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A B S T R A C T

Delirium is an acute neuropsychiatric syndrome characterized by altered levels of attention and awareness with
cognitive deficits. It is most prevalent in elderly hospitalized patients and related to poor outcomes. Predisposing
risk factors, such as older age, determine the baseline vulnerability for delirium, while precipitating factors, such
as use of sedatives, trigger the syndrome. Risk factors are heterogeneous and the underlying biological me-
chanisms leading to vulnerability for delirium are poorly understood. We tested the hypothesis that delirium and
its risk factors are associated with consistent brain network changes. We performed a systematic review and
qualitative meta-analysis and included 126 brain network publications on delirium and its risk factors. Findings
were evaluated after an assessment of methodological quality, providing N=99 studies of good or excellent
quality on predisposing risk factors, N=10 on precipitation risk factors and N=7 on delirium. Delirium was
consistently associated with functional network disruptions, including lower EEG connectivity strength and
decreased fMRI network integration. Risk factors for delirium were associated with lower structural connectivity
strength and less efficient structural network organization. Decreased connectivity strength and efficiency ap-
pear to characterize structural brain networks of patients at risk for delirium, possibly impairing the functional
network, while functional network disintegration seems to be a final common pathway for the syndrome.

1. Introduction

Brain network organization is fundamentally related to cognitive
functioning (Sporns, 2014) and disturbed in various neurological and
psychiatric disorders (Stam, 2014). These impairments can even be a
fingerprint of a specific disorder (Crossley et al., 2014) or a marker for
vulnerability (Douw et al., 2010; van Diessen et al., 2013). Delirium is
an acute neuropsychiatric syndrome characterized by an altered level of
attention and awareness with other cognitive deficits, due to another
medical condition (American Psychiatric Association, 2013). Delirium
has several clinical manifestations: hypoactive, hyperactive and a

mixed type. Hypoactive delirium is characterized by lethargy and re-
duced psychomotor activity and speech. Patients with the hyperactive
subtype, however, demonstrate features of restlessness, hyper vigilance
and agitation. In the mixed type, hypoactive episodes alternate with
periods with hyperactivity (Yang et al., 2009). Delirium is a common
and serious clinical complication, affecting 10-50% of hospitalized el-
derly patients and related to poor outcomes, such as long-term cogni-
tive impairment and death (Marcantonio, 2017). Delirium has been
hypothesized to be a disconnection syndrome, caused by breakdown of
brain networks (Sanders, 2011; van Dellen et al., 2014; Young, 2017).

Several risk factors for delirium have been recognized. However,
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known risk factors are heterogeneous and the underlying biological
mechanisms leading to vulnerability for delirium are poorly under-
stood. Risk factors for delirium can be distinguished into predisposing
and precipitating factors (Inouye et al., 2014). Predisposing risk factors
determine the baseline vulnerability for delirium, for example due to
older age or cognitive impairment. Precipitating risk factors are acute
changes that trigger the syndrome, for example sedation. Here, we
evaluate if various predisposing risk factors induce similar brain net-
work alterations, creating a more vulnerable (i.e. less connected and/or
less integrated) brain network. Network vulnerability may lower the
threshold for a transition from a healthy state towards disturbed brain
activity and connectivity. Precipitating factors may then cause an acute
alteration in brain dynamics, that results in a global loss of functional
brain interactions as a final common pathway to delirium.

Graph theory provides tools to quantitatively analyze network or-
ganization from a whole brain perspective. A graph represents a net-
work of nodes and connections between the nodes, i.e. the edges. On a
macro level, structural brain networks can be reconstructed using
anatomically defined regions as nodes and white matter tracts con-
necting these brain regions as edges. It is possible to map these brain
networks with neuroimaging techniques such as magnetic resonance
imaging (MRI) with diffusion tensor imaging (DTI). The communication
between brain regions (i.e. statistical relations or synchronization be-
tween time series of neural activity, recorded from different brain
areas) is regarded as functional connectivity, which can be used to re-
construct a functional network. These functional brain networks can be
characterized with imaging techniques such as functional MRI (fMRI)
and positron emission tomography (PET), but also using neurophysio-
logical measurements, such as near infrared spectroscopy (NIRS),
magnetoencephalography (MEG) and electroencephalography (EEG)
(Stam and Reijneveld, 2007). In the latter case, nodes are the electrodes
of the EEG recording, and synchronized activities between brain regions
are considered as edges. The EEG signal consists of different oscilla-
tions, i.e. delta (0.5-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-
30Hz), and gamma (>30Hz) band. All frequency bands show different
functional network characteristics and can be analyzed separately.
When the edges in a network are binary, i.e. a threshold is used to
define if a connection is either present or absent, this is called an un-
weighted network (Biggs et al., 1986). A weighted network by contrast
takes the connectivity strength or the weight of an edge into account
(Biggs et al., 1986). Once a brain network is reconstructed, measures
from graph theory can be used to further characterize network orga-
nization, which is illustrated in Fig. A.1.

The aim of this investigation was to compare graph theoretical
studies on delirium and its risk factors to test the hypothesis that a
disturbance in network organization is a final common pathway in the
pathophysiology of delirium. The inclusion of risk factors was based on
a recent landmark review on delirium (Inouye et al., 2014).

