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THE BIGGER PICTURE Dreaming remains a mystery to neuroscience. While various hypotheses of why
brains evolved nightly dreaming have been put forward, many of these are contradicted by the sparse, hallu-
cinatory, and narrative nature of dreams, a nature that seems to lack any particular function. Recently,
research on artificial neural networks has shown that during learning, such networks face a ubiquitous prob-
lem: that of overfitting to a particular dataset, which leads to failures in generalization and therefore perfor-
mance on novel datasets. Notably, the techniques that researchers employ to rescue overfitted artificial neu-
ral networks generally involve sampling from an out-of-distribution or randomized dataset. The overfitted
brain hypothesis is that the brains of organisms similarly face the challenge of fitting too well to their daily
distribution of stimuli, causing overfitting and poor generalization. By hallucinating out-of-distribution sen-
sory stimulation every night, the brain is able to rescue the generalizability of its perceptual and cognitive abil-
ities and increase task performance.
SUMMARY

Understanding of the evolved biological function of sleep has advanced considerably in the past decade.
However, no equivalent understanding of dreams has emerged. Contemporary neuroscientific theories often
view dreams as epiphenomena, and many of the proposals for their biological function are contradicted by
the phenomenology of dreams themselves. Now, the recent advent of deep neural networks (DNNs) has
finally provided the novel conceptual framework within which to understand the evolved function of dreams.
Notably, all DNNs face the issue of overfitting as they learn, which is when performance on one dataset in-
creases but the network’s performance fails to generalize (often measured by the divergence of performance
on training versus testing datasets). This ubiquitous problem in DNNs is often solved by modelers via ‘‘noise
injections’’ in the form of noisy or corrupted inputs. The goal of this paper is to argue that the brain faces a
similar challenge of overfitting and that nightly dreams evolved to combat the brain’s overfitting during its
daily learning. That is, dreams are a biological mechanism for increasing generalizability via the creation of
corrupted sensory inputs from stochastic activity across the hierarchy of neural structures. Sleep loss, spe-
cifically dream loss, leads to an overfitted brain that can still memorize and learn but fails to generalize appro-
priately. Herein this ’’overfitted brain hypothesis’’ is explicitly developed and then compared and contrasted
with existing contemporary neuroscientific theories of dreams. Existing evidence for the hypothesis is sur-
veyed within both neuroscience and deep learning, and a set of testable predictions is put forward that
can be pursued both in vivo and in silico.
INTRODUCTION

During the Covid-19 pandemic of 2020, many of those in isola-

tion reported an increase in the vividness and frequency of their

dreams,1 even leading #pandemicdreams to trend on Twitter.

Yet dreaming is so little understood there can be only speculative

answers to the why behind this widespread change in dream

behavior. This is despite the fact that humans spend hours every
This is an open access article under the CC BY-N
night dreaming and that dream deprivation is highly damaging to

animals2; indeed, dreaming is homeostatically regulated in that

there even appears to be a ’’dream drive.’’3 In addition, dreaming

is conserved across many species,4 indicating an essential

evolved purpose.5 Yet finding a biological function for dreams

themselves has evaded resolution. The ’’null theory’’ that dreams

are byproducts of other adaptions,6 or biological ’’spandrels,’’7

or sleep and dreams are adaptive only in that they prevent
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organisms frommoving during periods that they are not adapted

to, such as ensuring that diurnal animals are inactive during

night,8,9 are still taken seriously.

It is notable that approximately 50% to 70% of the time sub-

jects report having a dream upon a sudden waking during sleep,

with more dreams being reported later on in the night.10,11 Re-

ports from those who keep regular dream journals, or who spend

time each morning recollecting dreams, indicate that preserving

a memory of dreams increases significantly with practice.12 All

this hints that individuals may regularly underestimate how

much time they actually spending dreaming during sleep.

The phenomenology of dreams is different from that of waking

experience.13 However, few contemporary theories appropri-

ately account for the phenomenology of dreams, particularly

their sparse, hallucinatory, and narrative contents. What is the

purpose of this strange state? The fact that sleep overall has

some relationship to learning was known even by the Roman

orator Quintilian.14 Yet, as is discussed in detail in the next sec-

tion, contemporary neuroscientific theories which relate

dreaming to memory storage, memory replay, or emotional pro-

cessing, still view dreams themselves as epiphenomena.

This lack of viable theories about why animals dream stands in

contrast with howmuch is known about sleep physiology and its

stages.15 As originally discovered by lesion studies and later

supported by genetic knockout studies, the sleep state is

brought about by a far-reaching set of subcortical neuromodula-

tory systems, with no one system being necessary, indicating

redundancy in how the waking state is sustained.16 In general,

this multifaceted arousal system is excitatory during wake in

that it has the greatest firing, and becomes more quiescent to

bring about sleep, although this is not true for all such systems,

especially those that establish rapid eye movement (REM).

A classic signature of sleep are slow waves, which are waves

of activity that traverse the cortex, which can be identified when

the dominate frequency of electroencephalogram (EEG) is less

than 1 Hz. In this state, the cortex become bistable, oscillating

between periods of intense firing and periods often referred to

as ‘‘down states’’ wherein neurons are silent. In general, it should

be noted that there is a spectrum wherein sometimes a brain re-

gion is experiencing slow wave sleep and this is not synchro-

nized with other regions.17 This is despite the fact that sleep itself

is traditionally broken down into non-REM (NREM) sleep and

REM sleep, with REM sleep being more associated with

dreaming than NREM sleep. Yet there is evidence that dreaming

occurs regularly throughout the night, across different sleep

stages,18 although it is rarest in the ‘‘deepest’’ stage of NREM,

stage 3, wherein surface EEG reflects low-frequency cortical

slow waves. Recent neuroimaging and sudden-waking experi-

ments have demonstrated that all sleep stages can have

dreams, which are the result of localized wake-like firing.19 On

average, high-frequency EEG signals in posterior areas of the

brain were most correlated with reports on waking. Despite the

ubiquity of dreams, it is still the case that REM is most strongly

associated with dreaming, more than 80% to 90% of the time

in some awakening studies, although it should be noted again

that sleep involves a spectrum wherein it is difficult to find any

stage at any time of the night that does not contain any dreams

at all.20 Although early on in the night dreams can present them-

selves as more ‘‘thought-like’’ and simple, later on in the night,
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particularly during REM, dreams can become incredibly com-

plex with a fully developed narrative structure.21 Therefore, while

the story of dreaming occurring solely during REM has been

complicated, it is true they are still associated.

As far as is currently known, dreaming of is a brain-wide state

where the brain is experiencing a single narrative or event, which

is supported by the activation of the default-mode network dur-

ing dreaming.22 Consider, for instance, the evidence from sud-

den-waking experiments that higher frequency activity in the

frontal lobe predicted emotional affect within the subject’s

dream.23 Or consider the evidence that during lucid dreaming,

activity is similar to waking movements in the sensorimotor

cortex.24

Despite the nuances and redundancies of the cortical systems

in play, it still makes sense to view the change from dreamless

sleep to dreaming as occurring via a brain-wide neuromodula-

tory system that regulates level of consciousness, such as by

the increase in firing of acetylcholine-containing neurons during

REM. Neuromodulatory systems also create the conditions of

muscle atonia during dreaming, without which dreams can be

acted out by the body during sleep, a dangerous parasomnia

called REM sleep behavior disorder.25

What is the overall evolved purpose or function of sleep? The

evidence of distinct physiological states brought about by neuro-

modulation suggests answering this requires identifying multiple

functions, particularly for dreamless sleep versus dreaming.

