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Immune-checkpoint protein VISTA 
critically regulates the IL-23/IL-17 
inflammatory axis
Na Li1,11, Wenwen Xu1, Ying Yuan1,7, Natarajan Ayithan1,8, Yasutomo Imai2,9, Xuesong Wu2,6, 
Halli Miller  1, Michael Olson1, Yunfeng Feng6, Yina H. Huang  6, Mary Jo Turk6, Samuel T. 
Hwang2,10, Subramaniam Malarkannan1,3,4,5 & Li Wang  1

V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an inhibitory immune-checkpoint 
molecule that suppresses CD4+ and CD8+ T cell activation when expressed on antigen-presenting cells. 
Vsir−/− mice developed loss of peripheral tolerance and multi-organ chronic inflammatory phenotypes. 
Vsir−/− CD4+ and CD8+ T cells were hyper-responsive towards self- and foreign antigens. Whether or 
not VISTA regulates innate immunity is unknown. Using a murine model of psoriasis induced by TLR7 
agonist imiquimod (IMQ), we show that VISTA deficiency exacerbated psoriasiform inflammation. 
Enhanced TLR7 signaling in Vsir−/− dendritic cells (DCs) led to the hyper-activation of Erk1/2 and 
Jnk1/2, and augmented the production of IL-23. IL-23, in turn, promoted the expression of IL-17A in 
both TCRγδ+ T cells and CD4+ Th17 cells. Furthermore, VISTA regulates the peripheral homeostasis of 
CD27− γδ T cells and their activation upon TCR-mediated or cytokine-mediated stimulation. IL-17A-
producing CD27− γδ T cells were expanded in the Vsir−/− mice and amplified the inflammatory cascade. 
In conclusion, this study has demonstrated that VISTA critically regulates the inflammatory responses 
mediated by DCs and IL-17-producing TCRγδ+ and CD4+ Th17 T cells following TLR7 stimulation. Our 
finding provides a rationale for therapeutically enhancing VISTA-mediated pathways to benefit the 
treatment of autoimmune and inflammatory disorders.

V-domain Immunoglobulin Suppressor of T cell Activation (VISTA, gene name Vsir) is an inhibitory B7 family 
immune-checkpoint molecule1. Together with other T cell co-inhibitory receptors such as CTLA-4, PD-1, TIM3, 
and LAG3, these immune-checkpoint proteins play critical roles in maintaining peripheral tolerance and con-
trolling immune responses against self and infectious agents, or cancer2,3.

The human and murine VISTA proteins share 90% identity and display similar expression patterns4. 
VISTA is constitutively expressed on CD11b+ myeloid dendritic cells (DCs), naïve CD4+ and CD8+ T cells, 
and Foxp3+CD4+ regulatory T cells. Similar to CTLA-4 and PD-1, VISTA controls peripheral tolerance and 
anti-tumor immunity1,3,5. VISTA expressed on APCs acts as a ligand to suppress the proliferation and cytokine 
production of both CD4+ and CD8+ T cells. VISTA expressed on CD4+ T cells also suppresses T cell activation in 
a T-cell autonomous manner6. Vsir knockout mice (Vsir−/−) developed loss of peripheral tolerance, manifested as 
spontaneous T cell activation, production of inflammatory cytokines and chemokines, and chronic multi-organ 
inflammation7. When bred onto an autoimmune-prone background, VISTA deficiency accelerated disease devel-
opment in the experimental autoimmune encephalomyelitis (EAE) model8. Treatment with VISTA-blocking 
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monoclonal antibody (mAb) enhanced T responses and anti-tumor immunity1,8. Our recent study has further 
demonstrated that VISTA and another B7 family immune-checkpoint PD-1 play non-redundant roles in con-
trolling T cell responses9. Mice deficient for both genes developed the most severe inflammatory phenotypes, 
accompanied by spontaneous activation of CD4+ and CD8+ T cells. Combinational blockade of both VISTA and 
PD-1 proteins using blocking mAb led to synergized anti-tumor immune responses in murine models.

Irrespective of these findings, whether VISTA regulates innate immune responses is not known. To address 
this question, we have employed the imiquimod (IMQ)-induced murine model of psoriasis, where topical appli-
cation of IMQ stimulates a network of innate immune cells, such as DCs and IL-17-producing γδ TCR+ T cells, 
leading to psoriasiform skin inflammation10. This murine model bears strong relevance to human psoriasis, 
which is also mediated by the IL-23/IL-17 inflammatory axis. Multiple studies have reported the presence of 
both IL-17-producing TCRγδ+ T cells (γδ T cells) and CD4+ Th17 cells in human psoriatic skin11–15. Treatment 
in human cancer patients with IMQ (Aldara®) has resulted in similar psoriasiform dermatitis, manifested as 
epidermal acanthosis and parakeratosis16–18.