2. Methods

2.1. Systematic review

2.1.1. Risk factors for delirium
In this systematic review and qualitative meta-analysis, we based

the inclusion of risk factors on a recent landmark review that described
29 recognized risk factors for delirium (Inouye et al., 2014). Dementia;
cognitive impairment, i.e. cognitive problems without the clinical di-
agnosis of dementia; history of delirium; functional impairment; visual
impairment; hearing impairment; comorbidity; severity of illness; de-
pression; history of transient ischemic attack or stroke; alcohol misuse;
and older age were considered as predisposing risk factors for delirium
(Inouye et al., 2014). Polypharmacy; psychoactive drugs; use of seda-
tives or hypnotics; use of physical restraints; use of bladder catheter;
acute kidney injury; decreased serum albumin; decreased sodium; hy-
poglycemia; hypokalemia; metabolic acidosis; infection; iatrogenic

disease; surgery; recent trauma; urgent admission; and previous coma
were considered as precipitating risk factors for delirium (Inouye et al.,
2014).

2.1.2. Delirium
As delirium is regarded as a manifestation of encephalopathy

(Williams, 2013; Brown and Douglas, 2015; Maldonado, 2017), we
included articles on either term, and grouped these into one category
denoted as 'delirium'.

2.1.3. Network outcomes
Since graph theory studies may include a variety of outcomes, we

focused on the outcomes that are more commonly analyzed and have a
straightforward interpretation, i.e. (connectivity) strength, global effi-
ciency, local clustering and modularity (Fig. A.1).

2.1.4. Search term and search strategy
References for the systematic review were identified through sear-

ches of PubMed and EMBASE from inception to September 2018, by use
of relevant terms “connectivity”, “network”, “graph”, “disconnection”,
“dementia”, “cognitive impairment”, “history of delirium”, “functional
impairment”, “visual impairment”, “hearing impairment”, “co-
morbidity or severity of illness”, “depression”, “(history of) transient
ischemic attack or stroke”, “alcohol misuse”, “aging”, “polypharmacy”,
“psychoactive drugs”, “sedatives or hypnotics”, “physical restraints”,
“bladder catheter”, “acute kidney injury”, “altered serum albumin
level”, “altered sodium, glucose or potassium level”, “metabolic
acidosis”, “infection”, “iatrogenic disease”, “surgery”, “trauma admis-
sion”, “urgent admission”, “coma”, “delirium”, “encephalopathy”,
“magnetic resonance imaging”, “electroencephalography”, “electro-
corticography”, “diffusion tensor imaging”, “resting state”, “magne-
toencephalography”, “brain”, “neuroimaging”, “functional neuroima-
ging”, “positron-emission tomography”, “staining”, “neurophysiology”,
“diffusion tractography”, “diffusion magnetic resonance imaging”, and
“near infrared spectroscopy” (for the exact search term see Tables A.1
and A.2). Articles resulting from these searches and relevant references
cited in those publications were reviewed on the relevance of the title
and the abstract by two authors (SVM and AA). The full text of po-
tentially relevant articles were evaluated by two authors (SVM and AA).

2.1.5. Inclusion criteria
We included articles (a) published in English, (b) assessing whole

brain graph analysis, (c) in humans (d) during delirium or during a state
that is considered to be risk factor, (e) with use of a control group, (f)
for functional imaging with measurements conducted during resting
state without intervention, and (g) assessing one or more of the fol-
lowing outcomes: (normalized) connectivity strength of the global
network, (normalized) global efficiency or (normalized) path length of
the global network, (normalized) local clustering of the global network,
and/or (normalized) modularity of the global network (Fig. A.1). If
eligibility for inclusion was uncertain, we discussed the article with a
third author (EVD) and included the paper by consensus of all three
authors.

2.2. Quality criteria

Previous literature has indicated that network analyses may be
subject to various methodological choices, for example the use of
adequate connectivity measures (Zhang et al., 2015; van Diessen et al.,
2015; Fornito et al., 2013; Rubinov and Sporns, 2010) and the defini-
tion of nodes and edges (Power et al., 2015; Pruim et al., 2015; van Dijk
et al., 2012; van Wijk et al., 2010; van den Heuvel et al., 2017). These
methodological choices can introduce bias and strongly influence the
outcomes of graph analysis (van Diessen et al., 2015; Fornito et al.,
2013; Alderson-Day et al., 2016; Tijms et al., 2013a). Therefore, we
developed a priori quality criteria based on state-of-the-art
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methodological studies (van Diessen et al., 2015; Fornito et al., 2013;
Ciric et al., 2017; Birn et al., 2013; Zaal et al., 2015). Consensus papers
from experts in the field of interest (van Diessen et al., 2015; Fornito
et al., 2013; Ciric et al., 2017) were used to assess the quality of the
studies and quantify their impact (Fig. 1, Appendix text Section A.1).
Based on these, two authors (CK and LM) evaluated each study in-
dependently and categorized the quality as excellent, good or moderate.
If the scores differed between authors, a third author (EVD or SVM)
evaluated the study, and the quality score was determined after con-
sensus of all three authors.

2.3. Qualitative meta-analysis

2.3.1. Case-specific results
Structural and functional brain network studies were separately

analyzed for the different risk factors. As different imaging modalities
measure various aspects of the structural and functional networks
which should be interpreted differently, studies were grouped ac-
cording to the imaging modality, i.e. white matter networks based on
DTI, grey matter networks based on T1 structural MRI, functional
networks based on fMRI and functional networks based on EEG or MEG.
fMRI and EEG or MEG can be considered to give complementary in-
formation about functional interactions between brain areas, where the
spatial resolution of fMRI provides more accurate anatomical in-
formation, whereas EEG and MEG provide a higher temporal resolution
of functional connectivity. All good and excellent quality studies for
each modality (DTI, MRI grey matter networks, fMRI/PET, EEG/MEG)
were compared per risk factor and outcome measure (connectivity
strength, global efficiency, local clustering and modularity). Results of
the outcomes were selected from the articles by two authors (AA and
SVM) independently and checked by two other authors independently
(LM and CK). If comparison of the outcomes extracted by both authors
produced contradictory results, the authors discussed this with a third
author (EVD), and adapted the outcome after consensus of all three
authors. If a publication explored more than one risk factor separately,
we took the comparison of each risk factor as a separate result, referred
to as case.

