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Abstract: African swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which
is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and
structurally complex virus with a large genome harboring more than 150 genes. ASFV gene QP509L
has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for ef-
ficient virus replication. Here, we report the development of a recombinant virus, ASFV-G-AQP509L,
having deleted the QP509L gene in the highly virulent field isolate ASFV Georgia 2010 (ASFV-G).
It is shown that ASFV-G-AQP509L replicates in primary swine macrophage cultures as efficiently
as the parental virus ASFV-G. In addition, the experimental inoculation of pigs with 10> HADs, by
the intramuscular route produced a slightly protracted but lethal clinical disease when compared to
that of animals inoculated with virulent parental ASFV-G. Viremia titers in animals infected with
ASFV-G-AQP509L also had slightly protracted kinetics of presentation. Therefore, ASFV gene QP509L
is not critical for the processes of virus replication in swine macrophages, nor is it clearly involved in
virus replication and virulence in domestic pigs.
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1. Introduction

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF),
an often-lethal disease that affects both wild and domestic pigs [1]. ASF is currently
causing a pandemic affecting Africa, Eurasia, and more recently the Hispaniola Island in
the Caribbean region, severely damaging swine production. Recently, the first commercial
vaccine was approved for use in Vietnam [1]; however, it is not available in other countries.
In countries without an approved vaccine, disease control is limited to the isolation of the
outbreak and culling all infected animals in the affected geographical area [2].

ASFV is a structurally complex virus possessing a large DNA genome (180-190 Kb)
encoding for more than 150 genes [3]. Many of these genes’ functions have not been
predicted or defined. The deletion of individual virulence-associated ASFV genes led to
the development of recombinant attenuated virus strains that offer protection against ASF
when challenged with the homologous genetic backbone, resulting in several experimental
live attenuated vaccine candidates [1,4-10]. Similarly, detecting and characterizing viral
genes involved in the process of virus replication may lead to the possible development
of therapeutic tools to control or abort virus infection. The ASFV QP509L gene has been
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demonstrated to have RNA helicase activity [11], and siRNA inhibition of the gene tran-
scription provokes a reduction of over 99% in virus yields. In addition, the deletion of the
QP509L gene from the genome of highly virulent field isolate ASFV CN/GS/2018 produced
partial attenuation of the virus virulence in domestic pigs [12]. The additional deletion of
an adjacent gene, QP383R, produced a complete attenuation of the CN/GS/2018 strain [12].

Here, we show that ASFV-G-AQP509L, a recombinant virus harboring the deletion
of the QP509L gene in the genome of the highly virulent Georgia 2010 isolate, efficiently
replicates in primary swine macrophage and domestic pigs. The animals infected with
ASFV-G-AQP509L showed a slightly protracted but still lethal clinical disease when com-
pared to that of animals inoculated with virulent parental ASFV-G. Therefore, ASFV gene
QP509L is not critical for the processes of virus replication in swine macrophages, nor is it
involved in virus replication and virulence in domestic pigs.

2. Materials and Methods
2.1. Viruses and Cells

Primary swine macrophage cultures were produced from blood macrophages ob-
tained as previously described [13]. Cell culture plates were seeded at a density of 5 x 10°
macrophages per mL. ASFV Georgia (ASFV-G) was a field isolate kindly provided by Dr.
Nino Vepkhvadze from the Laboratory of the Ministry of Agriculture (LMA) in Tbilisi,
Republic of Georgia [14]. ASFV-G-AQP509L and ASFV g comparative growth curves
were performed on primary swine macrophages using six-well plates as previously de-
scribed [14]. The plates were seeded with a virus MOI of 0.01 HADs( (hemadsorbing doses),
and sample points were taken at 2, 24, 48, 72, and 96 h. The cells were frozen at <—70
°C, thawed, and the lysates titrated in primary swine macrophage cell cultures in 96-well
plates. The presence of the virus in infected cells was assessed by hemadsorption (HA),
and the virus titers were calculated as previously described [15].