In this study, using the IMQ-induced psoriasis model, we have demonstrated that VISTA plays a key role in 
suppressing the IL-23/IL-17-mediated inflammatory axis. VISTA inhibits the activation of DCs and the produc-
tion of IL-23 following TLR7 stimulation. VISTA also regulates the activation of IL-17-producing γδ T cells and 
CD4+ Th17 T cells, as well as the peripheral homeostasis of CD27− γδ T cell subsets that are pre-committed to 
produce IL-17A. Consequently, VISTA deficiency exacerbated psoriasiform inflammation. Taken together its role 
in suppressing CD4+ and CD8+ T cell activation, our study indicates that VISTA is a unique immune-checkpoint 
that regulates both innate and adaptive immune responses.

Results
Vsir−/− mice developed exacerbated psoriasiform inflammation. To address the role of VISTA in 
regulating innate immunity, we examined IMQ-induced psoriasiform dermatitis in wild type (WT) and Vsir−/− 
mice that were topically treated with 3.5% IMQ on both ears. Skin inflammatory response was quantified by 
measuring ear thickness. Our previous study reported chronic inflammatory phenotypes in aged (>10 month of 
age) Vsir−/− mice7. We first examined untreated naïve Vsir−/− mice (7–8 weeks of age) but did not observe any 
spontaneous skin inflammation (unpublished data). IMQ treatment in the Vsir−/− mice resulted in more severe 
ear swelling when compared to WT mice (Fig. 1a). Histological analyses confirmed the development of severe 
epidermal acanthosis in the Vsir−/− ear skin (Fig. 1b) and increased epidermal thickness (Fig. 1c). Furthermore, 
Vsir−/− ears showed ~20 fold increase in the area of neutrophilic abscesses (Munro’s abscess), which is a histolog-
ical hallmark in human psoriasis18 (Fig. 1d).

In addition to Gr1+ neutrophils, further examinations show that multiple other cell types were present in the 
WT psoriatic skin lesions, including CD11c+ DCs, CD4+ T cells, and γδ T cells (Fig. 1e). Similar lymphocyte 
populations were present in the ears of the Vsir−/− mice (data not shown). VISTA was highly expressed on these 
cells types (Fig. 1f), all of which are known to regulate the development of IMQ-induced psoriasiform inflamma-
tion17–20. Both γδlow and γδhigh T cells were present in the ear skin, whereas only γδlow T cells were present in the 
ear-draining lymph nodes (LN). VISTA expression on γδlow T cells was higher from inflamed ear skin than cells 
from the draining LN (Fig. 1f). To further determine whether the exacerbated psoriasiform inflammation was 
due to the pre-existing inflammatory environment in the Vsir−/− mice, we treated mice with a VISTA-specific 
mAb8. Consistent with results from the Vsir−/− mice, VISTA-specific mAb treatment significantly enhanced 
IMQ-induced psoriasiform inflammation (Fig. 1g), although the magnitude of disease was not as severe as those 
seen in the Vsir−/− mice.

Exaggerated neutrophil infiltration may potentially result from an augmented production of inflammatory 
cytokines and chemokines18. To investigate the inflammatory milieu, mRNA from IMQ-treated ear skin was 
harvested and examined by quantitative RT-PCR (Q-PCR). A panel of psoriasis-associated genes was induced in 
both WT and Vsir−/− skin following IMQ treatment (Fig. 2a). Vsir−/− skin showed significantly higher expression 
of inflammatory cytokine genes Il23p19, Il1β, Il6, Il17a, Il22, Tnfα, and Ifnγ, chemokine gene Cxcl2, and neu-
trophil chemotactic gene S100a9 (Fig. 2a). Serum protein levels of IL-1β, IL-6, IL-17A, IFN-γ, and CXCL2 were 
higher in the Vsir−/− mice (Fig. 2b). Serum levels of S100A9, TNF-α, IL-22, and IL23 were very low and were 
not reliably detected before or after IMQ treatment (unpublished results). Serum levels of IL-22 and TNF-α have 
been previously reported in mice following treatment with 5% IMQ cream on the back skin20. To further confirm 
that VISTA deficiency resulted in enhanced protein production of IL-22 and TNF-α, WT and Vsir−/− mice were 
treated with 3.5% IMQ cream on the shaved back skin. Serum was harvested six hours after the treatment, and the 
concentration of IL-22 and TNF-α in the serum was examined by ELISA. Consistently, IMQ treatment of back 
skin led to accumulation of higher levels of IL-22 and TNF-α in the serum of the Vsir−/− mice (Supplementary 
Fig. 1). Together, these results indicate that VISTA inhibits the expression of inflammatory cytokines and 
chemokines in response to IMQ.