2.3.2. Composite scores
As methods used to perform graph analyses were not equal between

the different included studies, a quantitative meta-analysis appeared
not to be feasible. However, to study whether delirium and its risk
factors are associated with consistent brain network changes we per-
formed a qualitative meta-analysis, in which we summarized results of
the different included studies in composite scores. A composite score for
each modality (DTI, MRI grey matter networks, fMRI/PET, EEG/MEG)
and each outcome measure (connectivity strength, global efficiency,
local clustering and modularity) was calculated. After exclusion of the
moderate quality studies, all studies were given an equal weight in the
composite score of the risk factor. The result of the composite score was
one of the following: (a) “no effect”, i.e. outcome was assessed, but the
majority of studies found no effect of the risk factor on this outcome, (b)
“higher” outcome value, i.e. the majority of investigations found an
increase of this outcome measure associated with the risk factor, (c)
“lower” outcome value, i.e. the majority of studies found a decrease of
this outcome measure associated with the risk, (d) “inconclusive” out-
come value, the more than 50% of the investigations reported contra-
dictory results, (e) “not measured”, i.e. no studies assessing this out-
come were available for this risk factor. The composite score was
accompanied with the percentage of studies representing the score (i.e.
“no effect”, “higher”, “lower”). For example, if 5 DTI studies on the risk
factor aging assessed the outcome global efficiency, of which 4 studies
found a decreased global efficiency in older subjects, the composite
score was “lower: 4 out of 5”. Outcomes of moderate studies were
qualitatively described in the results section if no good or excellent
quality studies were available.

3. Results

Our literature search resulted in 24442 hits of which 126 studies
met our inclusion criteria (Fig. A.2). These 126 publications described
in total 151 cases on different predisposing risk factors, precipitating
risk factors or delirium (i.e. if a publication explored more than one risk
factor separately, we took the comparison of each risk factor as a se-
parate case) (van Dellen et al., 2014; Zhu et al., 2012; Chen et al., 2011;
Wu et al., 2013; Otte et al., 2015; Lim et al., 2015; Gong et al., 2009;
Geerligs et al., 2015; Song et al., 2014; Ferreira et al., 2016; Cao et al.,
2014; Chan et al., 2014; Onoda and Yamaguchi, 2013; Meunier et al.,
2009; Liu et al., 2014a; Knyazev et al., 2015; Vecchio et al., 2014;
Micheloyannis et al., 2009; Vysata et al., 2014; Smit et al., 2016; Yao
et al., 2010; Phillips et al., 2015; Pereira et al., 2015; Li et al., 2012; Li
et al., 2016; Wang et al., 2016a; Bai et al., 2012; Daianu et al., 2013;
Morris et al., 2014; Shu et al., 2012; Vaessen et al., 2012; Tang et al.,
2015; Zhao et al., 2017; Yi et al., 2015; Minati et al., 2014; Chang et al.,
2016; Yu et al., 2015; Baggio et al., 2014; Wang et al., 2013; Xiang
et al., 2013; Brier et al., 2013; Kim et al., 2015; Sun et al., 2014; Liu
et al., 2012; Sang et al., 2018; Sanabria-Diaz et al., 2013; Seo et al.,
2013; Zeng et al., 2015; Frantzidis et al., 2014; Koenig et al., 2005;
Pineda-Pardo et al., 2014; Gomez et al., 2009; López-Sanz et al., 2017;
Achard et al., 2012; Crone et al., 2014; van Montfort et al., 2018; Chen
et al., 2018a; Brandt et al., 2019; Numan et al., 2017; He et al., 2008;
Liu et al., 2014b; Tijms et al., 2013b; John et al., 2017; Wang et al.,
2016b; Lo et al., 2010; Reijmer et al., 2013; Agosta et al., 2013; Sanz-
Arigita et al., 2010; Zhao et al., 2012; Supekar et al., 2008; Qin et al.,
2015; Peraza et al., 2015; Filippi et al., 2017; de Haan et al., 2009; Stam
et al., 2007; van Dellen et al., 2015; Afshari and Jalili, 2017; Berendse
et al., 2008; De Haan et al., 2012; Ajilore et al., 2014a; Lim et al., 2013;
Singh et al., 2013; Lee et al., 2018; Chen et al., 2016a; Mak et al., 2016;
Korgaonkar et al., 2014; Ajilore et al., 2014b; Qin et al., 2014; Charlton
et al., 2015; Nigro et al., 2015; Long et al., 2015; Chen et al., 2016b;
Bohr et al., 2013; Meng et al., 2014; Lord et al., 2012; Luo et al., 2015;
Zhang et al., 2011; Jin et al., 2011; Ye et al., 2015; Wang et al., 2016c;
Ye et al., 2016; Leuchter et al., 2012; Shim et al., 2018; Zhang et al.,
2014; Jao et al., 2015; Li et al., 2014; Kim et al., 2014a; Xu et al., 2016;
Zhang et al., 2018; Wang et al., 2015; Ma et al., 2015; Monti et al.,
2013; Hashmi et al., 2017; Lee et al., 2013; Blain-Moraes et al., 2017;
Shi et al., 2013; Guo et al., 2014; Kim et al., 2014b; Caeyenberghs et al.,
2014; Messé et al., 2013; Han et al., 2014; van der Horn et al., 2017;
Maestú et al., 2010; Shu et al., 2009; Bola et al., 2014; Wang et al.,
2012). For a detailed overview of included studies, investigated risk
factors, measurement techniques, outcomes and quality scores see
Table A.3. After scoring, 118 cases were graded as qualitatively ‘good or
excellent’, of which 99 on predisposing risk factors, 11 on precipitation
risk factors and 7 on delirium, and included in our risk factor composite
scores. Table 1 show findings for each modality: structural networks
based on MRI grey matter similarity, structural networks based on DTI,
functional networks based on fMRI, and functional networks based on
EEG. Below we describe findings on risk factors with at least 2 good or
excellent quality studies, if not otherwise specified.

