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Abstract: Melanoma is a lethal type of skin cancer, unless it is diagnosed early. Formalin-fixed,
paraffin-embedded (FFPE) tissue is a valuable source for molecular assays after diagnostic
examination, but isolated nucleic acids often suffer from degradation. Here, for the first time,
we examine primary melanomas from Greek patients, using whole exome sequencing, so as to
derive their mutational profile. Application of a bioinformatic framework revealed a total of 10,030
somatic mutations. Regarding the genes containing putative protein-altering mutations, 73 were
common in at least three patients. Sixty-five of these 73 top common genes have been previously
identified in melanoma cases. Biological processes related to melanoma were affected by varied genes
in each patient, suggesting differences in the components of a pathway possibly contributing to
pathogenesis. We performed a multi-level analysis highlighting a short list of candidate genes with
a probable causative role in melanoma.
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1. Introduction

Cutaneous melanoma (CM) is a malignant tumour of epidermal melanocytes, the cells producing
melanin located in the basal layer of the epidermis. Melanocytes originate from the neural crest,
a transient embryonic structure consisting of highly migratory pluripotent cells, which will give rise
to a number of cell types including melanocytes [1]. Although CM accounts for less than 5% of skin
cancer incidence, it is responsible for the majority of deaths related to skin cancer due to its highly
aggressive nature [2].

During the last decades, a continuous increase of CM frequency rates has been observed in
Caucasian populations worldwide, making CM the most rapidly increasing cancer. CM incidence
varies significantly within populations from different geographic regions, with Australia and New
Zealand presenting the highest incidence rates worldwide. In Europe, the rates are lower, but still
showed a three-fold to five-fold increase over the last decades [3]. CM occurrence differs a lot in
European countries, with Switzerland showing the highest rate and Greece belonging to the group of
low-incidence countries [4,5].

CM development is a complex, multi-factorial process involving the interplay of genetic and
environmental risk factors. The most well-established environmental risk factor is the exposure to

Cancers 2018, 10, 96; doi:10.3390/cancers10040096 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0003-4631-5246
https://orcid.org/0000-0003-2860-399X
https://orcid.org/0000-0003-2078-0844
http://dx.doi.org/10.3390/cancers10\num [minimum-integer-digits = 2]{4}\num [minimum-integer-digits = 4]{96}
http://www.mdpi.com/journal/cancers
http://www.mdpi.com/2072-6694/10/4/96?type=check_update&version=1


Cancers 2018, 10, 96 2 of 13

ultraviolet radiation (UVR) [2]. Regarding the genetic background, several susceptibility genes have
been identified, including highly penetrative genes such as CDKN2A, the first familial melanoma gene
identified [6,7] which is found mutated in approximately 40% of melanoma high-density families.
Other less frequent mutations have been identified in genes of high or more moderate penetration,
including CDK4 and the more recently described BAP1, TERT, POT1, ACD, TERF2IP and MITF [8].
Genome-wide association studies (GWASs) have also revealed numerous recurring single nucleotide
polymorphisms (SNPs) associated with melanoma risk [9–12]. Further characterisation of the genetic
risk factors in different patient populations could help develop more efficient prevention strategies
and improve strategies for early diagnosis.

In the last decade, important steps towards characterising the somatic mutational landscape
of melanoma have been achieved [13,14]. Identifying causative melanoma mutations is of great
importance in order to understand the molecular basis of melanoma genesis and progression. Towards
this end, next generation sequencing (NGS) technologies are a valuable tool and have been exploited
in a number of recent studies, comparing sequencing data from melanoma tissue and a matched
normal control in order to identify somatic mutations [13,15–19]. In such approaches, discriminating
driver mutations from passenger ones remains a challenge from both the experimental as well as the
bioinformatics point of view [20–24]. Especially in the case of melanoma, which is one of the cancers
with the highest mutation burden and heterogeneity, this problem is even more difficult to address,
due to the confounding impact of melanoma’s high mutation rate.