Across the Tree of Life, sleep as a whole is highly conserved;

most mammals spend somewhere between 4 and 20 h

sleeping.26 There is even evidence that Caenorhabditis elegans

sleeps.27 In the past 2 decades there has been significant prog-

ress when it comes to understanding the evolved function of

sleep as a whole, although this has not been true for dreams

themselves.

First, a novel discovery has led to a clear purpose for at least

one aspect of sleep. This was the discovery of the brain’s glym-

phatic system, showing that sleep involves the brain-wide flush-

ing of metabolites with cerebral spinal fluid.28 This led to the the-

ory that sleep, especially during slow wave activity, had the goal

of waste clearance and this is at least partly behind sleep’s

restorative aspect. Glymphatic activity in the form of this flushing

is low in waking but high during both sleep and while under

certain types of anesthesia. In sleep and also under anesthesia,

the greatest amount of flushing occurs during slow wave sleep

when low-frequency delta power dominates the EEG,29 indi-

cating that it may be anticorrelated with dreaming, although

this has not been explicitly established. Dreams may still occur

during these flushing events; indeed, it is unknown if the function

of dreams might even change depending on sleep stages or

background neurophysiological conditions.

Another important theory of the purpose of sleep is the Synap-

tic Homeostasis Hypothesis (SHY).30 According to SHY, daily

learning leads to net synaptic potentiation across the brain,

which, if left unchecked, would lead to a saturation of synaptic

weight and a cessation of learning.31 SHY hypothesizes that

slow waves trigger a brain-wide down-scaling of synaptic

weights. This indiscriminate down-scaling ensures that the rela-

tive weights of synapses are kept proportional while removing

the risk of saturation. SHY has served as a model neuroscientific

theory in that it has generated a number of new empirical
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findings.32 At the same time, it has also triggered fecund debate

and investigation.33 Traditionally, SHY is more associated with

slow wave sleep than with the high frequencies that indicate

dreaming. It has also not been explored how SHY faces the

problem that a global down-scaling of synapses could easily

fail to keep the pattern of synaptic weights the same, since neu-

rons are nonlinear mechanisms. Even a net down-scaling of an

artificial neural network with rectified linear unit (ReLU) activation

functions would likely affect its function if the scaling dropped

any weights below zero; in the case of sigmoid activation func-

tions, it would significantly impact function, and in an un-

known way.

The overall evidence indicates that sleep can be broken into

two parts: during dreamless sleep metabolic clearance and

cellular it is likely that repair occurs, and some form of unknown

contribution to improvements in performance and learning on

tasks occurs during dreaming.34 Ultimately, this purpose of the

dreaming phase or aspect of sleep lacks hypotheses as explicit

and clear as those for slow wave sleep.35

In order to offer forward a distinct theory of the purpose of

dreams, this paper outlines the idea that the brains of animals

are constantly in danger of overfitting, which is the lack of gener-

alizability that occurs in a deep neural network when its learning

is based too much on one particular dataset, and that dreams

help mitigate this ubiquitous issue. This is the overfitted brian hy-

pothesis (OBH). The goal of this paper is to formally fill-out the

OBH by investigating the evidence that the brain fits to a dataset

composed of the statistically similar daily experiences of the or-

ganism, while nightly dreams improve the generality and robust-

ness of an animal’s representations, cognition, and perceptual

systems, by generating data far outside the organism’s daily

’’training set’’ in a warped or corrupted way.36 This idea is sup-

ported by the idea that stochasticity (such as corrupted or sparse

inputs) is critical in machine learning.37 As will be discussed, the

OBH fits with known biological understanding and data,

matches better with dream phenomenology thanmost other the-

ories, draws various antecedents and similar approaches under

one specific roof, and additionally has roots in common prac-

tices in deep learning. It makes unique predictions that can be

tested both via computational modeling and also in vivo.

CONTEMPORARY THEORIES OF DREAMS

A hypothesis for the evolved purpose of sleep must outline a

clear and distinct function from other aspects of sleep. It must

also explain how dreams present themselves, that is, the phe-

nomenology of dream experience. Specifically, it must explain

why dream phenomenology is different from wake phenomenol-

ogy. Consider three phenomenological properties unique to

dreams. First, the sparseness of dreams in that they are generally

less vivid than waking life in that they contain less sensory and

conceptual information (i.e., less detail). This lack of detail in

dreams is universal, and examples include the blurring of text

causing an impossibility of reading, using phones, or calcula-

tions.38 Second, the hallucinatory quality of dreams in that they

are generally unusual in some way (i.e., not the simple repetition

of daily events or specific memories). This includes the fact that

in dreams, events and concepts often exist outside of normally

strict categories (a person becomes another person, a house a
spaceship, and so on). Third, the narrative property of dreams,

in that dreams in adult humans are generally sequences of

events ordered such that they form a narrative, albeit a fabulist

one. Aswewill see, theOBH posits it is not in spite of these prop-

erties that dreams serve their evolved purpose, but because

of them.

This section explores existent theories of dreams, the support-

ing evidence (or lack thereof) and how they fail to integrate well

with, or explain, dream phenomenology.

Dreams are for emotional regulation
The idea that dreams are important for emotional health is a

descendant of Freudian theories of psycholanalysis.39 While

Freud’s theories of dreams as expressions of taboo frustration

are discredited, there is still a historical association between

dreams as expressions of, or important for, emotional pro-

cessing.

The specific proposals for how dreams impact emotional

regulation involve hypotheses like that dreams are somehow

for fear extinction.40 Such hypotheses reason that dreams might

act somewhat like cognitive behavioral therapy treatment for

phobias, wherein they provide a safe space for ‘‘rehearsals’’ to-

ward fearful things in order to make them less frightful.41 Yet

there is no evidence that the fears of nightmares are the kind

of irrational fears faced by those with phobias, nor that fears to-

ward nightmarish events in general should be attenuated, as fear

is evolutionarily quite useful.

Another kind of theory is that dreams act much like an

‘‘emotional thermostat’’ in order to regulate emotions.42,43

Fromdream journals there is some evidence thatmore emotional

dreams predict better recovery from disorders like depression,44

although sample size for this sort of research is prohibitively

small throughout oneirology. From neuroimaging there is evi-

dence that emotional processing centers like the amygdala

show greater activity during REM even than during wake,45

although the role of the amygdala ranges widely from emotions

to rewards to motivations.46 There is some evidence that

changes in REM sleep indicate mood disorders.47 However,

this is not unique to only REM sleep, as NREM sleep is also

changed or reduced in mood disorders,48 and many cognitive

disorders show sleep problems in general.49 Sleep deprivation

does appear to lead to emotional issues such as a lack of

emotional inhibition and also irritability.50 But such failures of

appropriate function holds true across many cognitive pro-

cesses following sleep deprivation, including executive function,

which would affect emotional regulation.51

Overall, the hypothesis that dreams are for resolving emotional

conflicts specifically does not have overwhelming empirical evi-

dence. It is also not supported by the phenomenology of dreams,

which, at least in general, are not emphatically emotional.