3.1. Predisposing delirium risk factors and structural networks

3.1.1. White matter networks
DTI-based structural network studies generally showed an associa-

tion of predisposing risk factors for delirium with lower connectivity
strength and lower network efficiency (Table 1, part 1A). Aging (2 out
of 2 (2/2) studies), cognitive impairment (2/2 studies) and depression
(2/3 studies) were associated with lower connectivity strength (Otte
et al., 2015; Bai et al., 2012; Shu et al., 2012; Lim et al., 2013; Qin et al.,
2014; Chen et al., 2016b). Aging (2/2 studies), cognitive impairment
(5/7 studies), dementia (3/4 studies) and visual impairment (1 study)
were all associated with lower network efficiency (Otte et al., 2015; Bai
et al., 2012; Daianu et al., 2013; Morris et al., 2014; Shu et al., 2012;
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Table 1
Overview of composite scores of graph studies on (I) predisposing risk factors for delirium, (II) precipitating risk factors for delirium and (III) delirium, grouped by
modality.

Part I Predisposing risk factors

Risk factor Strength N Efficiency (global) N Local clustering N Modularity N

1A. Predisposing DTI
Aging ↓ 2/2 ↓ 2/2 ? 1/1 = 1/1
Cognitive imp ↓ 2/2 ↓ 5/7 = 2/4 · ·
Dementia · · ↓ 3/4 = 2/4 ↑ 1/1
Depression ↓ 2/3 = 6/7 = 6/6 · ·
Stroke = 1/1 ? 2 = 1/1 · ·
Visual imp · · ↓ 1/1 = 1/1 · ·
Total ↓ 6/7 ↓ 13/23 = 12/17 ? 2

1B. Predisposing GM
Aging · · ↓ 2/2 ↑ 1/1 = 1/1
Cognitive imp ? 2 = 3/4 = 3/5 · ·
Dementia · · = 3/5 = 5/7 = 1/1
Depression ↑ 1/1 = 3/6 ? 5 ↑ 1/1
Hearing imp · · · · ? 2 · ·
Total ? 3 = 8/17 ? 20 = 2/3

1C. Predisposing fMRI/PET
Aging ↓ 2/3 = 3/4 ↑ 1/1 ↓ 4/4
Cognitive imp · · ? 10 = 6/9 ? 6
Dementia ↓ 2/3 ? 11 ? 11 = 4/5
Depression ↑ 1/1 = 4/7 = 5/6 ↑ 1/1
Hearing imp · · ? 2 ? 2 · ·
Total ↓ 4/7 ? 34 ? 29 ? 16

1D. Predisposing EEG/MEG
Delta
Aging = 2/2 ? 2 = 2/2 = 1/1
Cognitive imp ? 3 = 4/4 = 3/4 · ·
Dementia = 2/2 = 4/4 = 1/1 · ·
Depression ? 2 = 1/1 = 1/1 · ·
Stroke · · · · · · · ·
Visual imp · · · · · · · ·
Total ? 9 = 10/11 = 7/8 = 1/1

Theta
Aging ? 2 ? 2 = 2/2 = 1/1
Cognitive imp ? 3 = 4/4 = 3/4 · ·
Dementia = 2/2 = 3/4 ↑ 1/1 · ·
Depression ? 2 = 1/1 ↓ 1/1 · ·
Stroke · · · · · · · ·
Visual imp · · · · · · · ·
Total ? 9 = 10/11 = 5/8 = 1/1

Alpha
Aging ↓ 2/2 ? 2 ? 2 = 1/1
Cognitive imp ↓ 2/3 = 3/4 ? 4 · ·
Dementia ? 2 ? 4 ↑ 1/1 · ·
Depression ? 2 ↓ 1/1 ↓ 1/1 · ·
Stroke ↑ 1/1 · · · · · ·
Visual imp ↑ 1/1 · · · · · ·
Total ↓ 6/11 ? 11 ? 8 = 1/1

Beta
Aging ? 2 = 2/2 ? 2 = 1/1
Cognitive imp ↓ 3/5 = 3/4 = 2/4 · ·
Dementia = 2/2 = 3/4 = 1/1 · ·
Depression ? 2 = 1/1· = 1/1 · ·
Stroke · · · · · · · ·
Visual imp · · · · · · · ·
Total ? 11 = 9/11 = 5/6 = 1/1

Part II Precipitating risk factors

Risk factor Strength N Efficiency (global) N Local clustering N Modularity N

2A. Precipitating fMRI
Coma = 1/1 = 2/2 ? 2 ? 2
Renal failure · · ↓ 1/1 · · · ·
Sedation ↓ 1/1 ↓ 2/3 ? 2 ? 2
Neurotrauma = 1/1 = 1/1 · · ? ·
Total = 2/3 ? 7 ? 4 ? 4

