) falls

into distinct classes, for example, increasing or decreasing. This

script a) constructs a Euclidean distance matrix with the Matlab

function pdist.m, b) constructs dendrograms using ward and

average linkage with the function dendrogram.m, c) performs

silhouette analysis on all tree cuts of both trees from (b) with the

Matlab function silhouette.m [73], and d) ‘optimizes’ data

clustering by selecting the partition that maximizes the mean

silhouette, a measure of the compactness and separation of the

clusters in the partition [73]. This step produced six 3061 cluster

vectors, one short-term and one long-term cluster vector for each

of the three observables (i.e., ClustSPO_short, ClustSPO_long,

ClustAprE_short, ClustAprE_long, ClustOD_short, ClustOD_

short).

(step 2–estimate memory): Next we estimated the short-term

and long-term memory in bits of each individual observable with

the Matlab program Entropy_MutualInfo.m in S2.1. This

program accepts two input vectors, A and B, and calculates from

them individual informational entropies H(A) and H(B), the

entropy of the pair H(A,B), and the mutual information between A

and B, I(A;B) = H(A)+H(B)-H(A,B). H(X) is defined in Supple-

mentary Information (Appendix S1), and H(X,Y) is calculated by

first calculating the joint probability distribution over (X,Y) and

then calculating the entropy H over this joint distribution. Thus,

memory is estimated to be the mutual information between cell

history and cell behavior and calculated by calling Entropy_

MutualInfo.m with input vectors A = M = [1 1 1 2 2 2 ...10 10 10],

the cell history vector , and B equal to one of the six cluster vectors

from step 1. To calculate memory fidelities, we normalized these

memory estimates by dividing by H(M) = 3.32, the entropy of the

cell history space.

(step 3–estimate memory in higher dimensions): The third step

of the algorithm is to estimate the short and long-term memory

exhibited by the combined activities of pairs of observables and by

the triple of observables. To do this, we first used the script in S2.3

to combine cluster vectors from multiple read-outs. This script

takes as its input two cluster vectors Clust1 and Clust2 and outputs

a combined cluster vector Clust3 (e.g., if Clust1 = ClustSpo_short;

and Clust2 = ClustAprE_short; then the output Clust3 is a vector

capturing all combined short-term behaviors of Spo and AprE, for

example (Spo,AprE) = (increasing, decreasing), (increasing, in-

creasing) or (decreasing, decreasing)). Next, by calling Entropy_

MutualInfo.m with inputs A = (the cell history vector M), and

B = (the combined cluster vector Clust3), we calculate the mutual

information between cell history and cell behavior, and thus the

memory exhibited by the combined activity of the vector of

observables contributing to Clust3. After computing short- and

long-term memory for all four possible vector combinations of the

observables, these estimates were divided by H(M) to estimate

memory fidelities and normalized according to Definition (6) in

Methods to estimate memory orthogonalities. Finally, we (step 4)

calculated the mutual information between all pairs of observables

using the cluster vectors from (step 1) as inputs to Entropy_

MutualInfo.m.

We took this fixed-interval, clustering-based approach because

of our desire to focus on how different cell histories can lead to

qualitatively different stress response behaviors, and because a

much larger data set would be required to use algorithms such as

that suggested by Swinney to estimate mutual information at

measurement intervals short enough to avoid excessive ‘blurring’

of the time series dynamics [74,75]. See Section S3 in

Supplemental Information for a detailed discussion of alternative

approaches and why we chose the one we did, and Section S2 for

Matlab scripts and programs, including a note on a bootstrap

method for calculating confidence intervals that one could apply to

data sets with a sufficient number of replicates (not present in this

data set).
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Appendix S1 Memory quantification definitions.

Found at: doi:10.1371/journal.pone.0001700.s001 (0.19 MB

PDF)
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Section S1 Fundamental limitations of memory experiments.

Found at: doi:10.1371/journal.pone.0001700.s002 (0.27 MB

PDF)

Section S2 Matlab programs and flow chart for memory

analysis.

Found at: doi:10.1371/journal.pone.0001700.s003 (0.27 MB

PDF)

Section S3 Alternative strategies for memory calculations.

Found at: doi:10.1371/journal.pone.0001700.s004 (0.16 MB

PDF)

Table S1 Complete set of memory and mutual information

calculations.

Found at: doi:10.1371/journal.pone.0001700.s005 (0.72 MB

PDF)

Table S2 Bacillus strain and plasmid table.

Found at: doi:10.1371/journal.pone.0001700.s006 (0.12 MB

PDF)

Figure S1 Example histograms from flow cytometry analysis of

B. subtilis strain KEE.

Found at: doi:10.1371/journal.pone.0001700.s007 (0.84 MB

PDF)

Figure S2 Sporulation initiation delay as a function of cell

history.

Found at: doi:10.1371/journal.pone.0001700.s008 (0.13 MB

PDF)

Figure S3 The PspoIIE-gfp fusion activity tracks spoIIE gene

expression.

Found at: doi:10.1371/journal.pone.0001700.s009 (0.25 MB

PDF)
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