Indeed, emotionally neutral dreams are common. Overall there

appears to be a slight bias to dreams to have negative affect,52

although this may simply be that dreams that have high

emotional valence are memorable (and it is worth noting that in

studying dream reports joy/elation was the next most common

to anxiety/fear). Given the evidence it seems likely that whatever

the evolved purpose of dreams is, its function can affect emo-

tions, but there is no strong evidence that dreaming has evolved

specifically for emotional regulation.
Patterns 2, May 14, 2021 3
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Dreams are for memory consolidation
Perhaps the leading contemporary theory is that dreams some-

how involve memory consolidation and storage,53 often via a

proposed form of memory replay.54 The dominant metaphor

for this theory of consolidation is that of the computer: memories

need to be ‘‘stored’’ somewhere in the brain, like storing a com-

puter file on a hard drive, and therefore there must be a storage

process. This viewpoint is held by much of traditional cognitive

neuroscience, wherein the goal of the brain is to ‘‘store’’ mem-

ories as veridically as possible,55 although there is growing

recognition that veridical ‘‘computer-like’’ storage is not desir-

able for complex learning and that forgetting is just as impor-

tant.56 According to the memory consolidation hypothesis,

memory storage occurs during dreams, or alternatively dreams,

by accessing previously stored memories, strengthen them, or

that somehow dreams are a byproduct of integrating new mem-

ories with older ones.

There is a significant line of research that draws from this the-

ory, includingmany neuroimaging studies, and a full review of the

literature would be beyond the scope of this paper.57 However,

there is also debate. Specifically the consolidation hypothesis

is both very broad and rarely meant to specify just dreams rather

than sleep in general.58 For example, there is evidence that

learning a new task leads to a greater activation during both

REM59 and slow wave sleep60 in the task-relevant cortical areas,

which indicates there is no preferential consolidation during

dreaming. This is true even when comparing a wake/sleep con-

dition versus a control condition without sleep but over the same

time, which has found that blood-oxygen-level-dependent

(BOLD) activity increased in associated brain regions with the

task.61 But these sorts of neuroimaging studies are not very

specific, since increased activation in relevant areas does not

actually mean storage, nor replay, nor integration with existing

memories. Indeed, they could be interpreted just as easily for ev-

idence of the OBH (see ‘‘Evidence from neuroscience’’).

A significant line of direct evidence for the consolidation theory

comes in the form of ‘‘replay’’ of memories during sleep, a spe-

cific hypothesis with a clear thesis and standards of evidence.

Replay was originally discovered in the hippocampus of

rats,62,63 although the original analysis was again for slow

wave sleep, not correlating this process to dreaming specifically.

Indeed, the same statistically increased firing in correlated neu-

rons that counts as ‘‘replay’’ occurs during quiet wakefulness,

indicating it has nothing specific to do with dreams.64 In general,

if two neurons potentiate at the same time and from the same

cause, they are more likely to be correlated in the sense of

increased firing in the future, regardless of whether they are re-

playing anything specific, a view supported by the finding that

‘‘replay’’ events are much faster in terms of their firing.65

There are a number of significant issues with the specific hy-

potheses that dreams are replaying memories.54 First, offline

replay of episodic memories may not actually assist memoriza-

tion; since ground truth is absent offline, such replays might

actually introduce errors. Indeed, neuroscience has shown that

re-accessing memories generally changes them, rather than en-

forces them.66,67 Due to the issues in assuming that specific

memories are actually replayed, a number of authors have pro-

posed more complex theories of consolidation, such as that

the idea there exists two complementary learning systems and
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replay connects these two systems together.68 Furthermore,

the hypothesis must grapple with the fact that well-controlled

neuroimaging experiments show little evidence for exact

sequence replication and strong evidence for mostly never-

before-seen firing patterns.69 In light of this sort of evidence,

some have argued that sleep promotes gist extraction from spe-

cific memories,70,71 although these sorts of hypotheses have not

specifically been about dreaming.

Overall, replay is unlikely to be the purpose of dreams, since,

as previously discussed, based on the most detailed studies

on dream reports after awakenings, dreams are not connected

or, at most, only vaguely connected with the day’s events.72

Overall, it appears that less than 1% to 2% of dream reports

have anything to do with episodic memories.73 Except in cases

of posttraumatic stress disorder (PTSD), dreams do not repeat

specific memories, and those that do are considered patholog-

ical; for instance, closely after Hurricane Andrew, the only hurri-

cane-related dreams, even from a sample of the population from

the hardest hit area, were from those already diagnosed with

PTSD.74 Close studies of dream journals have in general found

that replays of specific memories or a day’s events are generally

either rare or nonexistent, although they do in general involve ac-

tions and people the dreamer is familiar with.75 One study exam-

ining dreams after the terrorist attacks of 9/11 found that ‘‘not a

single one of the 880 dreams (440 of them after 9/11) involved

planes hitting tall buildings or similar scenarios, even though all

the participants had seen these events many times on television

(and it was clearly an emotionally important experience). No

scenes were pictured that were even close to the actual

attacks.’’76,77

Indeed, there is significant evidence that episodicmemory and

dreams are dissociated.78 While there is behavioral evidence

that repetitive daily tasks, like having subjects play Tetris for sig-

nificant periods of time, can lead to Tetris-inspired dreams, such

inculcated images or sequences do not represent replay in that

they are not veridical repeats of previous games, being more

hallucinatory and sparse in content and only being loosely

related to the played game, such as dreaming of playing some

altered version of a maze game after being exposed to it during

the day.79 Moreover, dreams triggered by such repetitive games

appear even in patients completely lacking all memory, those

with clinically diagnosed amnesia.80 It can take several days

for repetitive tasks to show up in dreams, a form of ‘‘dream

lag,’’ and almost always these tasks appear in partial forms

that are, again, only loosely similar.81 Overall, the behavioral ev-

idence suggests that dreams are not replays of memories or

waking events.

There is a strong line of evidence fromTetris-studies to sudden

wake-ups to dream-lag effects showing that partial or loosely

similar dreams can be triggered most reliably by recently learned

tasks, and yet such inculcated dreams generally take the form of

never-before-seen experiences or sequenceswith the traditional

dream-like properties of sparseness and hallucination, matching

no specific memory but rather a seeming exploration of the

state-space of the task itself.

It is worth noting that in most cases the sparse, hallucinatory,

and narrative properties of dreams are unaccounted for by the

consolidation hypothesis. Most dreams do not involve specific

memories at all, making the integration of new memories a
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questionable purpose for dreaming. Indeed, it is openly admitted

that the consolidation hypothesis still views dreams themselves

as epiphenomena.54 As we will see, much of the supporting re-

sults for the integration, replay, or storage of memories actually

fits better with the OBH (‘‘Evidence from neuroscience’’).

Dreams are for selective forgetting
Notably, Francis Crick and Graeme Mitchinson proposed an

alternative purpose for dreams in 1983, which they called

‘‘reverse learning.’’82,83 In this hypothesis, the point of dreaming

is somehow to remove ‘‘undesirable’’ connections and help the

brain ‘‘unlearn.’’ Yet this hypothesis has been largely ignored in

contemporary dreaming research. Instead, the alternative hy-

pothesis, that dreams involve replay or consolidation of memory,

became favored by the community84 due to the excitement

around early replay results.62 Contemporary neuroscientific

research often views there as being both a consolidation phase

as well as a forgetting phase for memories, although this is again

predominately associated with slow wave sleep, rather than

dreaming specifically.85 Within deep learning it is known that

averaging together models and renormalizing can assist in

learning86 which could broadly be thought to resemble some

sort of selective forgetting in real neural networks. More specif-

ically, it has been proposed that Boltzmann machines may actu-

ally implement something very similar to the Crick and Mitchin-

son notion of reverse learning wherein synaptic down-scaling

could eliminate the discrepancy between environmental inputs

and a system’s internal model of the environment,87 which is

an earlier version of the sorts of predictive processing theories

discussed in the section ‘‘Dreams benefit predictive processing

by refining generative models.’’ Indeed, it has been argued that

down-scaling of synapses might themselves prevent overfit-

ting,88,89 thus providing a possible link between SHY, the OBH,

and the original reverse learning hypothesis.