VISTA regulates the production of IL17 by both γδ T cells and CD4+ Th17 cells. The IL-23/IL-17 
inflammatory axis has a well-established role in the development of inflammatory and autoimmune diseases21,22. 
In psoriatic lesions, high levels of IL-17A induce the release of neutrophil chemoattractants from keratinocytes, 
thus amplifying the inflammatory cascade. IL-22, another key Th17 cytokine, promotes sustained epidermal 
acanthosis and parakeratosis18,23,24.

Both γδ T cells and CD4+ Th17 cells are IL-17-producing effector cells that drive human psoriasis and the 
IMQ-induced model of psoriasiform inflammation10,12–14. To investigate the contribution of γδ T cells and CD4+ 
Th17 cells during the development of psoriasiform inflammation in the Vsir−/− mice, we first examined their cell 
number in the ear and ear-draining LN. No significant difference was observed between WT and Vsir−/− mice 
(Fig. 3a). Since Il17a mRNA level was significantly augmented in the Vsir−/− skin (Fig. 2), we examined IL-17A 
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protein expression in γδ T cells and CD4+ cells isolated from IMQ-treated WT and Vsir−/− mice. Vsir−/− γδ T 
cells in ear skin and draining LN produced significantly higher amount of IL-17A, but similar levels of IFN-γ 
and TNF-α when compared to WT cells (Fig. 3b and Supplementary Fig. 2). Vsir−/− CD4+ T cells also expressed 
higher amount of IL-17A than WT cells in the ear and ear-draining LN, though the percentage of IL-17A posi-
tive cells was much lower than γδ T cells (Fig. 3c). Thus, both γδ T cells and Th17 cells contributed to the higher 
IL-17A production in IMQ-treated Vsir−/− mice. In addition to γδ T cells and CD4+ T cells, CD11b+ myeloid 
cells expressed IFN-γ and TNF-α (Supplementary Fig. 3a). Higher numbers of IFN-γ and TNF-α-expressing 
CD11b+ cells were found to infiltrate IMQ-treated ears in the Vsir−/− mice, which may contribute to the higher 
levels of IFN-γ and TNF-α within the inflamed ear tissues (Supplementary Fig. 3b). Similar numbers of IFN-γ 
and TNF-α-expressing Cd11b+ cells were found in the ear-draining LN (Supplementary Fig. 3c).

To further understand the mechanisms whereby VISTA regulates the homeostasis and activation of γδ T cells, 
we examined the subsets of γδ T cells in naïve WT and Vsir−/− mice25,26. The CD27+ and CD27− γδ T cell subsets 
are developed in thymus before exiting to the periphery25. The CD27− γδ T cells express higher levels of IL-1R 
and IL-23R, and are pre-committed to produce IL-17A upon TCR- or cytokine-mediated activation, whereas 
CD27+ γδ T cells predominantly produce IFN-γ25,27. To determine if loss of VISTA altered the development and 
peripheral homeostasis of γδ T cells, thymic and splenic γδ T cell subsets in WT and Vsir−/− mice were examined. 
Similar percentages of total γδ T cells and the Vγ4+ subset were observed in the spleen, indicating an overall nor-
mal development of γδ T cells in the absence of VISTA (unpublished data). On the other hand, higher percentage 
of the CD27− subset was present within the splenic but not thymic Vsir−/− γδ T cells (Fig. 4a). This result indicates 
that VISTA regulates the peripheral homeostasis of CD27− γδ T subsets.