(continued on next page)
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Vaessen et al., 2012; Tang et al., 2015; Zhao et al., 2017; Wang et al.,
2016b; Lo et al., 2010; Reijmer et al., 2013; Lim et al., 2013; Shu et al.,
2009). Depression (6/7 studies) showed however no effect on efficiency
and stroke (N=2) showed contradictory findings on efficiency (Bai
et al., 2012; Tang et al., 2015; Korgaonkar et al., 2014; Ajilore et al.,
2014b; Qin et al., 2014; Charlton et al., 2015; Nigro et al., 2015; Chen
et al., 2016b; Shi et al., 2013). The majority of risk factors showed no
effect on local clustering (Otte et al., 2015; Bai et al., 2012; Daianu
et al., 2013; Morris et al., 2014; Shu et al., 2012; Vaessen et al., 2012;
Tang et al., 2015; Wang et al., 2016b; Lo et al., 2010; Reijmer et al.,
2013; Ajilore et al., 2014a; Lim et al., 2013; Korgaonkar et al., 2014;
Qin et al., 2014; Charlton et al., 2015; Nigro et al., 2015; Chen et al.,
2016b; Shi et al., 2013; Shu et al., 2009). Mixed results were found for
different risk factors for modularity: while one study on aging showed
no effect (Lim et al., 2013), a study on dementia showed increased
modularity (Wang et al., 2016b).

3.1.2. Grey matter networks
Evidence for grey matter network alterations due to delirium pre-

disposing risk factors was scarce (Table 1, part 1B). The two studies on
aging both showed an association between aging and loss of efficiency
(Zhu et al., 2012; Wu et al., 2013). However, no effect on grey matter
network efficiency was found for cognitive impairment (N=5), de-
mentia (N=6) and depression (N=6) in at least 50% of studies (Yao
et al., 2010; Phillips et al., 2015; Pereira et al., 2015; Li et al., 2016; He
et al., 2008; Liu et al., 2014b; Tijms et al., 2013b; John et al., 2017; Lim
et al., 2013; Singh et al., 2013; Lee et al., 2018; Chen et al., 2016a; Mak
et al., 2016; Ajilore et al., 2014b). Inconsistent results were found for
various delirium risk factors on strength, local clustering and mod-
ularity (Zhu et al., 2012; Chen et al., 2011; Wu et al., 2013; Liu et al.,
2014a; Yao et al., 2010; Phillips et al., 2015; Pereira et al., 2015; Li

et al., 2012; Li et al., 2016; He et al., 2008; Tijms et al., 2013b; John
et al., 2017; Lim et al., 2013; Singh et al., 2013; Lee et al., 2018; Chen
et al., 2016a; Mak et al., 2016; Ajilore et al., 2014b; Kim et al., 2014a).

3.2. Predisposing delirium risk factors and functional networks

3.2.1. fMRI and PET
fMRI-based functional network studies generally showed an asso-

ciation of predisposing risk factors for delirium and lower connectivity
strength (Table 1, part 1C). Aging (2/3 studies) and dementia (2/3
studies) were associated with lower fMRI connectivity strength
(Geerligs et al., 2015; Song et al., 2014; Ferreira et al., 2016; Peraza
et al., 2015; Filippi et al., 2017). The same effect was found for cog-
nitive impairment (2/2 studies) (Minati et al., 2014; Chang et al.,
2016), but these studies were of moderate quality. Regarding efficiency,
most of the risk factors reported conflicting results on fMRI and PET
networks (cognitive impairment: N=10, dementia: N=11 and hearing
loss: N=2) (Brier et al., 2013; Kim et al., 2015; Sun et al., 2014; Sang
et al., 2018; Sanabria-Diaz et al., 2013; Seo et al., 2013; Sanz-Arigita
et al., 2010; Zhao et al., 2012; Peraza et al., 2015; Filippi et al., 2017;
Xu et al., 2016; Zhang et al., 2018). Aging (3/4 studies) and depression
(4/7 studies) were associated with no effect on efficiency in fMRI and
PET studies (Geerligs et al., 2015; Song et al., 2014; Cao et al., 2014; Liu
et al., 2014a; Yi et al., 2015; Yu et al., 2015; Baggio et al., 2014; Wang
et al., 2013; Brier et al., 2013; Kim et al., 2015; Sun et al., 2014; Sang
et al., 2018; Sanabria-Diaz et al., 2013; Seo et al., 2013; Meng et al.,
2014; Lord et al., 2012; Luo et al., 2015; Jin et al., 2011; Ye et al., 2015;
Wang et al., 2016c; Zhang et al., 2011). For local clustering, fMRI and
PET studies on dementia (N=11) and hearing impairment (N=2)
showed conflicting results as well (Brier et al., 2013; Kim et al., 2015;
Sun et al., 2014; Sanabria-Diaz et al., 2013; Seo et al., 2013; Sanz-

Table 1 (continued)

Part II Precipitating risk factors

Risk factor Strength N Efficiency (global) N Local clustering N Modularity N

2B. Precipitating EEG
Delta
Sedation ? 2 ? 2 = 1/1 = 1/1
Theta
Sedation = 2/2 = 2 = 1/1 = 1/1
Alpha
Sedation = 2/3 ↓ 2/3 ↑ 2/2 = 1/1
Beta
Sedation = 2/2 = 2/2 ↑ 1/1 ↑ 1/1