2.2. Detection of QP509L Transcription

A real-time PCR assay (qPCR) was used to evaluate the transcriptional profile of the
QP509L gene during the infection of ASFV g in cultures of porcine macrophages, as previously
described [16]. The detection of the expression of the CP204L (p30) and B646L (p72) was used
as early and late transcribed reference genes. Briefly, cell cultures of porcine macrophages
were infected with a stock of ASFV g using an MOI of 1. RNA extractions, using an RNeasy
Kit (QIAGEN, Hilden, Germany), were conducted at 0, 4, 6, 8, and 24 h post-infection. All
extractions were treated with 2 units of DNase I (BioLabs, San Diego, CA, USA), then puri-
fied using the Monarch® RNA Cleanup Kit (New England BioLabs, Inc., Ipswich, MA, USA).
In total, 1 ug of RNA was used to produce cDNA using qScript cDNA SuperMix (Quanta bio,
Beverly, MA, USA) which was used for the gPCR. Primers and probes for the detection of
the QP509L gene were designed using the ASFV Georgia 2007 /1 strain (GenBank Accession
#NC_044959.2). Forward Primer: 5-CACCAAGGCGATTCAAATACAG-3/, reverse primer:
5-TCGTACTCTTTGCTCGTCATG-3/, and probe: 5-FAM-TAACATTGCTCCTGCCCCACCT-
MGBNFQ-3'. Primers and probes for the detection of p72 gene: forward 50-CTTCGGC
GAGCGCTTTATCAC-30, reverse: 5'-GGAAATTCATTCACCAAATCCTT-3/, and probe: 5'-
FAM-CGATGCAAGCTTTAT -MGB NFQ-3'. Primers and probes for the detection of the
CP204L (p30) gene: forward 5-GACGGAATCCTCAGCATCTTC-3/, reverse: 5'-CAGCTTGG
AGTCTTTAGGTACC-3, and probe: 5'-FAM-TGTTTGAGCAAGAGCCCTCATCGG-MGBNFQ-
3’. Primers and probes for the detection of the B-actin gene: forward 5-GACCTGACCGA
CTACCTCATG-3, reverse: 5'-TCTCCTTGATGTCCCGCAC-3/, and probe: 5'-FAM-CTACAGC
TTCACCACCACGGC-MGBNFQ-3'. All qPCRs were conducted using the TagMan Universal
PCR Master Mix (Applied Biosystems, Waltham, MA, USA) using the following amplification
conditions: one step at 55 °C for 2 min, followed by one denaturation step at 95 °C for 10 min,
then 40 cycles of denaturation at 95 °C for 15 s, and annealing/extension at 65 °C for 1 min.



Viruses 2022, 14, 2548

3of 14

2.3. Construction of the ASFV QP509L Deletion Mutant

A recombinant mutant virus was developed to delete the QP509L gene, which overlaps
on both sides with other ASFV genes. The QP383R gene overlaps the N-terminus of the
QP509L gene by 11 nucleotides. Accordingly, the recombinant vector was designed to
conserve these 11 nucleotides along with the 200 bp promoter region of the QP385R gene to
preserve the functional integrity of the QP383R gene. The QP509L C-terminus also overlaps
the N-terminus of the Q706L gene by 43 nucleotides; therefore, the recombination vector
was designed to leave these 43 nucleotides and a 200 bp promoter region intact for the
Q706L gene, preserving 243 nucleotides at the C-terminus of the QP509L gene. In order
not to interfere with the overlapping genes or their promoter regions, the resulting virus
only deleted the central 1075 nucleotides of the QP509L gene. ASFV-G-AQP509L was
the result of the homologous recombination of the parental virus (ASFV-G) genome and
the recombination transfer vector p72mCherryAQP509L, following procedures previously
described [9]. p72mCherryAQP509L encompasses the ASFV genomic regions adjacent to
the QP509L gene: the left region is located between the genomic positions 159,245-160,245,
while the right region is located between the genomic positions 161,321-162,321. As already
explained, the construct will create a 1075-nucleotide deletion between the nucleotide
positions 160,246-161,320. The p72mCherryAQP509L transfer vector also has a reporter
gene cassette containing the mCherry fluorescent protein (mCherry) gene under the control
of the ASFV p72 late gene promoter [17]. The p72mCherry AQP509L vector was obtained
by DNA synthesis (Epoch Life Sciences, Sugar Land, TX, USA). The recombinant ASFV-
G-AQP509L was purified by consecutive limiting dilution steps in 96-well plates with
individual wells observed and selected based on mCherry detection in individual wells
and full-length sequenced using next-generation sequencing (NGS).