It has been shown that IL-7 preferentially expands the IL-17A-producing CD27− γδ T subset and promotes 
their peripheral homeostasis28,29. To determine whether the peripheral expansion of CD27− γδ subset in Vsir−/− 
mice resulted from unrestricted IL-7 receptor signaling, naive WT and Vsir−/− γδ T cells were stimulated in vitro 
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Figure 1. VISTA deficiency exacerbated the IMQ-induced psoriasiform inflammation. (a) WT and Vsir−/− 
mice were topically treated daily on each ear with 3.5% IMQ cream for 5 days. Ear thickness was measured daily. 
Ear swelling is shown as the increase of ear thickness when compared to day 0, and expressed as mean ± SEM 
(n = 18). On day 5, ears were harvested and processed for H&E staining. A representative image is shown (b). 
Scale bars: 50 μm. (c) The epidermal thickness was measured by examining at least 20 random fields throughout 
the cross section of ear tissues. The increase of epidermal thickness was calculated by subtracting the average 
value of naive ears. Data are pooled from 3 ears and shown as mean ± SEM. (d) A representative image of 
Munro’s abscess in epidermis is shown (within the dashed lines). Scale bar: 50 μm. Areas of Munro’s abscess 
were measured from the entire cross section of ear tissues. Data are pooled from 3 ears and shown as ± SEM. 
(e) The number of CD11c+ DC, Gr1+ neutrophils, γδ TCR+ and CD4+ T cells in IMQ-treated ears and ear-
draining LN in WT mice was examined by flow cytometry. (f) Surface VISTA expression on these cell types 
was examined by flow cytometry. Representative data from at least three independent experiments are shown. 
(g) WT mice were treated with VISTA-specific mAb or control Ig (250 μg, on day 0, 2, and 4), in addition to the 
3.5% IMQ cream. Ear swelling is shown as mean ± SEM (n = 10).
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with IL-7 for 4 days, and the number of CD27− γδ T cells was examined. IL-7 treatment expanded both WT and 
Vsir−/− CD27− γδ T subsets. However, Vsir−/− CD27− γδ T cells were hyper-proliferative than WT cells, resulting 
in a ~10 fold increase in viable cell number and a ~5 fold increase in percentage within the total expanded γδ T 
cell population (Fig. 4b). To determine how VISTA regulates the IL-7 receptor signaling, the phosphorylation 
status of STAT3 and STAT5 was examined, since both proteins are known to mediate IL-7 receptor signaling30. 
Our results show that higher level of phosphorylated STAT5 was induced in Vsir−/− γδ T cells than WT cells fol-
lowing IL-7 stimulation (Fig. 4c). On the other hand, similar level of phosphorylated STAT3 was observed (data 
not shown). These results indicate that VISTA restricts the activation of STAT5 but not STAT3 downstream of 
IL-7R signaling in γδ T cells.

γδ T cells are activated by both TCR-specific stimuli and inflammatory cytokines such as IL-1β and IL-2326. 
Since VISTA is expressed on γδ T cells (Figs 1f and 4d), it is possible that VISTA suppresses the activation of γδ T 
cells in an autonomous manner. To test this, naïve splenic WT and Vsir−/− γδ T cells were isolated and stimulated 
with either TCR crosslinking, or cytokines IL-1β and IL-23. Vsir−/− γδ T cells produced more IL-17A and IL-22 
than WT cells (Fig. 4e). Activated Vsir−/− γδ T cells consistently expressed higher level of RORγt, a ROR family 
transcription factor that binds to and activates the Il-17a promoter (Fig. 4f)31,32. Both CD27+ and CD27− Vsir−/− 
γδ T subsets expressed more IL-17A than WT cells following IL-1β and IL-23 stimulation. These data indicate 
that in addition to regulating the peripheral homeostasis of CD27− γδ T cells, VISTA directly controls the activa-
tion of γδ T cells (Fig. 4g).

VISTA expression on dendritic cells suppresses IMQ-induced TLR7 signaling and IL-23 produc-
tion. In both human psoriasis and murine models of psoriasiform inflammation, IL-23 is predominantly pro-
duced by myeloid DCs and promotes the expansion of pathogenic IL-17A-producing γδ T cells and CD4+ Th17 
cells17,20,24. Since an elevated expression of IL23 gene was observed in IMQ-treated ear skin from Vsir−/− mice 
(Fig. 2), we hypothesize that VISTA expression on DCs suppresses IMQ/TLR7-induced IL-23 production. To test 
this hypothesis, WT and Vsir−/− mice were treated with 3.5% IMQ on the ears for 4 days. Ear tissues were har-
vested and the expression of IL-23p19 in ear CD11c+ DCs were examined by flow cytometry. Significantly higher 
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Figure 2. VISTA deficiency enhanced the production of inflammatory cytokines and chemokines. (a) WT and 
Vsir−/− mice were topically treated on both ears with 3.5% IMQ cream daily for 3 days. mRNA was isolated from 
ear tissues. Gene expression of inflammatory cytokines and chemokines (Il23p19, Il1b, Il6, Tnfa, Il17a, Il22, Ifng, 
Cxcl2, S100a9) was examined by quantitative RT-PCR. The relative mRNA abundance of each gene is normalized 
against the control gene Gapdh and shown as mean ± SEM (n = 4). Representative data from three independent 
experiments are shown. (b) Serum levels of IL-1β, IL-6, IL-17A, IFN-γ, and CXCL2 in WT and Vsir−/− mice before 
and after IMQ cream treatment were examined by ELISA. Data are shown as mean ± SEM (n = 4).
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percentages of Vsir−/− DCs expressed IL-23p19 protein than WT cells in ears and ear-draining LNs (Fig. 5a), 
whereas the number of DCs present in ears and the draining LNs was similar (Fig. 5b).