Recently there has been explicit computational modeling in

spiking neural networks showing that ‘‘reverse learning’’ in the

form of reverse learning rules can indeed prove helpful. Specif-

ically, the authors showed that an anti-learning rule during a

‘‘sleep phase’’ of the network, in the form of anti-Hebbian

learning, could break up attractor states that were detrimental

to learning.90 It is worth noting that breaking up detrimental at-

tractor states could lead to similar outcomes as the OBH. How-

ever, in general any sort of ‘‘reverse learning’’ is not necessary

from the perspective of the OBH. This is because ‘‘reverse

learning’’ approaches differ significantly by focusing on how

specific memories are destroyed (via anti-learning mechanisms

like a hypothetical ‘‘reverse Spike-timing-dependent plasticity’’)

rather than how corrupted inputs or top-down noise can improve

generalization like in the OBH.

Dreams are preparations for real-world problems
The close correlation between creativity and dreams, as well as

the similarity of dreams to simulations or virtual realities, has led

to hypotheses that dreaming can be used to solve relevant real-

world problems for the animal. For example, perhaps dreams

allow for creative experimentation where the dreamer keeps

the best ideas put forth,91 although this is problematic given

the generally amnesiac nature of dreams and their lack of real-

world relevance. A more direct hypothesis is that dreams act
as rehearsals for stereotypical behaviors for animals in a form

of ‘‘genetic programming.’’92 In more contemporary studies,

this has been referred to as the hypothesis that dreams act as

proto-conscious states to prepare for activities during waking

behavior.93

Similar examples of this hypothesis include an interpretation

based off of robots that used simulations to figure out self-

models94 or that an animal might ‘‘dream up strategies for suc-

cess’’ at night, like for how to best climb obstacles, like rocks,

that it faced during the day.95 Evidence for this sort of hypothesis

is that there is a form of neural ‘‘pre-play’’ wherein the sequences

of activity predict future behavior of the animal and indicate plan-

ning or pre-processing,96,97 although this effect may simply be

because animals are forced to use a limited set of preconfigured

firing sequences to represent the world.98,99 In a similar manner

to the replay results, it is also likely that most of the time pre-play

is not the actual specific future sequences of activity, and that

most sequences are never instantiated during wake. Perhaps

the simplest and most direct hypothesis is that dreams allow

for avoidance practice of dangerous situations, such as running

from a predator, that would be impossible to practice in real life

without immense risk.100 However, this is contradicted by the

fact that only a small percentage of dreams contain this sort of

behavior (even when defining threats incredibly broadly), and in

those that do realistic plans of actions in these scenarios are

rarely actually implemented.101,102 Yet despite the unrealistic na-

ture of dreams, it may be that exploring unlikely or weak associ-

ations has psychological benefits.103

Another hypothesis is the idea that dreams are actually for

refining the ability to create simulations themselves. This ’’InSim’’

hypothesis, which specifically is a hypothesis about the dreams

of young children, posits that dreams are chances to create sim-

ulations and then test their predictions against the real world

upon waking.104,105 However, this only applies to young children

(with the assumption that the few studies are correct that chil-

dren’s dreams are more ‘‘boring’’ than adult dreams), since, as

the authors themselves point out, adult dreamswould be consis-

tently invalidated by daily events. Indeed, the phenomenology of

dreams as sparse and hallucinatory and fabulist make it unlikely

that strategies or abilities or preparations that originate in

dreams work at all in the real world.

However, these types of theories are likely right to view

dreams as simulations. Yet according to the OBH the purpose

of these simulations is not to refine a particular ability or strategy

or plan of action, which is what simulations normally are for.

Instead, the purpose is to provide ’’out-of-distribution’’ simula-

tions specifically to prevent overfitting and improve generaliza-

tion, wherein overfitting is essentially an unavoidable issue

brought about by daily learning and therefore a constant threat

to the brain’s performance on various tasks.

Dreams benefit predictive processing by refining
generative models
Predictive processing is the view that the brain continuously tries

to predict its own future states in relation to extrinsic sensory

input.106,107 In a predictive processing framework, predictions

traverse in a top-down fashion, while sensory input occurs in a

bottom-up fashion. Predictions are then compared with inputs,

with the goal of minimizing prediction errors, which corresponds
Patterns 2, May 14, 2021 5
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to improving the brain’s predictions about its own future states.

Prediction error can be minimized by changes in action and

behavior, a process called ‘‘active inference.’’108

Predictive processing has become a popular lens through

which to view cognitive science,109 and has origins in work on

Helmholtz machines, statistical inference, and the ‘‘wake-sleep

algorithm.’’110 Note the proposal of the wake-sleep algorithm

for unsupervised learning goes back 25 years,111 which are

effectively a precursor to the contemporary notion of an au-

toencoder.

Despite its origins in the field of machine learning, the predic-

tive processing approach is controversial due to its claims of uni-

versality: it is unclear that the cortex actually functions primarily

to generate predictions about its own future state.112 Further-

more, there are fundamental criticisms about whether mini-

mizing prediction error via actions is actually a theoretically

coherent goal for a universal principle. For instance, why would

an organism not go sit in a ‘‘dark room’’ in order to minimize its

prediction errors, since it would always know what to expect?113

Multiple views of dreams in the light of predictive processing

has been put forward114 arguing for specific neurophysiological

correlates andmechanisms. In general, in such theories the phe-

nomenology of dreams is accounted for by the breakdown of the

perception-action loop during dreaming: essentially the brain’s

activity is dominated by its ‘‘priors’’ rather than bottom-up input.

Some predictive processing proponents have put forward views

that the role of dreams is not actually to test inferences about ac-

tions, but to improve a hypothesized generative model (in this

context a model used by brain to make predictions), specifically

by reducing this generative model’s complexity by pruning

redundant synapses.115 According to this hypothesis, the pro-

posed evolved purpose of dreaming during REM sleep is to mini-

mize the free energy of the brain. Free energy is essentially the

complexity of the brain’smodelminus the accuracy of the brain’s

predictions about its own states, and therefore reducing model

complexity is important for minimizing free energy. Specifically,

the hypothesis put forward in Hobson and Friston115 is that syn-

aptic pruning (of the kind proposed in SHY during slow wave

sleep)31 can help minimize model complexity (and therefore

help minimize the free energy) since overall parameters of a

model are reduced when synapses are pruned. However, SHY

actually specifies that there is a net reduction of synaptic weight

specifically so that waking activity is generally unaffected by this

change, and additionally it is also specifically associated with

NREM and slow wave sleep rather than REM and dreaming. It

is worth noting that down-scaling in general and its effects on

model complexity and minimization of error, even the possibility

of this occurring during REM, had been previously pro-

posed,88,89 as discussed in the section ‘‘Dreams are for selective

forgetting.’’