2.4. Next-Generation Sequencing of ASFV

Virus DNA was extracted from infected macrophage cultures presenting CPE higher
than 90%. The nucleus and cytoplasmic fractions were separated using the nuclear extraction
kit with the viral DNA isolated from the cytoplasmic fraction, following the manufacturer’s
protocol (Active Motif cat# 40,010). ASFV-infected cells were treated with the hypotonic
buffer on ice until the cell membrane was dissolved. The nucleus fraction was separated by
centrifugation, the cytoplasmic fraction was collected, and DNA was extracted by adding
10% (v/v) of 3 M NaOAc (Sigma-Aldrich 71,196, St. Louis, MO, USA) and an equal volume
of phenol:chloroform:isoamyl alcohol (25:24:1) with a pH of 6.5-6.9 (Sigma-Aldrich P3803-
100 mL, St. Louis, MO, USA). The preparation was centrifuged for maximum speed in a
tabletop centrifuge. The aqueous layer was then ethanol precipitated using 2 volumes of 100%
ethanol, washed with the same volume of 70% ethanol, and dried. The resulting DNA pellet
was then reconstituted in sterile water. We then used this DNA library for NGS sequencing,
using a Nextera XT kit in the NextSeq550 (Illumina, San Diego, CA, USA) following the
manufacturer’s protocol. Sequence analysis was performed using CLC Genomics Workbench
software (CLCBio, Waltham, MA, USA). Briefly, 891,404 reads mapped to ASFV g and a
coverage map shows a deletion in QP509L (Supplementary Figure S1).

2.5. Evaluation of ASFV-G-AQP509L Virulence in Domestic Pigs

The virulence of the ASFV-G-AQP509L was evaluated in commercial breed pigs. Five
animals (weighting approximately 35-40 kg) were intramuscularly (IM) inoculated with 10
HADs of ASFV-G-AQP509L while, as control, a similar group of animals was inoculated
with 102 HADs, of ASFV-G. The appearance of clinical signs (anorexia, depression, fever,
purple skin discoloration, staggering gait, diarrhea, and cough) and body temperature were
monitored daily during the experiment. Blood samples were scheduled to be obtained at
0,4,7,11, 14, 21, and 28 days post-inoculation (pi). Animal experiments were performed
under biosafety level 3 conditions in the animal facilities at the Plum Island Animal Disease
Center, following a strict protocol approved by the Institutional Animal Care and Use
Committee (number 225.06-19-R, approved 9 October 2019).
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3. Results and Discussion
3.1. Evolution of the RNA Helicase QP509L

Along with Q706L, QP509L is one of the two RNA helicases described in ASFV [11].
Previously, others have shown the conservation of these two helicases between virulent
and non-virulent isolates [11]. To acquire more insights into the evolution of the QP509L
gene, we conducted a systematic and comprehensive evolutionary analysis, as previously
described [18]. Firstly, we established a model for the analyses. For this purpose, using
the QP590L gene from the ASFV Georgia 2007 /1 isolate, we conducted a blast analysis
to obtain a group of isolates representing the genetic diversity of this gene in nature: a
total of 12 ASFV isolates, representing genetic groups I, II, III, VII, VIII, IX, X, and XX. To
assess conservation among isolates, we conducted a pairwise analysis using the p-distance
model and 100 bootstraps to support statistical confidence (p-0.05) in the analysis [19].
Overall, we found an identity between 94.49-99.86% (~96.43%) and 95.87-99.80% (97.61%)
at the nucleotide and amino acid levels, respectively, showing the degree of conservation
among the natural isolates. A graphic comparison of the amino acid sequences among
these isolates is presented in Figure 1. No differences at the nucleotide and amino acid
levels were seen among the viral isolates belonging to the pandemic Eurasian lineage
(genotype II), indicating that QP509L is not promoting the divergence of this lineage during
the pandemic.

Then, to identify the existence of potential phylogenetic groups, we conducted a phy-
logenetic analysis using the maximum likelihood method and the general time reversible
model. Based on this analysis, we are reporting the existence of three phylogenetic groups
(Figure 2A). No phylogenetic relationship was found among the previously predicted
genetic groups using the p72 gene [20], showing the complex evolutionary dynamics
among ASFV isolates in nature. Using the single-likelihood ancestor counting algorithm
(SLAC) [21], we determined global rates of AN /dS = 0.130 along QP509L, indicating that
purifying selection is the main force shaping the evolution of this gene in nature, a pattern
consistent with our previous analyses evaluating other genes directly implicated in the
replication of ASFV (A104R and E165R) [22,23]. This pattern of purifying the selection is
consistent with the significant—and predicted—increased synonymous substitution rate
(dS) in comparison with the nonsynonymous substitution rate (dN) (Figure 2B), indicat-
ing that synonymous mutations in the QP509L gene accumulate seven times faster than
nonsynonymous mutations in nature.