Although there was similar expression of DC activation markers such as CD80, CD86, and CD40 on naive 
WT and Vsir−/− splenic DCs (Supplementary Fig. 4), it could not be formally excluded that an altered DC 
development in Vsir−/− mice may contribute to the hyper-response of DCs. To directly demonstrate the role of 
VISTA in suppressing DC cytokine production, we ectopically expressed either full-length VISTA, or a mutant 
VISTA lacking the cytoplasmic tail (deltaC), or GFP control protein in GM-CSF cultured Vsir−/− BM-derived 
DCs. Following stimulation with a TLR7/8 agonist R848, secreted IL-23 was examined by ELISA. Expression of 
both FL-VISTA and deltaC-VISTA significantly suppressed IL-23 production in Vsir−/− BMDCs (Fig. 5c). This 
result strongly supports the role of VISTA in inhibiting TLR7-mediated DCs activation and IL-23 expression. 
Furthermore, since the cytoplasmic tail is not required for the suppressive activity of VISTA, this result indicates 
that VISTA engages an unknown receptor, which in turn delivers an inhibitory signal.

The Il-23 promoter contains binding sites for AP-1 and NF-κB33. It has been shown that TLR4 stimulation in 
macrophages and DCs activates MAP kinases (Erk1/2, Jnk1/2, and p38), which are critical for the activation of 
transcription factor AP1 and the expression of Il-23p19 gene33,34. Furthermore, Erk1/2 inhibitor suppressed IL-23 
production in DCs stimulated with TLR agonists34. To determine if VISTA regulates the activation of NF-κB and 
MAPK pathways, total cell lysates were prepared from WT and Vsir−/− splenic DCs that have been stimulated 
with R848 and examined by western blotting (Fig. 5d). R848 stimulation induced significantly higher levels of 
Erk1/2 phosphorylation and a moderately increased phosphorylation of Jnk1/2 in Vsir−/− DCs (Fig. 5d). On the 
contrary, similar levels of Iκ-B degradation and phosphorylation of NF-κB p65 were observed, indicating that the 
NF-κB pathway was not significantly altered in the absence of VISTA (Fig. 5e). Similar levels of phosphorylated 
p38 were present in lysates from WT and Vsir−/− BMDCs (unpublished data).

To further confirm the critical role of Erk1/2 in IL-23 production in DCs, WT and Vsir−/− DCs were purified 
from naïve Rag1−/− and Vsir−/−Rag1−/− mice and stimulated ex vivo with R848 in the presence of inhibitors 
of Erk1/2 or Jnk1/2, or solvent control (Fig. 5). Consistent with our hypothesis, Vsir−/− DCs produced higher 
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Figure 4. VISTA controls the peripheral homeostasis and activation of γδ T cells. (a) Naive γδ T cells were 
isolated from WT or Vsir−/− mice and their surface expression of CD27 was examined by flow cytometry 
(n = 4). The percentage of the CD27− subset is shown (mean ± SEM). (b and c) Naïve γδ T cells from WT and 
Vsir−/− mice (n = 4) were stimulated in vitro with IL-7 (10 ng/ml). The number and percentage of viable CD27− 
γδ T cells were quantified by flow cytometry after 4 days. Phosphorylated STAT5 was examined by intracellular 
staining and flow cytometry. (d) VISTA expression on CD27+ and CD27− naïve splenic γδ T cells was examined 
by flow cytometry. (e–g) Naïve splenic γδ T cells were purified from WT and Vsir−/− mice (cells pooled from 
4 mice of each strain), and stimulated with either immobilized anti-CD3ε mAb (2C11) or cytokines IL-1β and 
IL-23. Culture supernatants were harvested after 24 hrs and the levels of IL-17A and IL-22 were examined 
by ELISA. Values from triplicated cultures are shown as mean ± SEM (e). Expression of RORγt at 24 hrs 
following IL-1β (0.25 ng/ml) and IL-23 (0.25 ng/ml) stimulation was examined by intracellular staining and 
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Figure 5. VISTA negatively regulates IMQ-induced activation of DCs and the production of IL-23. WT 
and Vsir−/− mice were treated on ears with 3.5% IMQ for 3 days. Cells from ear tissues and the ear-draining 
cervical LNs were harvested. Cells were stimulated with PMA and Ionomycin in vitro for 3 hrs. The expression 
of IL-23p19 in CD11c+ DCs was examined by flow cytometry. The percentages of IL-23p19-expressing 
DCs were quantified and shown as mean ± SEM (n = 6) in (a). The number of total CD11c+ DCs from ear 
tissue and draining LN is shown as mean ± SEM (n = 5) in (b). To determine whether ectopic expression of 
VISTA suppresses TLR7-induced IL-23 production, Vsir−/− BM-derived DC were transduced with lentivirus 
expressing full-length (FL), or mutant VISTA lacking the cytoplasmic tail (deltaC), or GFP control protein. 
After culture with GM-CSF (20 ng/ml) for 7 days, cells were stimulated with R848 (5 μg/ml) for 7 hrs. Culture 
supernatant was harvested and secreted IL-23p19/p40 was examined by ELISA (c). To examine TLR7 signaling 
in DCs, CD11c+ DCs were purified from the spleens of naïve Rag1−/− and Vsir−/−Rag1−/− mice, and stimulated 
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level of IL-23p19/p40 than WT cells (Fig. 5f). Erk1/2 inhibitor completely abolished the ability of both WT and 
Vsir−/− DCs to produce IL-23, whereas Jnk1/2 inhibitor was moderately effective (Fig. 5f). Taken together, these 
results suggest that VISTA negatively regulates TLR7 signaling and inhibits the expression of IL-23 in DCs via 
suppressing the activation of Erk1/2.