Part III Delirium

Syndrome Strength N Efficiency (global) N Local clustering N Modularity N

3A. Delirium fMRI
Delirium = 1/1 ? 3 ↓ 2/2 ↓ 1/1

3B. Delirium EEG
Delta
Delirium = 3/3 = 2/2 = 1/1 · ·
Theta
Delirium = 3/3 = 2/2 = 1/1 · ·
Alpha
Delirium ↓ 3/3 ? 2/2 = 1/1 · ·
Beta
Delirium = 3/3 = 2/2 = 1/1 · ·

= equal outcome value (the majority of studies found no effect of the risk factor on this outcome).
↑ higher outcome value (the majority of studies found an increase of this outcome measure associated with the risk factor).
↓ “lower” outcome value (the majority of studies found a decrease of this outcome measure associated with the risk).
? “inconclusive” outcome value (the studies found contradictory results).
· “not measured” (no studies assessing this outcome were available for this risk factor).
Abbreviations: DTI = diffusion tensor imaging, EEG = encephalography, fMRI = functional magnetic resonance imaging, GM = grey matter, MEG = magne-
toencephalography, PET = positron emission tomography
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Arigita et al., 2010; Zhao et al., 2012; Peraza et al., 2015; Filippi et al.,
2017; Xu et al., 2016; Zhang et al., 2018), while most fMRI and PET
studies on cognitive impairment (6/9 studies) and depression (5/6
studies) showed no effect (Wang et al., 2013; Brier et al., 2013; Kim
et al., 2015; Sun et al., 2014; Sanabria-Diaz et al., 2013; Seo et al.,
2013; Meng et al., 2014; Lord et al., 2012; Luo et al., 2015; Jin et al.,
2011; Zhang et al., 2011). Although all studies on aging (4/4 studies)
showed decreased modularity (Geerligs et al., 2015; Song et al., 2014;
Cao et al., 2014; Chan et al., 2014), studies on other risk factors showed
inconclusive findings (cognitive impairment: N=6) or no effect on
modularity (4/5 studies) (Yi et al., 2015; Baggio et al., 2014; Wang
et al., 2013; Brier et al., 2013; Kim et al., 2015; Sun et al., 2014; Peraza
et al., 2015).

3.2.2. EEG and MEG
EEG and MEG-based functional network studies showed mixed re-

sults with a tendency towards lower connectivity strength in the alpha
band (Table 1, part 1D). Specifically, aging (2/2 studies) and cognitive
impairment (2/3 studies) were associated with a decreased EEG con-
nectivity strength in the alpha band (Vysata et al., 2014; Smit et al.,
2016; Zeng et al., 2015; Frantzidis et al., 2014; Pineda-Pardo et al.,
2014). Studies on alpha band connectivity strength in dementia showed
mixed results of decreased connectivity strength (1/2 studies) and no
effect (1/2 studies). However, two moderate quality studies also
showed decreased alpha band connectivity strength (Koenig et al.,
2005; Berendse et al., 2008). No effects were found for other frequency
bands. Mixed results for different risk factors were found on efficiency,
local clustering and modularity (Knyazev et al., 2015; Vecchio et al.,
2014; Smit et al., 2016; Zeng et al., 2015; Frantzidis et al., 2014;
Pineda-Pardo et al., 2014; van Dellen et al., 2015; Afshari and Jalili,
2017; Leuchter et al., 2012; Shim et al., 2018; Guo et al., 2014).

3.3. Precipitating delirium risk factors and functional networks

3.3.1. fMRI
Evidence for fMRI network alterations due to delirium-precipitating

risk factors was scarce (Table 1, part 2A). Sedation (2/3 studies) and
renal failure (N=1) were associated with decreased efficiency (Ma
et al., 2015; Monti et al., 2013; Hashmi et al., 2017), but coma (N=2)
and neurotrauma (N=1) showed no effect on efficiency (Achard et al.,
2012; Crone et al., 2014; Messé et al., 2013). Mixed results for different
risk factors were found for strength, local clustering and modularity
(Achard et al., 2012; Crone et al., 2014; Monti et al., 2013; Hashmi
et al., 2017; Messé et al., 2013; Han et al., 2014).

3.3.2. EEG and MEG
EEG and MEG-based functional network studies generally showed

an association of precipitating risk factors for delirium with lower ef-
ficiency and a higher local clustering in the alpha band (Table 1, part
2B). Sedation (2/3 studies) and neurotrauma (N=1 of moderate
quality) were associated with a decreased efficiency in the alpha band
(Numan et al., 2017; Lee et al., 2013; Blain-Moraes et al., 2017; Maestú
et al., 2010). Sedation (2/2 studies) and neurotrauma (N=1 of mod-
erate quality) were further associated with increased local clustering in
the alpha band (Lee et al., 2013; Blain-Moraes et al., 2017; Maestú
et al., 2010). No effect was found in these two risk factors on con-
nectivity strength (Numan et al., 2017; Lee et al., 2013; Blain-Moraes
et al., 2017; Maestú et al., 2010).

3.4. Delirium and functional networks

3.4.1. fMRI
Evidence for fMRI network alterations in delirium was scarce

(Table 1, part 3A). Only one fMRI study during delirium was detected,
showing a loss in efficiency and local clustering (van Montfort et al.,
2018). Modularity was not assessed in this study. Three fMRI studies on

hepatic encephalopathy (Chen et al., 2018a; Zhang et al., 2014; Jao
et al., 2015) (of which one of moderate quality (Jao et al., 2015)) did
not show loss of efficiency, and reported decreased local clustering
(Chen et al., 2018a; Zhang et al., 2014; Jao et al., 2015). Two fMRI
studies on hepatic encephalopathy (of which one of moderate quality
(Jao et al., 2015) showed decreased modularity (Li et al., 2014).