No evidence of positive selection was predicted when sequences were analyzed by
the algorithms fixed effects likelihood (FEL) [24] as well as the mixed effects model of
evolution (MEME) [25], suggesting that different amino acid substitutions predicted among
ASFV isolates (Figure 1) do not produce a significant impact on the phenotype of the
QP509L protein. This fact is consistent with a previous publication indicating the high
conservation of this protein between the virulent and attenuated isolates of ASFV [11].
Instead, FEL detected a total of 47 residues along the QP509L protein evolving under
purifying selection, suggesting the potential relevance of these residues in the function of
this protein (Figure 2C). Interestingly, 37 out of the 47 residues predicted under purifying
selection appeared along the conserved SSL2 region associated with the functions of
transcription, replication, recombination, and repair. The specific location of these residues
is shown in Figure 2C. Conversely, the rest of the residues predicted under purifying
selection (residues 8§, 26, 33, 40, 41, 60, 69, 471, 476, and 477) were not associated with any
specific functional region. In light of these results, we suggest that multiple identified
residues under purifying selection may be used as a framework for future studies to identify
the relevance of specific residues in the function of the QP509L protein.
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Figure 1. Evolution of QP509L protein among ASFV isolates. Amino acid alignment produced by
the software Jalview version 2.11.1.7 showing the diversity of QP509L protein among a group of
12 representative ASFV isolates. Conservation plot scores reflect the nature of the change in specific
sites. High scores are associated with changes with similar biological properties.
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Figure 2. Evolutionary dynamics of the QP509L gene. (A) Phylogenetic analysis conducted by
the maximum likelihood method, showing the diversity of the QP509L gene of ASFV in the field.
Based on the cluster distribution, isolates were classified into three main groups (I, II, III). Numbers
in the parentheses show the genetic lineage classification of different ASFV isolates based on the
P72 classification. Numbers above internal branches represent bootstrap values (1000 repetitions).
Phylogenetic analysis was conducted using the software MEGA 10.2.5. (B) Comparison between
synonymous (dS) and nonsynonymous (dN) substitutions rates during the evolution of the QP509L
gene. Significant differences between means at dS and dN were determined by the unpaired ¢-test.
(C) Graphic representation of the ratio dN—dS at specific codon sites in the QP509L gene of ASFV.
The region highlighted in grey represents the location of the functional region SSL2, while red
asterisks represent codon sites evolving under purifying selection. Specific sites under purifying
selection at the SSL2 region include: 117, 132, 135, 175, 185, 187, 193, 209, 215, 224, 233, 234, 241, 242,
246, 250, 255, 258, 264, 265, 269, 283, 285, 287, 294, 304, 312, 318, 345, 347, 349, 365, 373, 394, 428, 443,
and 459. Analysis was conducted using the evolutionary algorithms FEL considering a cutoff value
of p = 0.1. (D) Phylogenetic analyses showing topology incongruences among different segments
where distinct breakpoints were inferred by GARD on the QP509L gene. Squares of different colors
represent phylogenetic groups identified in Figure 2A. Numbers above internal branches represent
bootstrap values (1000 repetitions). Phylogenetic analysis was conducted as described in Figure 2A.

Finally, evidence of recombination was detected using the genetic algorithm for recom-
bination detection (GARD) [21]. Three breakpoints were inferred by GARD at nucleotides
610, 722, and 1019 with an average model support of 0.355, 0.851, and 0.766, respectively.
These inferences were supported by an improvement in the c-AIC = 6475.6, supporting
the existence of potential breakpoints when compared with the score AIC-c = 6562.2 of the
models, assuming no recombination. These inferences were consistent with the phyloge-
netic incongruences produced at multiple segments along the QP509L gene (Figure 2D).
This result was consistent with our previous analysis conducted on helicase A859L [26],
indicating the relevant role of recombination during the evolution of ASFV.