Discussion
The IL-23/IL-17-mediated inflammatory axis plays a critical role in many inflammatory disorders and auto-
immune diseases such as psoriasis, rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease22. 
In the current study we have demonstrated a novel role of VISTA in regulating this inflammatory axis. In the 
IMQ-induced psoriasis model, VISTA deficiency augmented the inflammatory responses of DCs, γδ T cells, and 
Th17 cells, resulting in exacerbated psoriasiform dermatitis.

In both human psoriasis and murine model of psoriasiform inflammation, one of the main initial responders 
are IL-23-producing DCs17. IL-23 promotes the expansion and activation of IL-17-producing CD4+ Th17 cells 
and γδ T cells. This inflammatory milieu recruits and activates additional effector cells such as inflammatory 
monocytes and neutrophils, which amplify inflammation and drive epidermal hyperplasia. Our results indicate 
that VISTA controls the production of IL-23 in DCs via inhibiting the activation of Erk1/2. We predict that strat-
egies that enhance VISTA-regulated inhibitory signaling will dampen IL-23-mediated inflammatory axis and 
benefit the treatment of not only human psoriasis, but also other inflammatory diseases driven by IL-23.

In addition to regulating the activation of DCs, VISTA negatively regulates IL-7-mediated homeostasis of 
CD27− γδ T cells, as well as the activation of γδ T cells in response to TCR-mediated or IL-23/IL-1β-mediated 
stimuli. These effects collectively contribute to the exaggerated psoriasiform inflammation in the Vsir−/− mice. 
It is noted that VISTA expression on γδ T cells was upregulated within the psoriatic skin when compared to the 
draining LN, indicating a potential feedback mechanism whereby inflammatory cytokines or other mediators 
may upregulate VISTA expression to dampen inflammation.

In addition to VISTA, other immune-checkpoint proteins including Programmed death-1 (PD-1) and B and T 
lymphocyte attenuator (BTLA) also regulate IL17 expression in γδ T cells35,36. Both receptors are expressed on γδ 
T cells and restrict their activation. PD-1 and BTLA knockout mice developed more severe psoriasiform derma-
titis in the IMQ model35,36. These results warrant future efforts to determine whether these immune-checkpoint 
proteins act synergistically to regulate the function of γδ T cells.

In addition to psoriasis, the IL-23/IL-17 inflammatory axis regulates disease development in murine experi-
mental autoimmune encephalomyelitis (EAE) and human autoimmune disease multiple sclerosis26,37,38. Previous 
studies have shown that VISTA genetic deletion or VISTA-blocking mAb treatment exacerbated disease in the 
EAE model1,7,9. Since both IL-17-producing γδ T cells and Th17 cells have been implicated as effector cells during 
EAE39,40, our current study provides additional mechanisms whereby VISTA regulates this disease.