The majority of studies utilising NGS for the characterisation of melanoma genome are using
fresh-frozen tissue samples [25]. Nevertheless, formalin-fixed, paraffin-embedded (FFPE) tissue is the
most common specimen available for molecular assays on tissue after diagnostic histopathological
examination, and a number of archived samples are available for retrospective studies. The major
limitation of using FFPE samples in molecular biology analyses is that nucleic acids isolated from FFPE
tissue often suffer from degradation and chemical modifications. Particularly in the case of primary
melanomas, which generally have a small size at the time of diagnosis, most of the tissue is used for
diagnostic evaluation, rendering an additional issue of tissue-availability. However, several protocols
have been developed to improve the isolation of DNA/RNA from FFPE specimens [26,27] as well as
specialised library construction methods allowing NGS-based analyses starting from nucleic acids
of limited quantity and poor quality [28]. Studies evaluating the quality of genomic variant calling
and/or gene expression quantification by NGS, based on nucleic acids isolated from FFPE specimens
as compared to fresh–frozen tissue, revealed that this approach, although challenging, can produce
accurate data [28–32].

In this work, we aimed to exploit FFPE samples for the identification of somatic mutations and
germ-line variants in patients with primary melanomas by exome sequencing. Regarding the genetic
factors involved in melanoma susceptibility, a number of studies concerning melanoma patients from
the Greek population have been reported [12,33]. Still, the characterisation of melanoma somatic
mutations in Greek patients has been limited and, to the best of our knowledge, this is the first
attempt to characterise the somatic mutational profile at the exome level of primary melanoma patients
in Greece.

2. Results

2.1. Sequencing Data

In this study, we used FFPE tissue from nine patients with cutaneous melanoma after excisional
biopsy. Our samples consisted of the paired tumour and surrounding normal skin that was used as
control. All patients had no reported family history of melanoma and all examined melanoma tissues
were from the primary lesion.

The whole exome sequencing (WES) data were aligned to the human genome, with an average
alignment rate of >91%, an average sequence coverage of >100× and over 96% of targets with at
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least 20× coverage, enabling the achievement of the intended mutational profile [31,34–36]. Only one
sample attained a lower score in terms of coverage (normal sample for patient 8), but this did not affect
further analysis, since high coverage is necessary in the tumour samples to overcome endogenous
heterogeneity. Table 1 summarises the calculated alignment scores and sequencing depths for all
the samples.

Table 1. Sequencing characteristics for all the samples.

Patients 3 5 8 10 11 12 13 14 15

Normal

Alignment rate (%) 96 84.2 65.6 93.8 96.8 96.8 97.4 87.9 95.6
Average sequencing depth on target 129.8 93.9 72.2 103.9 101.5 123.3 117.4 102.5 128.4

Fraction of target covered by >20× (%) 97.37 96.37 94.41 96.44 95.03 97.53 97 97.38 97.96

Tumour

Alignment rate (%) 95.4 89.5 93.6 92.6 96.7 96.2 96.8 88.8 92
Average sequencing depth on target 118.9 100.8 102.2 111.5 111.4 104.8 111.9 102.2 120.7

Fraction of target covered by >20× (%) 97.4 95.86 96.48 96.75 96.74 96.62 96.16 96.3 96.66
Average sequencing depth on target 108.7

2.2. Identification of Germ-Line Variation

Aiming to examine whether the patients had germ-line variations on possible melanoma
susceptibility loci, we focused on a panel of SNPs previously reported to be associated with CM
risk. In particular, a list of SNPs from the GWAS catalog database [37] enriched by putative melanoma
risk SNPs based on the MelGene database [10,33] was assessed. The analysis was restricted to 22 SNPs
located in exon regions, since all SNPs on intronic or intragenomic regions were excluded because
our data was derived from exome sequencing. Table 2 demonstrates the germ-line SNPs associated to
melanoma risk found in the analysed patients. The relevant genes include pigmentation associated
genes (SLC45A2, OCA2, TYR), as well as cell cycle and DNA repair genes (ATM, CDKN2A, ERCC5).
Specific melanoma susceptibility alleles [38–43] were found in a number of patients.