In Hobson and colleagues,116 a further related hypothesis

without reference to synaptic pruning or down-scaling was intro-

duced based on the idea that, according to the free energy prin-

ciple, the brain is continuously trying to better predict its own

future states. Therefore when the brain lacks bottom-up sensory

input (i.e., during dreaming) the brain is still compelled to mini-

mize free energy, meaning that the model complexity must

implicitly be reduced since any prediction errors can stem only

from internal consistency of the model rather than inconsis-
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tencies with the outside world. According to this view ‘‘ . we

propose that REM sleep is an occasion for reiterating and opti-

mizing a generative model of the embodied self with reference

to waking experience.’’116 However, in general, predictive pro-

cessing and particularly active inference approaches to

dreaming face a problem: in the vast majority of dreams agency

is actually minimized, not maximized (a view supported by the

decreased contribution of prefrontal areas during

dreaming).117,118 That is, dreams are not ‘‘causal playgrounds’’

wherein the outcomes of actions are continuously tested against

the perceptions they generate. This may be the case of lucid

dreaming, but lucid dreaming accounts for a small minority of

dreams.119

Outside of relying on the assumption that the goal of the brain

is always to minimize free energy and that actions are conse-

quential in dreams in the same way they are in wake, another

particular concern about the hypothesis is that dreams, given

their phenomenology as fabulist and hallucinatory, do not

seem very good candidates forminimizing the surprise of predic-

tions created by a gestalt generative model (let alone a model of

the ‘‘embodied self’’). For instance, if dreams were about

creating optimal prior beliefs or improving a model’s self-consis-

tency by minimizing input-less prediction errors (as in Hobson

and colleagues116), the consequence would be that dreams

should become less surprising throughout development as

input-less prediction error is minimized. This process should

lead to the generative model becoming more internally consis-

tent, more parsimonious, tame, and therefore more like the

waking world, both over development and over a given night’s

sleep. Yet this is precisely the opposite of what empirical data

show, wherein dreams of children are self-reported as static

and uninteresting and become more interesting and surprising

across development.120 Indeed, there is no evidence that

dreams become optimized for a lack of surprise or for internal

consistency over time. While the world may become more pre-

dictable over a lifetime, dreams do not. This same sort of criti-

cism can be applied to the suggestion that the purpose of sleep

is actually to implement the wake-sleep algorithm itself.121 In

addition, this idea faces a number of other problems, such as

the fact thewake-sleep algorithm is only for a specific form of un-

supervised learning that trains a generative model and the brain

obviously does much more than that. Furthermore, implement-

ing the wake-sleep algorithm requires several assumptions

that are not biologically realistic, like training solely feedforward

or feedback connections at different times.

However, it should be stressed that the background advan-

tage posited by this approach to dreaming is its effect on model

complexity, which is similar to the focus of theOBH, since reduc-

tions in model complexity in machine learning are generally

associated with a reduction in overfitting. It is also worth noting

that the free energy principle approach to dreaming is highly spe-

cific in how this is accomplished by theminimization of errors in a

generative model’s predictions of itself without inputs, rather

than via how corrupted or stochastic inputs assist generalization

as in the OBH. This provides evidence that the concerns of the

OBH, although not the OBH itself, can be motivated by diverse

takes on brain function (further discussed in ‘‘Dreams are for se-

lective forgetting’’ and the Discussion). Indeed, the OBH could

possibly be thought of as a generalization of the issue model
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complexity plays in predictive processing to all of learning and

performance instead of a just for a specific self-model, and

without relying on an assumed drive to minimization prediction

errors as the mechanism of action (and therefore the OBH

does not share the consequences of this drive like dreams

becoming unsurprising over time). However, the OBH can be

motivated entirely independently by common practices in deep

learning, their resemblance to dream phenomenology, and the

similar challenges the brain faces during its daily learning to

those of training a neural network.

THE OVERFITTED BRAIN HYPOTHESIS

As technology advances, science often appropriates new tech-

nologies for metaphors that help understand complex sys-

tems.122 This has been particularly true of neuroscience. In the

past decade it has become apparent that there aremany lessons

for neuroscience to be taken from brain-inspired deep neural

nets (DNNs), which offer a different framework for thinking about

learning than standard computer architectures. DNNs are far and

away the only successful analog to human intelligence on com-

plex tasks, and they tend to develop brain-like connectivity and

representational properties, like grid-cells, shape-tuning, and vi-

sual illusions.123 One of the most significant differences between

DNNs and the brain is that updating of synaptic weights in accor-

dance with the backpropagation of errors has traditionally been

looked on as biologically unrealistic. Yet new research reveals

that the brain may implement core features of backpropagation,

with viable candidates like neural gradient representation by ac-

tivity differences.124

Therefore, there is good reason for neuroscience to look to

deep learning for inspiration, since both are systems that

perform complex tasks via the updating of weights within an

astronomically large parameter space. It is clear that the chal-

lenges the brain andDNNs face during learning and performance

on complex tasks overlap significantly. Notably, one of the most

ubiquitous challenges DNNs face is a trade-off between general-

ization and memorization, wherein as they learn to fit one partic-

ular dataset, they can become less generalizable to others. This

overfitting is identifiable when performance on the training set

begins to differentiate from performance on the testing set. An

omnipresent problem within the deep learning community, solu-

tions to overfitting in DNNs most often comes in the form of a

noise injection, such as making input datasets corrupted and

therefore less self-similar.125 Perhaps the most common explicit

technique to prevent overfitting is dropout, which is mathemati-

cally the injection of noise and the corruption of input during

learning.126 Notably the more self-similar or biased your sam-

pling of training data is, the more overfitting will be an issue.

The brain faces these challenges as it learns, since what an or-

ganism experiences every day can be highly self-similar and

biased in its sampling of the environment. The OBH states that

dreams offer a biologically realistic ‘‘noise injection.’’ Specif-

ically, there is good evidence that dreams are based on the sto-

chastic percolation of signals through the hierarchical structure

of the cortex, activating the default-mode network.127 Note

that there is growing evidence that most of these signals origi-

nate in a top-down manner,128 meaning that the ‘‘corrupted in-

puts’’ will bear statistical similarities to the models and represen-
tations of the brain. In other words, they are derived from a

stochastic exploration of the hierarchical structure of the brain.

This leads to the kind of structured hallucinations that are com-

mon during dreams.

The hallucinogenic, category-breaking, and fabulist quality of

dreams means they are extremely different from the ‘‘training

set’’ of the animal (i.e., their daily experiences). The diurnal cycle

of fitting to tasks during the day, and avoiding overfitting at night

via a semi-randomwalk of experiences, may be viewed as a kind

of ‘‘simulated annealing’’129 in the brain. That is, it is the very

strangeness of dreams in their divergence from waking experi-

ence that gives them their biological function.

To sum up: the OBH conceptualizes dreams as a form of pur-

posefully corrupted input, likely derived from noise injected into

the hierarchical structure of the brain, causing feedback to

generate warped or ‘‘corrupted’’ sensory input. The overall

evolved purpose of this stochastic activity is to prevent overfit-

ting. This overfitting may be within a particular module or task

such a specific brain region or network, and may also involve

generalization to out-of-distribution (unseen) novel stimuli. As

will be discussed, the OBH fits well with the disparate known

data about dreams, such as their physiological origin in the

form of noise that creates ‘‘corrupted features’’ via neuromodu-

latory influences, their role in learning, and their importance for

problem solving and creativity. However, most importantly, it

does not consider dreams as epiphenomena generated by

some background process, and it also accounts for, and is moti-

vated by, the actual phenomenology of dreams themselves. The

sparseness of dreams comes from the ‘‘dropout’’ of bottom-up

inputs since they are driven solely by feedback activity, their

hallucinatory nature comes from the higher-up stochastic origin

which means they are purposeful corrupted or warped away

from the daily ‘‘training set’’ the organism normally experiences,

and their narrative nature from the top-down genesis of dreams

since the brain understands reality in the form of events and stor-

ies. That is, according to the OBH, the distinct phenomenology

of dreams exists to maximize their effectiveness at improving

generalization and combating mere memorization of an organ-

isms day. The evidence for the OBH, as well as more details

about its distinguishing claims, are overviewed in the following

section.