3.2. Detection of QP509L Transcription

Previous transcription analysis performed in Vero cells infected with the ASFV BA71V
strain showed that the QP509L gene begins to be transcribed at 4 hours post-infection
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(pi) [11]. To determine the kinetics of the QP509L gene transcription with the field isolate
ASFV-G, a time course experiment was performed to analyze the kinetics of RNA transcrip-
tion in primary swine macrophages. Swine macrophages were infected (MOI = 1) and cell
samples were taken at different times pi. The presence of the QP509L RNA was evaluated
by RT-PCR, as described in the Material and Methods section. The patterns of transcription
of the well-characterized ASFV early protein p30 (CP204L) and the late protein p72 (B646L)
were used as a reference for early and late transcription profiles, respectively. The kinetics
of transcription of the QP509L gene resembled that of the B646L gene, suggesting that it is
transcribed as a late protein (Figure 3).

151

184
21+
24-

s 27

T value

T T T

T
0 4 6 8 24
Hours post infection

BActin p30 p72 QP509L

Figure 3. Expression profile of the QP509L gene of ASFV during in vitro infection of porcine
macrophages. Reverse transcription followed by qPCR was used to evaluate the expression profile of
the QP509L gene during in vitro infection at different time points, up to 24 h. As a reference for this
analysis, we used qPCRs to specifically detect the expression of genes encoding ASFV proteins, p30
(early expression) and p72 (late expression). Additionally, the 3-Actin gene was used as a control to
evaluate the quality and levels of RNA during the infection at different time points.

3.3. Development of the ASFV-G-AQP509L Deletion Mutant

The nucleotide and amino acid conservation of the QP509L gene across ASFV isolates,
together with its experimentally tested RNA helicase function, would indicate that this gene
may play an important role in the processes concerning virus replication and virulence in
pigs. To study the potential function of the QP509L gene in both processes, a recombinant
virus, named ASFV-G-AQP509L, was designed by deleting the QP509L gene from the
genome of the highly virulent ASFV Georgia 2010 isolate (ASFV-G). The QP509L gene was
substituted with the p72mCherry AQP509L cassette by homologous recombination with the
genome of the ASFV-G [17]. The ASFV-G-AQP509L genome has a deletion of 1075-bp, (be-
tween nucleotide positions 160,246 and 161,320), and that area of the genome was replaced
by a 1226-bp cassette containing the p72mCherry construct (Figure 4). The recombinant
virus was purified after several steps of limiting dilution on primary swine macrophage
cell cultures.

The precision of the genomic modifications introduced in the ASFV-G-AQP509L
genome was further assessed by analyzing the full genome sequence using NGS. The ob-
tained sequence showed the presence of the predicted 1075 nucleotide deletion, as well
as the insertion of 1226 nucleotides corresponding to the p72-mCherry cassette insertion.
No other significant genomic changes were identified in the ASFV-G-AQP509L genome.
The NGS analysis also showed the absence of the parental ASFV g genome, excluding a
probable contaminant in the ASFV-G-AQP509L stock.
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Figure 4. Development of ASFV-G-AQP509L. The recombinant vector composed of the p72 promoter
and an mCherry cassette, as well as the gene positions, are indicated. The homologous arms were
designed to have flanking ends on both sides of the deletion/insertion cassette. The nucleotide
positions of the deleted area are shown by the dashed lines. The resulting ASFV-G-AQP509L virus
is shown on the bottom, with the orange arrow representing the N-terminal portion of QP509L
that remains, and the orange block representing the C-terminal portion of the QP509L that remains
without a promotor.

3.4. Replication of ASFV-G-AQP509L in Primary Swine Macrophages

To evaluate the effect of deleting the QP509L gene in the process of ASFV g replication,
the replication ability of ASFV-G-AQP509L in primary swine macrophages was assessed
and compared to that of the parental virus. A multistep growth curve was performed
in swine macrophage cultures. Cell cultures were infected (MOI of 0.01) with either
ASFV-G-AQP509L or parental ASFV g, and the virus yields assessed at different times
post-infection (pi) (2, 24, 48, 72, and 96 h pi). The analysis of the results indicated that
ASFV-G-AQP509L showed kinetics of replication similar to that of ASFV g (Figure 5),
demonstrating that the deletion of the QP509L gene does not affect the replicative ability of
ASFV in swine macrophages.