Table 2. Germ-line single nucleotide polymorphisms (SNPs) putatively associated with melanoma,
based on genome-wide association studies (GWAS) and MelGene databases.

dbSNP_ID Gene Chr Variant Classification Ref. Allele MA Allele # Hom. Ref. # Hom. MA # Heter.

rs1801516 ATM 11 Missense Mutation G A 6 0 3

rs11515 CDKN2A 9 3′UTR C G 0 7 2

rs16891982 SLC45A2 5 Missense Mutation C G 0 9 0

rs17655 ERCC5 13 Missense Mutation G C 7 0 2

rs1800407 OCA2 15 Missense Mutation G A 8 0 1

rs1042602 TYR 11 Missense Mutation C A 2 2 5

The corresponding gene, chromosome position, classification type, reference allele (Ref.), Melanoma-associated
(MA) allele and the number of patients in Homozygous/Heterozygous state (Hom./Heter.), are shown in the
relevant columns.

2.3. Identification of Somatic Coding Mutations

In order to identify somatic mutations, we used the MuTect algorithm [35] which detects somatic
variations at low allelic fraction with high sensitivity and low false positive rate, based on the paired
analysis of tumour and matched-normal sequencing data [44]. We identified a total of 10,030 somatic
mutations in all patients (see Table S1). The majority of patients had comparable numbers of somatic
mutations (median: 589), with the exception of two patients: patient 12, who had a total of 5324 somatic
mutations, affecting 3752 genes, and patient 10 who had 27 somatic mutations, affecting 23 genes.
Table 3 displays the number of somatic mutations for all the patients, the mutation frequency per Mb,
along with the number of non-synonymous mutations and the relevant number of affected genes.
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In particular, 3955 protein-altering somatic mutations were identified. Excluding patient 10, the median
mutation frequency was 12.75 mutations/Mb (ranging from 10.1 to 105.7), which is in agreement
with the previously reported mutation burden of melanoma genome, which is considered one of the
highest among cancer genomes [45]. Regarding the sample from patient 10, it was the only case of
acral melanoma, which has been reported to have markedly less somatic mutations. Next, we analysed
the distribution of somatic substitutions per base change and all patients, except patient 10, showed
a UVR characteristic mutational spectrum with a high ratio of C > T transitions (median rate 85.6%),
which has been reported to characterise sun-exposed melanomas [25,46] (Figure 1).

Table 3. Somatic mutation characteristics for each patient.

Patients 3 5 8 10 11 12 13 14 15

Number of Mutations 522 693 901 27 935 5324 511 589 528
Frequency per Mb 10.4 13.8 17.9 0.5 18.6 105.7 10.1 11.7 10.5
Non-synonymous 226 284 387 18 364 2036 222 224 193

Genes with non-synonymous 216 274 360 16 338 1634 201 218 185

Figure 1. Mutation spectrum for each patient. C > T transitions account for 85.6% of the mutations
(median rate).

2.3.1. Characterisation of Mutated Genes and Copy Number Variations

The 10,030 mutations corresponded to 6030 unique genes, of which 2890 harboured
non-synonymous mutations, most likely affecting protein functionality. Among them, 421 genes were
found in at least two and 73 genes were common in at least three patients. In order to gain insights about
the functional role of these common genes, the Network of Cancer Genes (NCG) [47] was accessed so as
to identify all the cancer-related genes from this 73-gene top common list. NCG is a manually curated
literature-based repository containing 1571 cancer genes with either known involvement in cancer
or high probability of association due to statistical analysis from numerous NGS studies. Out of the
73 genes, 33 were referred to as cancer genes according to NCG, namely DNAH7, PCLO, TTN, CSMD1,
GPR98, MUC16, PKHD1L1, MYOM2, NEB, RELN, SPHKAP, UNC13C, ADCY8, ANK3, BAI3, CD163L1,
CNTN5, COL22A1, DNAH14, EYS, FAT1, FAT3, FLT1, GRIN2A, KMT2D, PCDH18, PKHD1, SHROOM3,
THSD7B, TNC, BRAF, LRP1B and RYR1. In addition, the COSMIC database [48,49] was accessed to
identify genes previously reported in melanoma. 65 of the 73 top common genes were previously
identified in melanoma cases, with a frequency over 5%. Figure 2a demonstrates that the majority of
the 73 genes, found mutated in at least three patients, either belonged to the candidate cancer gene list
of NCG (containing 1571 genes) or were previously reported in COSMIC with a mutation frequency
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of >5% in melanoma samples (1181 genes). Among the seven genes identified only in our study,
WD repeat domain 87 (WDR87), was found mutated in seven patients (87.5%). WDR87 is a protein
coding gene, but little is known about its function and its implication in melanoma. In COSMIC, it is
found mutated in 4.2% of the samples. Additionally, we accessed TCGA’s cBioPortal database [50,51]
to investigate preceding discoveries for WDR87. This search exposed two melanoma studies, with
WDR87 mutated in 55% and 16% of the samples examined [52,53]. Further analysis is needed to
clarify the potential significance of the high mutation frequency observed for WDR87 gene in the
specific subjects.