Evidence from neuroscience
What is the evidence for the OBH from traditional methods of

neuroscience? It is worth focusing not on all the studies avail-

able, but those that distinguish the OBH from the theory that

dreams are correlated (in some unspecified way) with learning.

In human behavioral experiments, there is good supporting

evidence for the OBH specifically. First, the most effective

means of triggering dreams that contain partial similarities to

real-life events is through repetitive overtraining on a task. Exam-

ples of this include extensive playing of games like Tetris80 or ski-

simulators,130 which led to dreams involving the learned task,

although not specific repetitions or replays of memories. Put

another way: the surest way to trigger dreams about a real-world

event is to perform a task repetitively during the day, preferably

one that is novel. Under the OBH, the explanation for this effect,

as well as the specifics of the benefits of dreaming, is clearly out-

lined. Overtraining on a novel task creates the condition of the
Patterns 2, May 14, 2021 7
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brain being overfitted to the task, which then triggers nightly

dreams attempting to generalize performance on the task. Evi-

dence of dreaming about tasks specifically improving daily per-

formance on those tasks can be found for things like mirror

tracing131 and reading with inverted goggles on.132 Even driving

cars seems correlated to dreams about driving.75 It is likely

therefore there is a homeostatic component to the OBH wherein

different modules, processes, or systems within the brain

become overfitted from usage, which are then most likely to

trigger dreams involving those modules. If so, neurons involved

in recent learning would be most affected by overfitting. In this

way the OBH can account for many of the statistical ‘‘replay’’ re-

sults since those neurons that saw synaptic changes in response

learning are most affected by the regularization of dreaming, and

since exact sequence replication is rare and most ‘‘replay’’ is

actually never-before-seen firing patterns.69

Another line of evidence for the OBH is that in humans there is

evidence of task-dependency when it comes to whether sleep

improves learning. For adult humans, perceptual tasks showed

little to no learning increase from sleep wherein cognitive tasks

showed significant gains from learning.133 Since it is likely that

adult humans already have well-fitted perceptual models, we

should expect complex cognitive tasks to trigger more gain

from an increase in generalizability. While dream reports are

actually less common in young children, particularly below the

age of 7, from what can be gleaned, children’s dreams are

much more static and perceptual, focusing on individual scenes

rather than full narratives or events, indicating that perceptual

systems are likely still being reorganized during dreams.120

Meanwhile newborns exhibit ‘‘active sleep,’’ their version of

REM, for 50%of their 16 to 18 h of daily sleep, perhaps indicating

that early perceptual models are in constant danger of over-

fitting.

The OBH is also supported by evidence that sleep does not

simply improve memory directly, but affects some aspects of

memory more than others. For instance, in a word association

test, direct associations, the equivalent of pure memorization,

did not benefit that much from a night’s sleep, while word asso-

ciations were better able to resist interfering associations.134

This indicates again that memorization is least affected by sleep,

but generalized performance is most affected. This holds true

even in infants, wherein sleep is correlated with increased gener-

alization and abstraction abilities.135,136

In addition, there is evidence from behavioral studies that

overtraining on a texture-discrimination task leads to decreased

performance on it, and that sleep specifically, above and beyond

the passage of time, rescues this performance.137 This fits with

anecdotal reports of plateauing in terms of performance on a

task, like a video game, only to sleep and have increased perfor-

mance the next day.

There is also the long-standing traditional association be-

tween dreams and creativity, a rich literature. Anecdotal re-

ports about dreams and creativity are supported by careful

studies of how sleep improves abstraction and reasoning on

tasks.138,139 This fits directly with the OBH, since an increase

in generalization would directly lead to more insights in com-

plex problems, or better performance on cognitive tasks that

require creativity. Indeed, it explains the link between crea-

tivity and dreaming better than the hypotheses that dreaming
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is for the integration of new with old memories, the replay of

memories, or their storage.

Finally, it might be argued that it is a problem for the OBH that

dreams are generally amnesiac, with explicit memory a rarity

during dreams. Would it not be strange then that the content of

dreams have any effect on the abilities of a neural network?

Here, an important distinction should be made between access-

ing explicit declarative memories and the general fact that

learning involves changes to synapses. For instance, the amne-

siac effect during sleep may due to prefrontal inhibition. Just as

prefrontal cortex inhibition means that dreams are not recogniz-

able as dreams when they are occurring, it may be that the same

inhibition makes it difficult to recall in the sense of cognitive ac-

cess.21 Anecdotal evidence from those with dream journals sug-

gests that paying attention to dreams makes them easier to

remember, lending credence to this hypothesis.12 In addition,

sudden-waking experiments show that dream content is com-

mon and recallable. Likely the effects of not being able to either

form or access episodic memories of all dreams at the end of the

night are due to the neuromodulatory milieu during sleep.

Supporting the OBH is evidence indicating that dreams lead to

synaptic changes in the connectivity of the brain, albeit likely this

is not as strongly as waking experience, with episodic memory

storage significantly reduced. What is the evidence that synap-

ses change during sleep? Proponents of SHY have argued that

there is evidence that synapses change during sleep in the

form of synaptic homeostasis, regularization which occurs every

night in the form of universal down-scaling of synaptic

strength.32 However, this has been challenged by the observa-

tion of potentiation during sleep.140 In general it appears that

whether there is net potentiation or depression during waking

depends on the task,141 indicating that learning involves synaptic

plasticity in both directions in both wake and sleep.142 If during

dreams synapses are indeed still plastic, then dreams can leave

a synaptic trace that can affect performance. However, it should

be noted that as of yet there is no strong empirical evidence that

the content of dreams can lead to synaptic changes and learning

as the content of waking experience does, and this is difficult to

explore experimentally.

Evidence from deep learning
One of themost significant, and ubiquitous, challenges any deep

neural network faces is the ability to generalize beyond the data-

set it has been trained on, that is, to avoid simply memorizing the

dataset. There has been significant effort in the past decade by

the deep learning community to develop methods and tech-

niques to avoid overfitting on particular datasets and, at the

broadest level, to allow for extrapolation to never-before-seen

datasets. This section overviews three commonly used such

techniques within deep learning (and research into artificial neu-

ral networks generally). Notably, each of these three techniques

embodies some phenomenological property of dreams and also

fits with what is known about the neurophysiology of dreaming.

The first technique is the data augmentation method of

dropout, perhaps the most widely used technique for preventing

overfitting in deep learning.143 Dropout occurs during the training

of a network, when inputs are made sparse by randomly ‘‘drop-

ping out’’ some of them, a form of regularization during learning

which is mathematically similar to a noise injection.126 It is
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important to note that dreams resemble dropout in their spare-

ness, as they do not contain as much perceptual information,

or details in general, as waking experiences. For example,

phones are generally unusable in dreams because there is not

enough phenomenological detail to support such small icons

and text. This likely increases the salience of relevant features

while minimizing irrelevant features, assisting in generalization

by making representations more robust and invariant, since

one reason dropout is successful is that it acts like an averaging

effect over different models the data could be drawn from.

Dreams are a lesser or weakened state of conscious experience

because of this dropping out of bottom-up stimuli, lacking much

of the detail of waking conscious experiences. This, according to

the OBH, actually assists, rather than hinders, their function.