This result appears to contradict those showing that the siRNA treatment of Vero
cells specifically affecting QP509L transcription severely affects replication of the ASFV
strain BA71V [12]. As mentioned in other cases where the differences in the effects of gene
deletion are studied using models based on the use of ASFV adapted to grow in cell lines,
these discrepancies could be attributed to the specificities of the genome of the virus used
in each experimental model. The process of adaptation of the BA71V to replicate in Vero
cells involved a significant deletion of genomic areas, affecting the left and right variable
regions of the virus genome and causing the loss of 11 genes belonging to the MGF360/505
gene families [27]. Those drastic genomic changes may lead to the elimination of virus
genes which could potentially be involved in the partial or complete substitution of the
function of the gene under study. On the other hand, ASFV g is a field isolate that presents
undetectable significant genomic alteration. Therefore, the QP509L gene function could be
exercised by any other gene potentially possessing a vicariant function.
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Figure 5. In vitro growth kinetics in primary swine macrophage cell cultures for ASFV-G-AQP509L
and parental ASFV g (MOI = 0.01). Samples were taken from three independent experiments at
the indicated time points and titrated in swine macrophages. The data represent the means and
standard deviations of three replicas. The sensitivity using this methodology for detecting the virus is
>log10 1.8 HADs5g/mL. Unpaired t-test with Welch correction using the two-stage step-up (Benjamini,
Krieger, and Yekutieli) method was conducted to assess statistical differences in viral yields between
ASFV g and ASFV-G-AQP509L at different hours post-infection. No significant differences between
the viruses were found at any of the times tested post-infection.

3.5. Assessment of ASFV-G-AQP509L Virulence in Swine

To evaluate the potential role of the QP509L gene in the processes of virus replication
during infection, as well as in disease production in the natural host, ASFV-G-AQP509L
was used to experimentally infect domestic pigs. The experiment involved two groups of
five animals weighing 35-40 kg that were infected intramuscularly (IM) with 102 HADsj
of either ASFV-G-AQP509L or the parental ASFV-G. The presentation of clinical signs
associated with ASF was monitored during a 28-day observational period. As expected,
all animals receiving the virulent ASFV g showed disease onset by day 4-5 pi with an
increase in body temperature of over 40 °C. These animals quickly evolved to a severe
form of clinical disease (depression, anorexia, staggering gait, diarrhea, and purple skin
discoloration) with all animals needing to be euthanized by day 6-7 pi (Figure 6).

The group of animals inoculated with ASFV-G-AQP509L also showed a lethal form of
the disease, although with a slightly protracted clinical presentation in some of the animals
(Figure 6). Three of the animals presented disease kinetics indistinguishable from animals
inoculated with the parental virus, showing a sharp increase in body temperature by day
4-5 pi, followed by a full presentation of clinical disease with all animals needing to be
euthanized on day 6-7 pi. Another animal had an onset of disease by day 5 pi, presenting a
slight rise in body temperature, which evolved to a full clinical disease on the subsequent
day, and it was euthanized by day 8 pi. The fifth animal remained clinically normal until
day 9 pi when it presented a sharp rise in body temperature and a quick evolution of the
disease, being euthanized on day 9 pi. Regardless of the existence of small differences in
the time of euthanasia between the two groups of animals, it is clear that there are no strong
differences in the evolution of the disease in animals inoculated with ASFV-G-AQP509L
when compared with those infected with the parental virus. Therefore, the deletion of
the QP509L gene in the genome of ASFV g did not considerably influence its virulence in
domestic pigs.
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Figure 6. Evolution of body temperature and lethality in animals (five animals/group with each
animal represented by a different shape) IM infected with 10> HADs of either ASFV-G-AQP509L
or parental ASFV-G. After analyzing by both the Long-rank (Mantel-cox) and the Gehan-Breslow-
Wilcoxon tests, no significant statistical differences were predicted between the different groups
regarding their temperatures or lethality.

The ability of ASFV-G-AQP509L to replicate during the experimental infection in pigs
was assessed by comparing the kinetics of viremia titers to those observed in the ASFV
g-infected animals (Figure 7). Animals inoculated with the virulent parental ASFV g had
viremia titers ranging from 107-1083 HADsy/mL by day 4 pi in all animals and continued
at that level until the day they were euthanized. In the ASFV-G-AQP509L-inoculated
animals, viremia patterns followed the evolution of clinical disease, with four animals
having viremia kinetics indistinguishable from animals inoculated with the parental virus
except for the animal presenting a protracted form of the clinical disease. That animal
presented low viremia titers (lower than 10% HADsp/mL) until day 7 pi, with a robust
increase by day 10 pi (around 107 HADsp/mL), when the animal was euthanized. Therefore,
viremia titers reproduced the differences in the kinetics of the presentation of the clinical
signs of disease in animals inoculated with ASFV-G-AQP509L and ASFV-G.
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Figure 7. Viremia titers were detected in pigs IM inoculated with 102 HADs of either ASFV-G-
AQP509L or ASFV-G. Each curve with a different shape represents individual animal titers. The sensi-
tivity of virus detection: >10g101'8 TCIDsp /mL. No significant differences in the evolution of viremia
were found between groups when analyzed by the unpaired t-test using the two-stage step-up
(Benjamin, Krieger, and Yekutieli) method.