Somatic copy number variation (CNV) was assessed using differences in sequence coverage
between each tumour specimen and all same-sex adjacent skin samples utilising CNVkit, a methodology
which uses both on-target and off-target reads to infer copy number consistently across the genome.
This analysis revealed several CNV events in genes implicated in melanoma and reported to harbour
amplifications or deletions [17,54]. Specifically, CDKN2A (9p21) presented a deletion signal on three of
the patients, and PTEN (10q23) on two. In addition, CCND1 (11q13.3) and MITF (3p13) were amplified
in two patients and BRAF (7q34) was amplified in one patient (Figure 2b).

Figure 2. (a) Common genes between the 73-genes list, the 1571 Network of Cancer Genes (NCG)
genes and the >5% mutated genes in melanoma from COSMIC; (b) Characterisation of genes carrying
non-synonymous mutations based on COSMIC data. M-melanoma-associated genes (>20% mutated in
COSMIC) and C-cancer-census genes (>5% in melanoma samples). * Denotes genes highlighted by
MutSigCV (version 1.41).

Next, we searched the whole list of 2890 genes found to contain non-synonymous mutations in at
least one patient, exploring the COSMIC database which contains data of somatic mutations for specific
cancer types but also data for genes causally implicated in cancer. The notable melanoma-associated
mutation BRAF V600E was detected in three patients, while RAS mutations were not detected.
Among the mutated genes, only BRAF, CTNNB1, NF1 and TP53 carried specific mutations that
have been previously reported in COSMIC (in more than 15 cases), as shown in Table S2. We used
two criteria to characterise the genes carrying non-synonymous mutations in our study: the frequency
that a gene has been found mutated in melanoma and the characterisation of a gene as cancer census.
Specifically, we searched for genes mutated in melanomas with a frequency >20% and in addition
Cancer Census genes reported as mutated in melanoma with a frequency >5%, both based on COSMIC
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(Figure 2b). Furthermore, the MutSigCV algorithm (version 1.41) was used to identify significantly
mutated genes, incorporating patient-specific mutation frequency with gene expression and replication
time data. The small sample size prevents statistical significance in our results; still, the algorithm
offers valuable information, by prioritising genes with putative significant mutations (denoted with *
in Figure 2b), mainly after correcting for gene-specific mutation rates. It should be noted that among
the most frequently mutated genes in our results, there are several constantly found mutated in cancer
(e.g., PCLO, TTN) that are considered non-oncogenic [23]. Still, focusing only on the top melanoma
census genes from COSMIC, the majority of them are also mutated in the analysed cases (Figure S1).