In the context of cancer therapy, the IL-23/IL-17 inflammatory axis regulates the inflammatory tumor microen-
vironment (TME). Earlier studies have demonstrated the tumor-promoting role of IL-2341,42, whereas both 
tumor-promoting and tumor-inhibitory roles of IL-17 have been reported43–47. Results from this study indicate that 
blocking VISTA promotes the inflammatory responses mediated by IL-23/IL-17, particularly in the context of TLR 
stimulation. Our previous study has shown that VISTA-blocking mAb synergized with a tumor peptide vaccine and 
TLR agonists as adjuvants8. Future studies are warranted to determine whether the exacerbated IL23/IL17 inflam-
matory axis positively or negatively contributes to the anti-tumor immunity following VISTA blockade.

In conclusion, this study reveals a novel anti-inflammatory role of VISTA through regulating the IL-23/IL-17 
inflammatory axis. Our findings distinguish VISTA from other immune-checkpoint proteins CTLA-4 and PD-1, 
and establish VISTA as a regulator of both innate and adaptive immunity1,4,6–9. Therapeutic agents have been 
developed to harness the immune-suppressive functions of immunecheckpoint proteins. For example, a fusion 
protein CTLA4-Ig (Abatacept) has been used in the clinic for treating autoimmune diseases such as rheumatoid 
arthritis48. Similarly, local overexpression of PD-L1-Ig or administration of purified PD-L1-Ig has been shown 
to promote allograft survival in murine models49–52. Our study indicates that enhancing the anti-inflammatory 
function of VISTA may benefit the treatment of a variety of inflammatory and autoimmune disorders.

Materials and Methods
Mice. C57BL/6 mice were purchased from Charles River Laboratories. Vsir−/− mice on a fully backcrossed 
C57BL/6 background were as described7,9. All animals were maintained in a pathogen-free facility at the Medical 
College of Wisconsin (Milwaukee, WI). All animal protocols were approved by the Institutional Animal Care 
and Use Committee of the Medical College of Wisconsin. All methods were performed in accordance with the 
relevant guidelines and regulations.

with R848 (5 μg/ml) for indicated amount of time. Total cell lysates were prepared and examined for the levels 
of phosphorylated Erk1/2 and Jnk1/2 by western blotting (d). The ratio of phosphorylated versus total Erk1/2 
and Jnk1/2 was calculated based on the total protein level from the same lysate run on a parallel gel (d). The 
activation of NF-κB signaling was examined by western blotting the level of phosphorylated and total IκB, as 
well as phosphorylated and total NF-κB p65 subunit (e). To determine whether Erk and Jnk were required for 
the production of IL-23, Splenic DCs were isolated from naïve WT and Vsir−/− mice, and stimulated with R848 
(5 μg/ml) in the presence of Erk1/2 inhibitor (SCH772984, 10 μM), or Jnk1/2 inhibitor (SP600125, 10 μM), 
or DMSO solvent control for overnight. Culture supernatant was collected and secreted IL-23p19/p40 was 
quantified by ELISA. Values from triplicated cultures are shown as mean ± SEM in (f). Representative results 
from two to three independent experiments were shown.
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Abs, cell lines, and reagent. Antibodies specific for γδ-TCR (GL3), CD27 (LG.3A10), IL-17A (eBio17B7), 
CD4 (GK1.5), CD8 (53-6.7), CD11b (M1/70), CD11c (N418), IFN-γ (XMG1.2), TNF-α (MP6-XT22), anti-CD3e 
(2C11) were purchased from BioLegend (San Diego, CA). Recombinant murine IL-1β and IL-23 were from 
Peprotech (Rocky Hill, NJ). Antibodies specific for p-STAT3, p-STAT5, p-Erk1/2 (Thr202/Tyr204), Erk1/2, 
p-Jnk1/2 (Thr183/Tyr185), Jnk1/2, and IκB were purchased from Cell Signaling Technology (Boston, MA). The 
VISTA-specific mAb was as described previously8. Erk1/2 inhibitor (SCH772984) was obtained from Selleckchem 
(Houston, TX) and Jnk1/2 inhibitor (SP600125)was obtained from Invivogen (San Diego, CA).

Imiquimod (IMQ)-induced psoriasiform inflammation model. WT and Vsir−/− mice were treated 
daily on both ears with 50 mg of 3.5% IMQ cream, which was prepared by diluting the 5% IMQ cream (Taro 
Pharmaceuticals, New York, NY) using the vehicle cream (Vanicream; Pharmaceutical Specialties, Cleveland, 
GA). Ear thickness was measured by using an Ozaki caliper (model G-A1-0.4 N) (Neill-Lavielle Supply, Louisville, 
KY). For histopathological analysis, H&E staining was performed on formaldehyde fixed, paraffin-embedded skin 
samples. Images were acquired using an INFINITY3-1C digital camera (Lumenera, Ottawa, Canada) attached to 
a Carl Zeiss microscope.