The second technique that supports the OBH is the method of

domain randomization used in training DNNs. In domain

randomization, the inputs during learning are ‘‘randomized’’ in

the sense of being warped or corrupted in particular ways. This

can drastically assist with learning and generalization. Paradox-

ically, simulating hallucinatory inputs rather than learning off of

real inputs helps deep neural networks learn real-world tasks.144

Domain randomization has have been used in cutting-edge tech-

niques in deep learning, such as being necessary for having a

DNN solve a Rubik’s Cube using a robot hand.145 Domain

randomization resembles the hallucinatory quality of dreams in

that dreams depart significantly from normal experiences, as if

they have been randomly drawn from a varied set of different

domains.

The third common practice in deep learning that has ties to

dreaming is the use of some generative model to expand the

training set of the neural network, which can assist in learning

various tasks. Generative models lie behind the success of

generative adversarial networks (GANs) and other techniques

that allow for cutting-edge performance on complex tasks us-

ing sets of feedforward networks that anticipate the other’s

output.146 It is worth noting that GANs and others often pro-

duce notoriously dream-like fabulist outputs.147 Indeed,

recently an external generative model that created ‘‘dream-

like’’ input helped train a DNN to produce the code behind a

given mathematical mapping.148 It has been shown that input

created from a generative model can indeed assist with

learning, such as preventing catastrophic forgetting.149 It

should be noted that in most these cases the generative

model exists outside the network itself, which is not biologi-

cally realistic in the case of the brain, although there are

some exceptions.150 What of those cases where the network

itself acts the generative model? This is much closer to the

case of the dreaming brain. In networks that are not purely

feedforward or have external models that can be manipulated

by experimenters, the stimulation of higher layers (generally

through the injection of noise) can lead to patterns of activity

in the lower layers that recapitulate the statistical properties of

inputs, as if the network were being stimulated from the bot-

tom-up from imaginary sources (this is similar to the wake-

sleep algorithm discussed in ‘‘Dreams benefit predictive pro-

cessing by refining generative models’’). This is likely the

case in the brain, wherein stochastic activity high in the hier-

archy of brain regions creates hallucinatory patterns of inputs

via feedback connections.
Indeed, it is likely the case that dreams are indeed a result of

noise in the brain’s hierarchical structure that traverses its feed-

back connectivity, which fits with the evidence that dreams are

‘‘top-down.’’151 This further fits with evidence that dreaming

drawn from the brain’s model of the world becomes more narra-

tive and complex over time, particularly during adolescence.152

By adulthood, dreams take on the narrative structure of human

cognition wherein stories and metaphors and events make up

the core function of thought.153 Since narratives are the way by

which human brains understand the world,154 stochastic stimu-

lation of the hierarchical structure of the brain produces narra-

tives, which act as hallucinatory and sparse bottom-up input

for learning, thus combating overfitting and improving general-

ization. In this way they are a direct expansion of the normal

‘‘training set’’ of an animal, since narratives and events are

how conscious perception itself proceeds and understands the

world.155

The OBH claims that dreams resemble a combination of these

three techniques: a sparse, corrupted, or randomized set of sen-

sory inputs, which are likely created by feedback exploiting the

hierarchical nature of the brain as a generative model, and the

purpose of these experiences is to expand and regularize the

limited and biased ‘‘training set’’ of the organism to prevent over-

fitting. Of course, the precise implementation of these tech-

niques (such as their combined nature) must be different for

the brain than in deep learning research. This is because the

brain faces many challenges that artificial neural networks do

not. Any organism that implemented dropout or domain random-

ization during its daily learning would face serious survival is-

sues. Therefore, in order to increase generality and avoid overfit-

ting and pure memorization of waking sensory input a dedicated

offline period is needed. Sleep, possibly having originally

evolved for other housekeeping reasons, is the perfect time.

Overall, the overlap between the phenomenology of dreams

and common methods in the field of deep learning for mitigating

overfitting, avoiding pure memorization, and assisting general-

ization lend credence to the idea that the evolved function of

dreaming is for precisely these purposes.
PREDICTIONS

The OBH puts together several lines of investigation under one

roof by being explicit about asking how generalization during

learning can benefit from dreams. This involves understanding

how dreams can help overcome an organism’s reliance on

memorizing just a day’s events, which is often highly statistically

biased. The theorymakes a number of specific predictionswhich

can be pursued both experimentally as well as theoretically.
Experimental validation
Experimental investigation of the OBH within neuroscience can

consist of several components. Under the OBH, much of the

benefit of dreaming is in the realm of generalizability not memo-

rization per se, and this can be differentiated with well-designed

behavioral tests. For example, it may be that directmeasurement

of overfitting is possible in humans. This may include the training

of subjects on overly repetitious tasks in order to ensure the con-

dition of overfitting. It may also include using similar techniques
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as those within deep learning to test for generalization of per-

formance.

In animal models there have not been explicit attempts to

separate out the difference between pure memorization and

generalization, and the effect of sleep deprivation on each. Ac-

cording to the OBH, memorization should be less affected by

sleep deprivation than generalization. Therefore, using mouse

models of things like context fear generalization156 could be

examined under conditions of sleep deprivation or, if possible,

dream deprivation. Beyond behavioral predictions and subse-

quent studies, there is also the possibility of attempting to track

synaptic plasticity in response to dreams. This may include

things like tracking changes in dendritic spine morphology dur-

ing REM, such have been used to track spine morphology

changes during sleep to investigate SHY.157

Notably, the sort of cognitive flexibility and generalization the

OBH claims is the purpose of dreams is highly important for

workers and those in the armed forces who sometimes operate

under sleep deprivation during critical periods, which can lead to

increased accident rates,158 and has a significant monetary

annual impact.159 If it is true that sleep-deprived brains are over-

fitted, they will be prone to make errors in stereotypical ways.

Thus it may be easier to know what types of mistakes will be

made by individuals operating in sleep-deprived states and in

response build more robust fail-safes.

Furthermore, the OBH predicts there may be the possibility of

dream substitutions: dream-like stimuli that are artificially gener-

ated to have the properties of dreams, and therefore have a

similar ameliorative effect on overfitting. Such dream substitu-

tions, delivered via virtual reality (VR) or even video, might pro-

vide a simple yet effectivemeans for delaying some of sleep dep-

rivation’s cognitive defects. For example, it may be that a pilot

who has been flying for a long period of time is beginning to over-

fit to their task, and a quick but intense exposure to an entirely

different sort of visual stimulus (like a dream-like nature scene

in VR) could stave off some of the effects of sleep deprivation.

The impact of substitutions can be examined both behaviorally

but also at the neurophysiological level of REM rebound.160

Theoretical validation
The OBH has consequences not just for neuroscience, but also

for the field of deep learning. This is particularly true of biologi-

cally realistic models, like large-scale thalamocortical spiking-

neuron models, which have previously been used to investigate

the development of cortical connectivity and its effect on slow

waves.161 It is likely that biologically realistic spiking neurons

that are still trainable in the manner of DNNs162 can be used to

explore the benefits of dreams directly. In such a cortical model,

neuromodulation can be used to be intersperse training with pe-

riods that mimic sleep stages, cycling first through the real input

of its training set, and then hallucinatory corrupted input gener-

ated from its top-down connections. This should prevent or

delay overfitting.