2.3.2. Bioinformatics Pathway Analysis

In order to examine whether the genes found to carry somatic mutations were related to specific
biological mechanisms, we performed enrichment analysis on the union of non-synonymous mutations
for all the patients, particularly missense, nonsense, frame-shifting, splice site and non-stop mutations.
Excluding the genes that were solely mutated in patient 12 (1303 genes) to avoid patient-specific bias,
as well patient 10, who harboured very few mutated genes, a starting list of 1587 genes was obtained.
Aiming to focus on genes putatively contributing to melanoma pathophysiology and filter out those
carrying non-significant mutations, we applied two filtering steps at the 1587 gene list. Firstly, taking
into account the predicted impact of each mutation on protein functionality, as predicted by PolyPhen2
tool [55], we excluded all genes carrying neutral mutations. Moreover, we explored whether these genes
are expressed in melanoma through TCGA’s cBioPortal dataset, and retained for pathway analysis
only those appearing to have at least low expression in over 30% of the cases. These filtering steps
reduced the list to 769 genes, which were used as input for enrichment analysis based on gene ontology
(GO) and Reactome. The BioInfoMiner tool was used and statistically significant enriched terms were
revealed, which were grouped according to their biological relevance in Figure 3a. A great number
of genes fall in the categories of developmental processes (295 genes) and cell adhesion (138 genes).
Interestingly, 67 genes were related to neural system characteristic mechanisms, as indicated by
GO terms such as ‘neuronal action potential’, ‘synapse organisation’, ‘regulation of myelination’
and ‘neuron projection guidance’, grouped under the label ‘synapse formation and neuronal signal
transduction’. With the scope of distinguishing putatively causative genes, we focused on those with
implication in diverse cross-talking biological processes, reflecting genes with a central role in cellular
physiology. For this reason, we performed topological analysis using BioInfoMiner, which exploits
semantic information to detect and rank genes based on their centrality, as described in different
databases (e.g., GO and Reactome). This analysis resulted in a short list of genes (Figure 3b) with
possible causal implications in melanoma. Interestingly, in the proposed list there are several genes
with a well-established connection to cancer, like BRAF, ATM and TP53, but also others like PDPK1 and
DMD which could represent intriguing, yet poorly explored targets for further evaluation and possibly
cancer treatment. Particularly, PDPK1 (3-phosphoinositide dependent kinase 1) was found altered in
three patients, two of them carrying a gene amplification and one carrying a possibly damaging point
mutation. Regarding DMD (Duchenne muscular dystrophy), it is a long gene of 2.5 Mb, located on
chromosome X. In two patients, DMD was found containing protein-altering point mutations. It is
worth mentioning that significant pathways are enriched by different genes in each patient, suggesting
that the great diversity observed in genes affected by somatic mutations could reflect deregulation of
common molecular mechanisms. Indeed, regarding processes with an established role in melanoma
genesis and progression, such as the MAPK pathway and cell cycle (Table S3), all patients are found to
have at least one mutated gene annotated by GO to the aforementioned biological processes. The fact
that all these genes are expressed and bear damaging mutations supports their potential implication in
a malfunctioning mechanism contributing to melanoma.
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Figure 3. (a) Statistically significant biological processes with the corresponding number of genes
found as mutated in at least one patient; (b) 30 top-prioritised mutated genes, D-probably damaging
and P-possibly damaging mutation, as predicted by PolyPhen2.

3. Discussion

In this study, we report the characterisation of somatic mutations and germ-line variants in
patients with primary melanomas from Greece by exome sequencing analysis. This is the first study,
to our knowledge, where primary CM tissue from a low-incidence, southern European country is
analysed at the exome level. In particular, FFPE tissue paired samples were used. Despite the limitations
of using FFPE samples in NGS analyses, they represent a valuable source of knowledge that needs to
be exploited, especially in the case of CM, where clinical practice renders fresh–frozen primary tissue
availability limited. Towards this end, the present work consists of a pilot study aiming to overcome
technical difficulties and establish bioinformatics workflows for the exploitation of NGS approaches
on FFPE clinical samples. Our goal is to expand this analysis to a greater number of patients, aiming to
study any possible associations between germ-line and somatic alterations in melanoma patients. In the
present analysis, the consequences of the fixation procedure were minimised, ensuring the validity of
the presented results, at the cost of the inevitable loss in sensitivity. In spite of the limited number of
patients analysed, we performed a multi-level analysis, exploiting vastly established databases and
state-of-the-art tools to incorporate information aiming at a better understanding of the underlying
mechanisms involved with melanoma. We present a short list of candidate genes with probable
causative role in CM, which contains both well-known melanoma-associated genes, but also potential
new players, such as PDPK1 and DMD. PDPK1 was originally characterised as a serine-threonine
kinase, phosphorylating and activating AKT [56]. PDPK1 is a key element at the crossroad of signal
transduction pathways such as Ras/MAPK pathway and Myc-cascade, in addition to PI3K/AKT [57].
Furthermore, PDPK1 is frequently amplified at the gene level or over-expressed in several tumour
types [58,59], including melanoma [60]. As far as DMD is concerned, it was recently reported as
a tumour suppressor in cancers, featuring myogenic programmes [61]. In melanoma cell lines, the DMD
gene was found with deletions while the protein was frequently absent or down-regulated [62].
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In addition, a recent study based on genomic data from public repositories of diverse cancer types,
showed that DMD expression was decreased in the majority of the analysed tumours. Specifically in
the case of melanoma, DMD was down-regulated as compared to benign nevi that already showed
a reduced expression compared to normal skin [63].