To quantify the amount of Munro’s abscess, the entire cross section of the ear tissue was examined. Munro’s 
abscess was identified as areas within the epidermis that were occupied with aggregated neutrophils. The areas of 
Munro’s abscess were quantified by manually defining the boundaries and measuring the area using the Image J 
software.

The thickness of the epidermis was also quantified using the Image J software. More than 20 random fields 
were measured throughout the entire cross section of the ear tissue. The increase of epidermal thickness was cal-
culated by subtracting the average epidermal thickness of naïve ear tissues.

Quantitative real-time PCR (RT-PCR). Total RNA of ear skin was prepared using an RNeasy Fibrous 
Tissue Kit (Qiagen, Hilden, Germany). Quantitative RT-PCR was performed via StepOnePlus Real-Time PCR 
System (Applied Biosystems, Foster City, CA).

Primer sequences are described in the following: Il23-p19 (forward: CCAGCAGCTCTCTCGGAATC; reverse: 
TCATATGTCCCGCTGGTGC); Il1b (forward: CGCAGCAGCACATCAACAAGAGC; reverse: TGTCCT 
CATCCTGGAAGGTCCACG); Il6 (forward: GCAGAAAAAGGCAAAGAATC; reverse: CTACATTTGCC 
GAAGAGC); Tnfa (forward: AGGCAGTCAGATCATCTTC; reverse: TTATCTCTCAGCTCCACG); Il17A (forward:  
GAGCTTCCCAGATCACAGAG; reverse: AGACTACCTCAACCGTTCCA); Il22 (forward: CTG CTT CTC  
ATT GCC CTG TG; reverse: AGC ATA AAG GTG CGG TTG AC); Ifnγ (forward: GTTACTGCCACGGCACA 
GTCATTG; reverse: ACCATCCTTTTGCCAGTTCCTCCAG); Cxcl2 (forward: GAAGTCATAGCCA 
CTCTCAAGG; reverse: CTTCCGTTGAGGGACAGC); S100a9 (forward:ATACTCTAGGAAGGAAGGACACC;  
reverse: TCCATGATGTCATTTATGAGGGC); gapdh (forward: GTGGAGTCATACTGGAACATGTAG; 
reverse: AATGGTGAAGGTCGGTGTG).

Generation of BM-derived DC and lentiviral transduction. Bone marrow (BM) cells were harvested 
from the femur and tibia from naive Vsir−/− mice, and cultured in GM-CSF (20 ng/ml). On day 3, cells were 
infected with lentivirus expressing full-length (FL), or mutant VISTA lacking the cytoplasmic tail (deltaC), or 
GFP control protein. Infected cells were selected in puromycin (5 μg/mL) for additional 4 days. On day 7, cells 
were stimulated with R848 (5 μg/ml) for 7 hrs. Culture supernatant was harvested and secreted IL-23p19/p40 was 
examined by ELISA (Biolegend Inc, San Diego, CA).

Flow Cytometry and data analysis. CD11c+ DCs and γδ T cells were purified from spleens of naïve WT 
and Vsir−/− mice using MACS Microbead kits (Miltenyi Biotech, San Diego, CA). DCs were positively selected 
using the Cd11c Microbeads (130-108-338). γδ T cells were purified using the TCRγδ+ T Cell Isolation Kit (130-
092-125). Purity was examined by flow cytometry and was typically >90%.

Cells from ear skin were harvested following digestion at 37 °C for 45 min with Liberase TL (Roche, 
Pleasanton, CA) and Dnase (Sigma, St Louis) to obtain single cell suspensions. To detect intracellular cytokine 
expression, cells were stimulated for 4 hrs in complete RPMI medium containing PMA(50 μg/ml), ionomycin 
(1 μg/ml), 10% FBS, 2 mM L-glutamine, 50 μM 2-mercaptoethanol, 1% penicillin-streptavidin, 1x monensin, 1x 
Brefeldin A (BioLegend, San Diego, CA). Cells were then fixed with 1% paraformaldehyde, permeabilized with 
0.5% saponin, stained for intracellular cytokines, and analyzed by flow cytometry.

Flow cytometry was performed using an Acuri C6 or LSR II (BD Biosciences, San Jose, CA). Data were ana-
lyzed with FlowJo version 10.0.7 analysis software (Tree Star, San Carlos, CA).

Graphs and Statistical analysis. All graphs and statistical analysis were generated using Prism 6 
(GraphPad Software, Inc., San Diego, CA). Student’s t test (two tailed) or ANOVA was used for data analyses. A 
P-value less than 0.05 is considered as statistically significant.
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