What sort of stochastic biases allow for dreams to warp input

data in a way that is most efficient for avoiding overfitting? If the

OBH is correct, then the sparse and hallucinatory nature of

dreams suggests that we should expect warping of input distri-

butions that successfully combats overfitting has these qualities.

Such distributions should be sparse in that they have less entries
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than normal inputs, and hallucinatory in that they should be clus-

tered in a different way compared to the standard ‘‘daily’’ input.

This can be directly tested in state-of-the-art DNNs as well as

more biologically realistic artificial neural networks. That is, there

may be a point of criticality where inputs have been altered to be

as dream-like as possible and this is the most effective means of

preventing overfitting in biologically realistic artificial neural net-

works, which can be tested by exploring how differently corrup-

ted inputs assist in generalization. In addition, since learning is

diurnal in the brain, it may mean that adjusting to mimic realistic

patterns of cyclical dream-like activity could have the most

beneficial effect in machine learning generally. A final further po-

tential hypothesis is that a reduction to the learning rate (given

the neuromodulatory milieu of dreams that likely blocks the for-

mation of strong memories) during dream-like input could be

especially beneficial for learning in DNNs.

DISCUSSION

The OBH posits the evolved purpose of dreams is to assist

generalization by stochastic corruptions of normal sensory input,

which combats the highly biased nature of inputs during an ani-

mal’s daily learning that can lead to overfitting, a ubiquitous

problem in artificial neural networks andmachine learning in gen-

eral. It is supported by both empirical evidence (’’Evidence from

neuroscience’’) and theoretical evidence (’’Evidence from deep

learning’’). In many cases it can explain observed results better

than other hypotheses (comparative hypotheses are discussed

in ‘‘Contemporary theories of dreams’’). For example, it seems

the most effective way to trigger dreams about something is to

have subjects perform on a novel task like Tetris repeti-

tiously,73,130 likely because the visual system has become over-

fitted to the task. In addition, the OBH fits with the fact that

‘‘replay’’ results more often contain never-before-seen patterns

of activity than actual replays of waking sequences,69 a fact

that, as has been pointed out in the previous literature, indicates

that dreaming may play some sort of role in generalization or gist

extraction.79 In another example, the OBH also explains the fact

that synaptic potentiation occurs during sleep,140 indicating that

learning during dreams themselves leaves behind a synap-

tic trace.

The OBH does not necessarily contradict other hypotheses

about sleep, for instance, the idea that during certain periods

of sleep there is ongoing metabolic waste clearance.28 In this

sense then the OBH speculates that dreaming evolved as an ex-

aptation, wherein sleep evolved for molecular housekeeping

purposes, and only when brains had to significantly learn during

the organism’s lifetime did the goal of avoiding overfitting and

increasing generalization become adaptive. The OBH does not

even contradict some hypotheses about dreams, instead adding

new dimensions. Examples of this include the hypothesis that

dreams are a test-bed for strengthening the brain’s ability to

generate mental imagery during wake, explaining the complexi-

fication of dreams from childhood to adulthood.120 Another

example of a novel hypothesis that does not stand in opposition

to the OBH is that dreams are for defending neural real estate163

(although this may be contradicted by non-wake activation pro-

files during dreaming). As a hypothesis, it shares similar back-

ground concerns with that of the free energy approach to
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dreaming,116 although without assuming that dreams are for

testing the predictions of a generative self-model’s priors or

that dreams should become less surprising over time as input-

less prediction error is minimized. There also appears to be

possible room for overlap between SHY, the OBH, and the

reverse learning hypothesis of dreaming (see ‘‘Dreams are for se-

lective forgetting’’). Overall the OBH should be viewed as flexible

and an umbrella hypothesis with many antecedents; after all, it is

merely the formal proposal that the corrupted, warped, and sto-

chastic nature of sensory input in dreams serves to improve per-

formance on the brain’s daily tasks, motivated by the phenome-

nology of dreams and common practices in deep learning.

It is also worth noting that within the OBH dream’s role in

improving generalization may include related things like

combating ‘‘catastrophic forgetting,’’ which is a problem faced

by DNNs that try to train on multiple tasks, and which can also

be prevented or alleviated by methods like dropout or more

complicated techniques like elastic weight consolidation.164

Recent research shows that stimuli created from stimulation of

a network’s top-down connections (which are, according to

the OBH, similar to dreams), can indeed help avoid catastrophic

forgetting.165 So while issues like catastrophic forgetting (the

complete unlearning of a task while learning another) is not

well documented in humans, it may be that individual brain mod-

ules or networks face some lesser form of it, and dreams can be

conceptualized as a form of regularization that may ameliorate

several aspects of common learning failures simultaneously.

For example, beyond the improvements in both in- and out-of-

distribution generalization, the stochasticity and spareness

evinced in the phenomenology of dreams can also likely improve

things like security in response to adversarial attacks and overall

computational efficiency, as stochastic stimulation has these ef-

fects in DNNs.37 Perhaps the most distinguishing aspect of the

OBH is that it takes the phenomenology of dreams seriously, in

that they are sparse, hallucinogenic, and narrative in the sense

of containing fabulist and unusual events (and while the relation-

ship between phenomenology and neural activity remains un-

known, contemporary theories exist that attempt to map the

relationship).166 The OBH emphasizes that it is precisely

because of the departure from waking life that dreams evolved.

According to this hypothesis, dreams are not epiphenomena,

either in the sense of neutral evolution but also in the sense of

not being an expression of some other background process,

such as patterns of activity and associated experiences merely

brought about by some other processing integrating new mem-

ories.54 Rather, the point of dreams is the dreams themselves,

because they provide departures away from the statistically

biased input of an animal’s daily life, which can assist and there-

fore increase performance. It may seem paradoxical, but a

dream of flyingmay actually help you keep your balance running.

The evidence for this possibility comes from common methods

in deep learning that improve generalization, such as dropout,126

domain randomization,144 and the use of input data created by

stochastic stimulation of generative models,148 which together

bear striking similarities to the properties of dreams.

TheOBHmakes several predictions that are useful for both the

field of neuroscience and the field of deep learning. These

include predictions on the neurophysiological level, as well as

behavioral, and even within the field of deep learning. For
instance, the prediction that inputs with dream-like properties

(i.e., adhering to dream phenomenology) will assist with overfit-

ting in DNNs. Behaviorally, overfitting might be induced in sub-

jects via repetitive training on an undersampled task, and the

benefit of dreaming might be directly measured. There is also

the possibility of dream substitutions, wherein artificial dream-

like stimuli might help improve generalization and therefore per-

formance in sleep-deprived individuals.

Finally, it is worth taking the idea of dream substitutions seri-

ously enough to consider whether fictions, like novels or films,

act as artificial dreams, accomplishing at least some of the

same function. Within evolutionary psychology, the attempt to

ground aspects of human behavior in evolutionary theory, there

has been long-standing confusion with regard to human interest

in fictions, since on their surface fictions have no utility. They are,

after all, explicitly false information. Therefore it has been

thought that fictions are either demonstrations of cognitive

fitness in order to influence mate choice,167 or can simply be

reduced to the equivalent of ‘‘cheesecake’’ — gratifying to

consume but without benefit. Proponents of this view have

even gone so far as to describe the arts as a ‘‘pleasure technol-

ogy.’’168 Some researchers have proposed benefits to fiction

consumption, like improving theory of mind169 or helping to ab-

stract social norms.170 The OBH suggests fictions, and perhaps

the arts in general, may actually have a deeper underlying cogni-

tive utility in the form of improving generalization and preventing

overfitting by acting as artificial dreams.
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