3.4.2. EEG
EEG-based functional network studies showed an association of

delirium with lower connectivity strength in the alpha band (Table 1,
part 3B). A decreased connectivity strength in the alpha band was re-
ported in the available EEG publications (3/3 studies) (van Dellen et al.,
2014; Brandt et al., 2019; Numan et al., 2017), but two of these were
based on the same dataset. No effect on local clustering (van Dellen
et al., 2014; Numan et al., 2017) was found (2/2 studies). An incon-
clusive effect on alpha band efficiency was found due to methodological
differences between studies (Sanders, 2011; van Montfort et al., 2018).
Using the minimum spanning tree (MST) diameter, a less biased mea-
sure of efficiency than the path length of a weighted network (Tewarie
et al., 2015; Stam et al., 2014), a decreased alpha band efficiency was
observed.

4. Discussion

We evaluated the evidence for alterations in the structural and
functional brain network related to delirium and its risk factors (Fig. 2).
On a structural level, predisposing risk factors were generally asso-
ciated with lower connectivity strength and less efficient organization
of white matter connections. On a functional level, a decrease of
functional connectivity strength was found in most fMRI- and some EEG
studies related to predisposing risk factors. The limited fMRI and EEG
data available on precipitating factors generally indicated less effi-
ciency of functional networks. During delirium, functional brain net-
works were characterized by decreased alpha band EEG connectivity
and lower fMRI network integration. Taken together, we found evi-
dence that a less connected and less integrated brain network is a
common mechanism in the pathophysiology of delirium.

4.1. Effects of predisposing delirium risk factors on brain networks

Although all studied risk factors were generally associated with
decreased strength and loss of efficiency, most conclusive evidence for
brain network alterations was found for aging, dementia and cognitive
impairment. However, depression showed an aberrant effect in global
efficiency of structural networks. A possible explanation is that de-
pression is a more heterogeneous disorder with a largely unknown
biological substrate (Fried et al., 2014), making it difficult to compare
studies within this risk factor. The risk factor age showed a stronger risk
factor-specific pattern compared to other risk factors. Investigations on
aging showed decreased efficiency in grey matter MRI studies and loss
of modularity in fMRI studies, while findings on other risk factors were
inconclusive or absent. Aging is known as a key risk factor for delirium
(Inouye et al., 2014; Zaal et al., 2015), which may be related to its
extensive impact on brain network topology.

4.2. Effects of precipitating delirium risk factors on brain networks

The small number of available studies on precipitating factors for
delirium generally showed loss of efficiency of the functional network.
Sedation and renal failure were associated with loss of efficiency, but
coma and neurotrauma did not show this effect. A possible explanation
is that sedation and renal failure are manifestations of acute brain
changes, whereas coma and neurotrauma were studied in the subacute
phase. Loss of network efficiency could initially have been present in
the acute phase of coma or neurotrauma, but this may have normalized
thereafter (Kraft et al., 2012). However, the evidence was limited, so
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more studies are needed to unravel the exact mechanism.

4.3. Effects of delirium on brain networks

During delirium, a variety of network changes have been observed,
i.e. reduced connectivity strength, reduced global efficiency, reduced
local clustering and reduced modularity, although the number of in-
vestigations was small. In general, the strongest evidence was found for
a less connected and disintegrated network during the syndrome. Due
to the limited number of studies, we are currently unable to distinguish
specific network alterations to the different clinical subtypes of de-
lirium.

4.4. Strengths and limitations

The framework of graph theory provides new opportunities to study
the development of neuropsychiatric diseases. Our rigorous systematic
review and qualitative meta-analysis revealed new insights on the pa-
thophysiology of delirium. The development and use of the quality
criteria for network studies, largely based on recent consensus papers
on methodological approaches, allowed us to assess the robustness of
findings (van Diessen et al., 2015; Fornito et al., 2013; Alderson-Day
et al., 2016; Tijms et al., 2013a). These quality criteria can be used and
adapted for future investigations on other topics.

We studied a variety of presumed delirium risk factors in relation to

brain network alterations. As there is no general consensus which fac-
tors increase the risk of delirium, it could be argued that inclusion of
some of these factors may have biased our analyses. In the absence of
strong epidemiological evidence on the exact risk profile of delirium,
we included delirium risk factors based on a recent landmark article
published in a high-impact medical journal (Inouye et al., 2014).

Comparing brain network outcomes of different studies in a quali-
tative way may be unconventional. The outcomes of the studies were
similar, but some studies differed in study design and exact calculations
of the outcomes. Moreover, efficiency estimates may be biased by
connection strength (van Wijk et al., 2010; van den Heuvel et al., 2017;
Tijms et al., 2013a), which may be relevant for our qualitative analysis.
A qualitative assessment suggested that efficiency loss due to delirium
risk factors may at least partially be explained by lower connectivity
strength, but average connectivity was not reported as outcome mea-
sure in the majority of cases (results in Appendix text Section A.2).
Future work, implementing recently introduced corrections for this
possible confounder (van den Heuvel et al., 2017; Stam et al., 2014), is
needed to show if efficiency loss is present independent of connectivity
strength effects. Observations of decreased connectivity strength and
loss of network efficiency have been associated to other disorders as
well, and may therefore not be specific for the pathophysiology of de-
lirium (Stam, 2014; Crossley et al., 2014; Mashour and Hudetz, 2018).