This report presents results that support the QP509L gene as a non-essential gene for
the first time. When QP509L is deleted, virus replication in macrophage cell cultures is
not affected. As discussed earlier, the results that were previously reported in the ASFV
BA71V strain are contradictory to the results reported here. In that report, siRNA treatment
decreased the transcription of the QP509L gene, severely affecting virus replication [23].
As in the case of other ASFV genes, where results were obtained using ASFV strains
adapted to grow in cell lines, differences with results obtained using field isolates may be
attributed to the specificities of the genome of the strains used. The process of adaptation of
the BA71V gene to replicate in Vero cells involved a significant deletion of genomic regions
affecting the left and right variable regions of the virus genome and causing the loss of
11 genes belonging to the MGF360/505 [27]. Perhaps these additional modifications in
the genomic background of the parental ASFV BA71V may impede a substitution of the
QP509L gene function by other virus genes, as may happen in parental ASFV-G.

Here, we also showed that the deletion of the QP509L gene when tested in domestic
swine does not affect virus replication during infection and does not affect the level of
virulence of the ASFV-G. Additional NGS analysis of the virus obtained from the blood
of euthanized animals showed that only ASFV-G-AQP509L was present, eliminating any
possibility that the disease was caused by the hypothetical presence of any residual ASFV g
in the ASFV-G-AQP509L stock. Interestingly, in the highly virulent ASFV CN/GS/2018
strain, a recombinant virus, the deletion of the QP509L gene was reported to be partly
attenuated in swine when inoculated IM at a dose of 102 HAD5 [12]. It is not clear at this
point if differences between these results may be produced by the inherent characteristics
of the parental virus strains, although both are derivatives of the ASF Georgia 2007 strain.

Understanding the role of individual proteins in ASFV is critical, as the deletion of
individual proteins has led to the discovery of experimental vaccines [2] such as the first
approved commercial vaccine currently in use in Vietnam [1,6,8]. However, understanding
what genes resulted in a slight reduction in virus virulence is also important, as combining
gene deletions has resulted in decreased virus virulence. For example, the additional
deletion of the UK gene added to either a single gene deletion mutant that contains 9GL [9]
or a single deletion mutant that contains CD2 [28] had the result of complete attenuation in
swine, while the UK or CD2 individual gene deletions, similar to QP509L, were not able to
attenuate ASFV-G. Another example occurred with the MGF (multi-gene-family) genes,
wherein individual family members can be deleted without affecting ASFV pathogene-
sis [29-31] or only producing partial attenuation [32]. However, larger deletions in this
region have had further attenuation [5,33], or, in some cases, the complete loss of ASFV’s
ability to replicate in swine [14]. In other cases, deletions could allow the growth of contin-
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uous cell cultures [34]. These results highlight the difficulty in choosing genetic targets for
deletion to attenuate current or potential future emerging strains of ASFV. Experimentally
testing the effect of gene deletion in animals is the only method to actually evaluate the
function of a particular gene in the process of virulence in pigs [1].

Additional deletions could be used in next-generation live attenuated vaccines or as a
serological DIVA target that would allow for differentiation between an infected animal
or a vaccinated animal; however, adding serological markers to current vaccines has only
reduced vaccine efficacy [35]. Therefore, understanding which genes could possibly be
deleted from the ASFV g genome is critical information, as the essentiality of some genes
has varied between isolates. For example, EP152R [36] from the ASFV g isolate could be
deleted [37] but not in previously tested isolates [38]. Identifying genetic deletions in any
current or future circulating ASFV strains is critical to understand, as this information will
be necessary for future rationally designed ASF vaccines in response to emerging or new
strains of ASFV.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/v14112548/s1, Figure S1: Coverage map.
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