4. Materials & Methods

4.1. Melanoma Samples

All samples were acquired in the context of the 12CHN-204 PROMISE project, under the strict
conformity to the rules of the call. The samples derived from FFPE tissue blocks from excisional biopsies
histopathologically confirmed as melanomas. Areas from tumour and adjacent healthy skin tissue
were assessed and separated by a pathologist. Paired tissue samples, tumour and normal samples
respectively, from nine patients, both male and female, with cutaneous melanoma were collected.

4.2. DNA Extraction and Exome Sequencing

DNA was isolated from the samples using QIAamp DNA FFPE Tissue protocol from QIAGEN
(Hilden, Germany), with several modifications to deparaffinisation, washing and proteinase K
digestion steps, to ensure better quality and higher quantity of the extracted DNA. More specifically,
deparaffinisation of FFPE samples was performed with xylene (2 times) at 56 ◦C for 3 min and the
precipitate was sequentially washed with 100%, 70% and 50% ethanol [27]. Proteinase K digestion
was performed at 56 ◦C while stirring the samples and the incubation time was increased to 3 days
with daily re-addition of proteinase K. The quantity and purity of the samples were checked using
NanoPhotometer (IMPLEN, Munich, Germany). The extracted DNA was prepared and captured with
the Agilent SureSelect Human All Exon 50 Mb kit (Agilent SureSelect v5, Santa Clara, CA, USA) and
whole exome sequencing was performed on an Illumina HiSeq 4000 sequencer (San Diego, CA, USA),
as paired-end reads.

4.3. Raw Data Analysis

Bioinformatic data analysis was performed utilising various state-of-the-art tools, as previously
presented [64]. For this study, we used version 3.6 of GATK [65], which incorporates somatic SNP
calling with somatic indel (insertions & deletions) calling, as carried out by MuTect2 [35] and
Indelocator [66], comparing the tumour-normal pairs in order to characterise somatic mutations.
Strand-specific artefacts, possibly due to DNA damage resulting from formalin fixation and
storage time, were excluded from further analyses. Germ-line variants were identified using the
HaplotypeCaller tool, by comparing the normal samples with the reference sequence, and specific
coding SNPs were investigated from a known panel of germ-line variants associated with melanoma
based on GWAS studies and established databases [10,33,37], focusing on those found on coding
regions. Annotation of all mutations was performed using Oncotator [67]. Significantly mutated
genes among the patients were identified using MutSigCV (version 1.41) [23], which ranks the genes
by estimating a background mutation rate (BMR) through the number of silent versus non-coding
mutations in the gene and the surrounding regions. BioInfoMiner [68] was used for the functional
analysis of the mutated genes, so as to identify the molecular pathways influenced by these mutations,
and to isolate the genes with central role, implicated in diverse and major mechanisms from various
vocabularies. For the functional prediction of the somatic mutations we utilised dbNSFP [69] through
Oncotator, a database that provides information for functional predictions and annotations for human
non-synonymous variants. Copy number variation (CNV) analysis was performed using CNVkit [70],
which specialises on CNV detection on targeted DNA sequencing. Expression of genes was evaluated
through TCGA’s cBioPortal datasets. Genes with TPM (transcripts per million) between 0.5 and 10
were considered to have low expression, between 11 and 1000 medium, and if TPM was over 1000,
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the genes were considered as highly expressed in a given case. Overall, genes were considered as
expressed when encompassing at least low expression in over 30% of the cases.

5. Conclusions

In this study, we present the characterisation of somatic mutations by WES analysis of paired
tissue from FFPE melanoma samples. A number of the identified mutated genes were previously
found in melanoma, including established, cancer-related genes. Our multi-level analysis highlights
a short list of candidate genes with a probable causative role in melanoma that could be promising
targets for future investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/4/96/s1,
Table S1: Total somatic mutations for all the samples; Table S2: Recurrent mutations based on COSMIC; Table S3:
Biological processes from GO (MAPK pathway and Cell cycle), with the corresponding mutated genes in each
patient; Figure S1: Top Census genes in melanoma from COSMIC database and the type of mutation found in
all patients.
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