As positive and negative results are not equally reported in the lit-
erature (Easterbrook et al., 1991; Rothstein et al., 2006), our review

Fig. 2. Brain network disintegration as a final common pathway for delirium. During the healthy state the structural white matter network and the functional
network show an integrated and efficient organization. Predisposing risk factors were found to be associated with loss of connectivity strength and loss of efficiency of
the white matter network and some evidence was found for a loss of connectivity strength in the functional network. Little evidence was available on precipitating
risk factors, but sedation was associated with a loss of efficiency in the functional network. During delirium the functional network was found to be weakened and
less integrated.
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may have been influenced by publication bias. We have attempted to
reduce this bias by defining the risk factors for delirium on a previously
published landmark paper (Inouye et al., 2014), by using a predefined
systematic search term and by conducting our search in two different
libraries, i.e. PubMed and EMBASE. However, like in other systematic
reviews and meta-analyses, unpublished negative studies could not be
included.

Delirious patients can be restless or agitated (American Psychiatric
Association, 2013), which may have influenced the quality of EEG and
fMRI measurements (Power et al., 2015; Ciric et al., 2017). Although in
EEG analyses artifact-free epochs were used and usage of fMRI motion
correction was part of our quality criteria, the results shown in this
study may still have been (partly) effected by motion. Future studies on
delirium may benefit from strict motion correction. In addition, patients
with delirium always suffer from an underlying physical condition and
may use a variety of medication, which may have influenced the
functional network status. However, the included studies on delirium
all used a clinically matched control group to minimize medication (and
other hospitalization) effects, and in some studies patients were even
matched on (specific types of) medication use. Furthermore, anti-
psychotics such as haloperidol may not particularly influence measures
of brain function(Roder et al., 2010). Likewise, delirious patients could
suffer from brain damage, which might have led to differences in brain
function (Stam, 2014; Kant et al., 2017). This may however not be the
essential factor for network disruptions during delirium as studies that
strictly corrected for brain lesions in their study sample report similar
results as studies that did not (van Montfort et al., 2018; Brandt et al.,
2019).

Neuropsychiatric disorders may be associated with alterations of
hubs in the network (Stam, 2014; Crossley et al., 2014). Hubs were not
considered in the current study because of the lack of a formal defini-
tion of hubs, together with the small number of studies using hubs as a
comparable outcome measure. Not all factors influencing vulnerability
for delirium have been studied in relation to brain network alterations.
Future work is needed to validate our hypothesis for other delirium risk
factors and to integrate the framework of graph theory and brain net-
works with other biological processes underlying delirium.

5. A network model of delirium

Our findings suggest that delirium predisposition is associated with
a less connected and less efficient structural network, and a less con-
nected functional network. Structural and functional network organi-
zation are closely related (Honey et al., 2009), and this relation may be
of particular relevance for the pathophysiology of delirium. Computa-
tional studies have shown that reduced structural connectivity strength
as characterized by reduced white matter volume, can cause decreased
functional connectivity strength and efficiency (Cabral et al., 2012a;
Cabral et al., 2012b). Moreover, weakening of structural network effi-
ciency may decrease global spreading of information in the functional
networks, disabling cooperative effects between network components
(Mišić et al., 2015). Precipitating delirium risk factors may cause fur-
ther loss of functional brain network efficiency towards a critical
transition (Honey et al., 2009; Cabral et al., 2012a), consequently in-
ducing an acute global loss of functional interactions and network in-
tegration, as seen in functional connectivity studies in delirium patients
(van Dellen et al., 2014; van Montfort et al., 2018; Numan et al., 2017).
Accordingly, white matter network studies on delirious patients or
patients at risk for delirium, specifically show disturbances in white
matter network strength and efficiency (Kyeong et al., 2018; Chen
et al., 2018b), strengthening the evidence for our proposed network
model of delirium.

The theory of alterations of brain networks does not have to replace
other hypotheses on the pathophysiology of delirium. Important the-
ories on the etiology of delirium include persistent neuroinflammation,
an aberrant stress response and alterations of neurotransmission

(Maldonado, 2018). It remains to be studied to what extent these are
associated with brain network alterations. A recent modeling study
showed that EEG phenomena associated with delirium, including con-
nectivity and network alterations, may be the result of imbalance be-
tween excitatory and inhibitory activity, as well as increased fluctua-
tions in subcortical information (Ponten et al., 2013). Particularly an
altered balance between glutamatergic and GABAergic neurotransmis-
sion may contribute to network vulnerability (Sanders, 2011). Previous
studies have shown GABAergic medication, including benzodiazepines,
as precipitant of delirium (Zaal et al., 2015) and reduced network
connectivity (Ferrarelli et al., 2010).

At present, management of delirium consists of symptomatic treat-
ment and treatment of underlying conditions, while there is no proven
intervention that directly improves the underlying brain dysfunction.
There is therefore a need for targeted interventions focused on the
pathophysiology of the disorder. Non-invasive targeted brain stimula-
tion, such as transcranial direct current stimulation (tDCS) and
Transcranial Magnetic Stimulation (TMS), may normalize the func-
tional brain network and can have beneficial therapeutic effects in
several groups of (neuro)psychiatric patients (Cocchi, 2018; Kuo et al.,
2014). Based on the proposed model for delirium, we suggest that these
network-based interventions, such as targeted brain stimulation, will be
studied for delirium treatment.

6. Conclusion

Decreased connectivity strength and efficiency seem to characterize
structural brain networks of patients at risk for delirium, while func-
tional network disintegration appears to be the final common pathway
for the syndrome.
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